

ffirs.indd iiffirs.indd ii 03/09/11 11:13 AM03/09/11 11:13 AM

Windows
PowerShell® 2.0 Bible

ffirs.indd iffirs.indd i 22/09/11 5:01 PM22/09/11 5:01 PM

ffirs.indd iiffirs.indd ii 22/09/11 5:01 PM22/09/11 5:01 PM

Windows
PowerShell® 2.0 Bible

Thomas Lee
Karl Mitschke
Mark E. Schill

Tome Tanasovski

John Wiley & Sons, Inc.

ffirs.indd iiiffirs.indd iii 22/09/11 5:01 PM22/09/11 5:01 PM

Windows PowerShell® 2.0 Bible

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2011 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-02198-9

ISBN: 978-1-118-18326-7 (ebk)

ISBN: 978-1-118-18328-1 (ebk)

ISBN: 978-1-118-18327-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under

Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the

Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,

222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for

permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,

Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or

warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim

all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may

be created or extended by sales or promotional materials. The advice and strategies contained herein may

not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional services. If professional assistance is required, the services

of a competent professional person should be sought. Neither the publisher nor the author shall be liable for

damages arising herefrom. The fact that an organization or website is referred to in this work as a citation

and/or a potential source of further information does not mean that the author or the publisher endorses

the information the organization or website may provide or recommendations it may make. Further, readers

should be aware that Internet websites listed in this work may have changed or disappeared between when

this work was written and when it is read.

For general information on our other products and services, please contact our Customer Care Department

within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be

available in electronic books.

Library of Congress Control Number: 2011936812
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affiliates, in the United States and other countries, and may not be used without written permission.

Windows PowerShell is a registered trademark of Microsoft Corporation. All other trademarks are the

property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor

mentioned in this book.

ffirs.indd ivffirs.indd iv 22/09/11 5:01 PM22/09/11 5:01 PM

My work on this project is dedicated to Susan, my wife, for
her patience, affection, and outstanding proofreading

skills. I could not have done it without her. To my
godmother, Alberta Stehle, and my aunt, Mrs. James

Wright, for their inspiration.
— Thomas Lee

My work on this book is dedicated to my best friend, the
love of my life, my bride, Sherry. Without your faith and

constant support, I’d still be staring at a blank Word
document. Thanks for always believing in me.

— Karl Mitschke

My work on this book is dedicated to my wife, Carla.
It is with her support and constant encouragement that

I have been able to be where I am today.
— Mark E. Schill

My work on this book is dedicated to my ladies. To my wife,
Heather, who is and will always be the love of my life and
my best friend, I’m sorry if you felt like a single mother at

times while I was working on this. To my daughter Elora, who
made sure that I took breaks from writing, and to my unborn

daughter who we have yet to name, I hope this book serves
as an inspiration that you can do anything you want in this

world with enough hard work and commitment.
— Tome Tanasovski

ffirs.indd vffirs.indd v 22/09/11 5:01 PM22/09/11 5:01 PM

ffirs.indd viffirs.indd vi 22/09/11 5:01 PM22/09/11 5:01 PM

About the Authors
Thomas Lee is an IT industry veteran. Thomas graduated from

Carnegie Mellon University in 1973, and has had a number of interesting

assignments over the decades. Today, he consults, writes, and provides

training mainly on Microsoft technologies, including Lync and Windows

PowerShell. He has also been a speaker at major IT conferences over the

past two decades.

A Microsoft Certi�ied Trainer for 17 years and an MVP for 16 of the past

17 years, Thomas was the �irst person in the world to blog about Windows

PowerShell in 2003. He has also been involved with the Windows PowerShell community

since its inception and is a director of PowerShellCommunity.org.

Thomas was part of the team that wrote both of�icial Microsoft Windows PowerShell

classes and has taught clients around the world to use the product. He writes two blogs,

Under The Stairs (at http://tfl09.blogspot.com) and PowerShell Scripts Blog (at

http://pshscripts.blogspot.com), is active on Twitter (@doctordns), and hosts online

forums. In his spare time, he lives in an old cottage in the English countryside with his

wife Susan, daughter Rebecca, a �ine wine cellar, and large collection of Grateful Dead live

recordings.

Karl Mitschke is a Systems Engineer for the State of Montana. His primary

focus is Microsoft Exchange Server administration, with a strong emphasis

on Windows PowerShell. Karl was awarded the Microsoft Community

Contributor award for his contributions in Microsoft online community

forums.

With more than 25 years of IT experience and extensive experience

creating utility programs in C# and Visual Basic, Karl has been working

with Windows PowerShell since the public beta was available. He has worked with Microsoft

Exchange since Version 5.0 and was a Banyan Vines email administrator previous to that.

Karl currently works with Microsoft Exchange Server 2010 SP1, System Center Operations

Manager 2007 R2, and SQL Server 2008.

Karl is a frequent contributor on multiple scripting forums and blogs. You can follow his

comments on http://unlockpowershell.wordpress.com/.

Mark E. Schill, a graduate of the Georgia Institute of Technology, is an IT

veteran with 13 years of experience specializing in Windows server and

Citrix technologies. He started scripting with a Y2K project that required the

creation of thousands of new NT domain accounts and has been automating

ever since. He made the switch to Windows PowerShell in July 2007 with his

�irst Citrix MFCOM script for publishing desktops, which is still in production

to this day. Mark spends his workdays as an all-in-one scripter, C# developer,

SQL Server database administrator, and Windows system administrator.

ffirs.indd viiffirs.indd vii 22/09/11 5:01 PM22/09/11 5:01 PM

About the Authors

He is currently the president of the Atlanta PowerShell User Group and the Atlanta Citrix

User Group, as well as the vice president of the Virtual PowerShell User Group.

When possible, Mark hangs out with the Virtual PowerShell User Group on the #PowerShell

IRC channel on irc.freenode.net. You can track Mark at his blog at www.cmschill.net/
StringTheory, contact him via email at Mark.Schill@cmschill.net, or follow him on

twitter @meson3902.

Tome Tanasovski is a Windows engineer for a market-leading, global

�inancial services �irm in New York City. He has worked in the IT industry

as both an IT professional and a developer for more than 15 years. He

is the founder and leader of the New York City PowerShell User Group, a

cofounder of the NYC Techstravaganza, a blogger, a speaker, and a regular

contributor to the Windows PowerShell forum at Microsoft. He is a

recipient of the MVP award for Windows PowerShell.

ffirs.indd viiiffirs.indd viii 22/09/11 5:01 PM22/09/11 5:01 PM

About the Technical Editors
Marco Shaw has worked in the IT industry for more than 12 years. He currently is an IT

consultant in Canada with CGI (www.cgi.com), a global IT consulting �irm. Marco works

daily with Microsoft products, VMware, and other products that heavily rely on Windows

PowerShell for automation of their tasks.

Marco has been awarded the Microsoft Most Valuable Professional award in the Windows

PowerShell category for the past four years, and he continues to be active in the online

Windows PowerShell community. He has spoken at TechMentor in the U.S. and has given

several sessions at Microsoft’s TechDays annual conference in Canada (www.techdays.
ca) on various IT topics. Marco has already coauthored a book and appeared in Microsoft’s

TechNet Magazine a few years ago. He blogs at http://marcoshaw.blogspot.com and

tweets as @MarcoShaw.

Shay Levy is a four-year Windows PowerShell MVP and a System Administrator for a

government institute in Israel. He has worked with Microsoft platforms for more than 20

years, focusing on Microsoft Exchange and Active Directory.

As a longtime Windows PowerShell community supporter, Shay has become a moderator

of multiple forums and is a codirector of the PowerShellCommunity.org website. He is

the creator of the popular Windows PowerShell Community browser toolbar, a one-stop

shop for various Windows PowerShell resources, including downloads, webcasts, videos,

podcasts, and more.

Shay often covers Windows PowerShell topics on his blog at http://powershay.com. You

can also follow him on Twitter at http://twitter.com/ShayLevy.

We appreciate the assistance of the following individuals for lending their expertise

to the technical editing of speci�ic chapters: Niklas Goude (Microsoft MVP) for the

SharePoint chapter, Chad Miller (Microsoft MVP) for the SQL chapter, and Christian

Gehring (Citrix) for the two Citrix chapters.

ffirs.indd ixffirs.indd ix 22/09/11 5:01 PM22/09/11 5:01 PM

ffirs.indd xffirs.indd x 22/09/11 5:01 PM22/09/11 5:01 PM

Credits

Acquisitions Editor
Paul Reese

Project Editor
Linda Harrison, Harrison Ridge Services

Technical Editor
Marco Shaw

Production Editor
Rebecca Anderson

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wake�ield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreaders
Edmund Berrigan, Word One New York

Paul Sagan, Word One New York

Indexer
J & J Indexing

Cover Designer
LeAndra Young

Cover Image
Joyce Haughey

ffirs.indd xiffirs.indd xi 22/09/11 5:01 PM22/09/11 5:01 PM

ffirs.indd xiiffirs.indd xii 22/09/11 5:01 PM22/09/11 5:01 PM

xiii

Collectively, we would like to thank Linda Harrison and Paul Reese at Wiley for being

so patient with our drivel; oftentimes, we’re sure it felt more like babysitting than

publishing. We would also like to thank Marco Shaw for putting the four of us together.

Finally, thanks to Pete Zerger and Aaron Nelson for their amazing contributions to this work.

— T����� L��, K��	 M
�����, M�� E. S��
		, ��� T��� T�������

I’d like to say thanks to Jeffrey Snover, one of the most inspiring people I have ever met.

His vision, combined with his presentation and technical skills, continue to inspire me on

a near-daily basis. I’d also like to say a huge thank you to the entire Windows PowerShell

development team — an utterly amazing group of incredibly talented people. You have all

made Windows PowerShell a reality! And no book would be complete without our fantastic

team at Wiley. Thanks to Paul Reese, and a double thanks to superstar editor Linda Harrison.

— T����� L��

I’d like to thank all the pioneers in Windows PowerShell. I’d be nowhere without following

in the footsteps of Brandon Shell, Shay Levy, Marc van Orsouw, Glen Scales, and of course,

who could forget Jeffrey Snover and Lee Holmes? You’ve all been an inspiration to me, and

I am sure I have forgotten more people than I’ve mentioned. For this, I’m sorry.

Marco Shaw gets a special thanks, as it was he who �irst pushed me into creating a blog,

and then into working on this book. Thanks, Marco!

Of course, without my coauthors Mark E. Schill, Tome Tanasovski, and Thomas Lee, this

book would be many hundreds of pages slimmer, and still un�inished. Thanks, guys!

Thanks are due to our editor, Linda; without your help, we’d have a book that no one could

read. You’ve turned my near random thoughts into a cohesive series of paragraphs. Thanks,

Linda! I know I put you through a lot.

— K��	 M
�����

I want to thank Marco Shaw who �irst introduced me to the opportunity of writing this

book. I also want to thank Ed Wilson for introducing me to the much larger scripting

community. Without Jeffrey Snover, the father of Windows PowerShell, and the Windows

PowerShell team, there, of course, wouldn’t have been anything to write about. Without

Linda Harrison, our editor, none of this would have made any sense.

— M�� E. S��
		

Thank you to Marco Shaw and Ed Wilson for noticing me and my writing.

— T��� T�������

ffirs.indd xiiiffirs.indd xiii 22/09/11 5:01 PM22/09/11 5:01 PM

ffirs.indd xivffirs.indd xiv 22/09/11 5:01 PM22/09/11 5:01 PM

xv

Introduction . xxxiii

Part I: Introduction . 1
Chapter 1: Introduction to Windows PowerShell .3

Chapter 2: What’s New in Windows PowerShell V2 . 43

Part II: Windows Desktop . 69
Chapter 3: Managing Windows 7 . 71

Chapter 4: Managing Microsoft Of�ice 2010 . 95

Chapter 5: Managing Security. 123

Chapter 6: Managing and Installing Software . 151

Part III: Server Management . 163
Chapter 7: Managing Windows Server 2008 R2 . 165

Chapter 8: Performing Basic Server Management . 189

Chapter 9: Performing Advanced Server Management. 203

Chapter 10: Managing Active Directory . 229

Chapter 11: Managing Group Policy . 257

Part IV: Server Applications . 269
Chapter 12: Managing Microsoft Exchange Server. 271

Chapter 13: Managing SQL Server 2008 R2. 341

Chapter 14: Managing Microsoft SharePoint 2010 Server . 371

Chapter 15: Managing Internet Information Services 7. 389

Chapter 16: Managing System Center Operations Manager 2007 R2 . 409

Chapter 17: Managing Microsoft Deployment Toolkit 2010 . 441

Chapter 18: Managing Citrix XenApp 6 . 455

Chapter 19: Managing Citrix XenDesktop 5. 479

Part V: Virtualization and Cloud Computing 511
Chapter 20: Managing Hyper-V 2008 R2 . 513

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2. 523

Chapter 22: Managing Windows Azure . 541

Chapter 23: Managing VMware vSphere PowerCLI . 557

ffirs.indd xvffirs.indd xv 22/09/11 5:01 PM22/09/11 5:01 PM

xvi

Contents at a Glance

Part VI: Beyond the Console . 579
Chapter 24: Creating User Interfaces . 581

Chapter 25: Using the Windows PowerShell ISE . 597

Index . 623

ffirs.indd xviffirs.indd xvi 22/09/11 5:01 PM22/09/11 5:01 PM

xvii

Introduction . xxxiii

Part I: Introduction 1

Chapter 1: Introduction to Windows PowerShell .3
Managing Windows — The Challenges of the Past .3

Management in the Early Days .3

Management with Windows NT .4

Management with Windows Server 2003. .4

Introducing Windows PowerShell .5

What Is Windows PowerShell? .5

Windows PowerShell as a Task Automation Platform. .5

Windows PowerShell’s Scripting Language. .6

Windows PowerShell in Production Scripts and Admin GUIs 7

Key Windows PowerShell Concepts .8

Cmdlets .8

Objects. .9

The Pipeline . 10

Discovery and the Community . 10

Get-Help . 11

Get-Command. 11

Get-Member. 12

The Windows PowerShell Community . 12

Windows PowerShell Language Constructs . 13

Variables. 13

Operators .14

Expressions. 16

Providers . 18

Formatting Output . 18

Default Formatting. 19

Formatting Using Format-Table and Format-List . 20

Formatting with Windows PowerShell Hashtables . 22

Scripting . 23

What Is a Script? . 23

Alternation or Conditional Execution . 24

Iteration — Operating on a Collection or Array. 27

Error and Exception Handling. 30

ftoc.indd xviiftoc.indd xvii 02/09/11 3:25 PM02/09/11 3:25 PM

xviii

Contents

Extending Windows PowerShell with Snap-ins and Modules . 34

Windows PowerShell Snap-ins . 35

Windows PowerShell Modules . 36

Installing Windows PowerShell . 36

Windows PowerShell Version Support. 37

Getting Windows PowerShell for Downlevel OSs . 37

Script Security and Execution Policy . 37

Customizing Windows PowerShell with Pro�iles . 39

What Is a Pro�ile? . 39

Where Are Your Pro�iles? . 40

Managing Pro�iles in the Enterprise. 41

Summary . 42

Chapter 2: What’s New in Windows PowerShell V2 43
The Road to V2. 43

The Version 2 Betas . 43

V2 in Windows 7/R2 . 44

V2 on Downlevel OSs. 45

Using Remoting . 45

What Is Remoting? . 46

Windows PowerShell Remoting Architecture . 46

Setting Up Remoting . 48

Using Remoting . 48

Serialization . 50

Working with Jobs . 50

What Is a Job? . 51

Using Jobs. 51

Potential Glitches Associated with Jobs . 52

Using Advanced Functions . 52

What’s New with Advanced Functions? . 53

Comment-Based Help . 54

Cmdlet Binding . 55

Splatting . 56

Working with Modules . 57

What Is a Module?. 57

Script Modules . 57

Manifest Modules . 59

Implicit Modules . 59

Making Use of Eventing . 61

What Is Eventing?. 61

Using Eventing . 61

Using the Integrated Scripting Environment . 63

Supporting Transactions . 63

The Need for Transactions . 63

Transaction Support for V2 . 64

ftoc.indd xviiiftoc.indd xviii 02/09/11 3:25 PM02/09/11 3:25 PM

xix

Contents

Debugging and Error Handling. 65

Debugging from the Command Line . 65

Using Try/Catch/Finally . 66

New Cmdlets. 67

Summary . 67

Part II: Windows Desktop 69

Chapter 3: Managing Windows 7 . 71
Troubleshooting Windows 7 with Windows PowerShell . 71

Managing Windows Search . 77

Discovering Which Folders Are Currently Indexed . 77

Adding Folders to the Index . 79

Removing Folders from the Index . 81

Re-Indexing the Search Catalog . 82

Checking HotFix Status . 84

Managing Files and Folders . 84

Setting Security on Files and Folders . 84

Listing Unique File Extensions . 87

Counting a Speci�ic Type of Files . 88

Finding Empty Folders . 89

Searching with Windows Search . 89

Opening a File Using Its Default Handler . 91

Summary . 92

Chapter 4: Managing Microsoft Offi ce 2010 . 95
Introducing the Of�ice COM Objects . 96

The Of�ice Application Objects . 96

Cleaning Up after Your Of�ice Scripts . 97

Automating Microsoft Word . 98

Creating or Opening a Document . 98

Adding Content . 98

Searching for Text . 102

Formatting Text . 103

Spell Checking . 105

Printing . 106

Saving a Document . 106

Working with Microsoft Excel Spreadsheets . 107

Creating and Opening a Workbook . 107

Worksheets . 107

Working with Cells . 108

Managing Data . 111

Generating Charts and Graphs . 112

Searching Spreadsheets. 113

Navigating Microsoft Outlook . 113

A Word about Security . 114

ftoc.indd xixftoc.indd xix 02/09/11 3:25 PM02/09/11 3:25 PM

xx

Contents

Traversing Folders . 114

Working with Outlook Items . 116

Working with an Outlook MailItem. 116

Working with an Outlook AppointmentItem. 117

Working with an Outlook ContactItem . 118

Working with an Outlook TaskItem . 119

Additional Of�ice COM Examples . 119

Summary . 121

Chapter 5: Managing Security . 123
NTFS Permissions. 124

Retrieving Current NTFS Permissions. 124

Modifying NTFS Permissions . 126

Share Permissions . 127

Retrieving Current Share Permissions . 127

Modifying Share Permissions . 132

Registry Settings . 135

Retrieving Current Registry Permissions . 136

Modifying Registry Permissions . 137

Managing the Windows Firewall . 139

Checking Firewall Status. 139

Opening and Closing Ports . 144

Enabling Remote Desktop. 147

Checking the Status of Remote Desktop . 148

Summary . 149

Chapter 6: Managing and Installing Software . 151
Listing Software . 151

Using WMI . 152

Using the Windows Registry . 153

Creating Software Baselines . 155

Installing Software . 157

Using Restore Points . 157

Using WMI . 158

Removing Software . 159

Removing Software Using WMI . 159

Removing Software Using Windows Registry . 159

Dealing with Spaces. 160

Summary . 162

Part III: Server Management 163

Chapter 7: Managing Windows Server 2008 R2 165
What’s New in Server 2008 R2 . 165

Default Installation of Windows PowerShell. 165

ftoc.indd xxftoc.indd xx 02/09/11 3:25 PM02/09/11 3:25 PM

xxi

Contents

Windows PowerShell Included in Server Core . 166

Managing Server Features and Roles . 167

Running Best Practice Analyzer Scans . 169

Running Scans Locally . 169

Running Scans Remotely . 172

Enabling Remoting. 173

Managing Windows Backup . 174

Installing the Cmdlets. 174

Con�iguring New Backup Jobs . 174

Checking the Status of Backup Jobs. 176

Deleting Backup Jobs. 177

Starting and Stopping Backup Jobs . 178

Scheduling Backup Jobs . 178

Limitations in the Cmdlets . 179

Managing Server Migration . 180

Installing the Cmdlets. 180

Discover What Can Be Migrated . 182

Exporting Features . 183

Importing Features . 184

Managing AppLocker . 186

Summary . 187

Chapter 8: Performing Basic Server Management 189
Discovering Server Con�iguration . 189

Managing Scheduled Tasks. 191

Checking Hot�ix Status . 194

Checking Hot�ixes on Multiple Computers . 194

Checking for a Speci�ic Hot�ix . 195

Gathering Data from Event Logs. 195

Using System Time. 198

Retrieving the Date and Time . 198

Setting the Date and Time. 200

Summary . 201

Chapter 9: Performing Advanced Server Management 203
Managing Command-Line Services . 203

Listing Running Services on Multiple Servers . 204

Finding Servers Running a Speci�ic Service. 204

Listing Stopped Services That Are Set to Start Automatically. 205

Managing Processes . 207

Listing All Processes on Multiple Servers . 207

Stopping Processes on Remote Servers. 208

Reading the Registry. 209

Using the Registry Provider Locally . 210

Using Microsoft.Win32.RegistryHive Remotely . 210

ftoc.indd xxiftoc.indd xxi 02/09/11 3:25 PM02/09/11 3:25 PM

xxii

Contents

Setting Registry Values . 211

Locally Using the Registry Provider . 212

Remotely Using Microsoft.Win32.RegistryHive . 212

Validating Network Con�iguration on Remote Servers. 213

Retrieving the DNS Settings. 214

Validating That Servers Use the Same DNS Settings . 214

Changing the Network Con�iguration . 215

Gathering Data from Performance Counters. 217

Modifying Regional Settings on Multiple Computers . 218

Managing Local Accounts . 219

Modifying Local Users and Groups . 219

Creating and Deleting Local Users and Groups . 220

Con�iguring Remote DCOM. 221

Viewing DCOM Permissions . 222

Granting a Domain User Remote DCOM Access . 226

Summary . 227

Chapter 10: Managing Active Directory . 229
Installing and Using the Cmdlets . 230

Prerequisites . 230

A Word About Remoting . 231

Installation . 231

Using the Active Directory Provider. 232

Querying Active Directory . 234

Users, Groups, and Computers . 234

Querying Group Membership . 238

User and Group Administration . 240

Creating Users and Groups . 240

Modifying Properties . 242

Working with Group Membership . 243

Common Tasks . 244

Managed Service Accounts . 246

Managing Organizational Units . 247

Moving Active Directory Objects . 247

Creating Organizational Units . 248

Removing Active Directory Objects . 249

Password Policies . 249

Viewing Password Policies . 250

Creating a Fine-Grained Policy . 251

Modifying Password Policies . 251

Managing the Rest of Active Directory . 252

Managing Active Directory with the ActiveRoles Management Shell. 253

Installing the Cmdlets. 253

Using the Cmdlets. 253

Summary . 255

ftoc.indd xxiiftoc.indd xxii 02/09/11 3:25 PM02/09/11 3:25 PM

xxiii

Contents

Chapter 11: Managing Group Policy . 257
Installing and Using the Cmdlets . 257

Enabling the Module on Windows Server 2008 R2. 257

Installing the Module on Windows 7 . 258

A Word about Remoting . 258

Getting Policy Information . 258

Group Policy Objects (GPOs). 258

Group Policy Links . 261

Resultant Set of Policy (RSOP) . 262

Creating and Con�iguring GPOs . 262

Backing Up and Restoring GPOs . 264

Group Policy Security . 265

Getting Security Information . 265

Setting Permissions . 265

Summary . 266

Part IV: Server Applications 269

Chapter 12: Managing Microsoft Exchange Server 271
Installing the Cmdlets on a Workstation . 271

Microsoft Exchange Server 2007 . 272

Microsoft Exchange Server 2010 . 272

What’s New in Microsoft Exchange Server 2010 . 273

Managing Microsoft Exchange Server Permissions . 274

Microsoft Exchange Server 2007 . 274

Microsoft Exchange Server 2010 . 275

Administering Objects . 276

Administering Recipients . 279

Managing Databases . 309

Microsoft Exchange Server 2007 . 310

Microsoft Exchange Server 2010 . 310

Finding Mailbox Database White Space. 311

Discovering Space Used by Disabled Mailboxes. 313

Managing Quotas . 316

Managing Microsoft Exchange Server Remotely . 320

Email Address Policies . 322

Interoperating with Earlier Versions of Microsoft Exchange. 324

Microsoft Exchange Server 2007 . 325

Microsoft Exchange Server 2010 . 326

Using Filters . 328

Using Client-Side Filters . 328

Using Server-Side Filters . 329

Managing Recipient Scope . 330

Managing Scope in Microsoft Exchange Server 2007 . 331

Managing Scope in Microsoft Exchange Server 2010 . 331

ftoc.indd xxiiiftoc.indd xxiii 02/09/11 3:25 PM02/09/11 3:25 PM

xxiv

Contents

Managing Role Based Access Control . 332

Introducing Microsoft Exchange Web Services . 335

Summary . 339

Chapter 13: Managing SQL Server 2008 R2 . 341
PowerShell Basics for SQL Server . 341

Managing SQL Server Services . 343

Working with Snap-ins . 344

Working with Assemblies . 345

Changing the Service Account . 346

Querying SQL Server . 347

Using a Quoted String to Query SQL Server . 347

Returning Data into a Datatable. 348

Using an Input File to Query SQL Server . 349

Loading Data. 350

Loading SQL Server Data . 350

Loading Non-SQL Server Data . 351

Getting SQL Server Information . 351

Getting Version Information . 352

Getting Service Pack Information . 352

Getting Instance Uptime Information . 352

Gathering Performance Counters . 354

Scripting Objects. 357

Scheduling Windows PowerShell SQL Server Agent Job Steps. 362

Getting Space Usage Information . 363

Getting Volume Space Usage . 363

Getting Database Space Usage. 363

Getting Table Space Usage. 365

Managing Registrations in SQL Server Management Studio. 366

Leveraging Registrations to Query Multiple Registered Servers 367

Leveraging Registrations to Query Multiple Central

Management Servers. 369

Summary . 369

Chapter 14: Managing Microsoft SharePoint 2010 Server 371
Installing and Using the Cmdlets . 371

SharePoint 2010 Management Shell . 372

PipeBind Parameters . 372

SPAssignment. 372

Remoting with SharePoint . 373

Limitations of the SharePoint Cmdlets . 373

Memory Limits in WS-Man . 373

Automating Site Administration . 374

Creating Site Collections . 374

Connecting to Sites . 374

Removing Sites . 375

ftoc.indd xxivftoc.indd xxiv 02/09/11 3:25 PM02/09/11 3:25 PM

xxv

Contents

Using SharePoint Lists . 375

Browsing Lists . 375

Viewing List Data . 376

Updating List Data . 376

Adding Items to a List . 376

Working with Views . 377

Creating Lists . 378

List Settings . 378

Managing Permissions . 378

Managing Document Libraries . 379

Creating a Web Application . 381

Deploying Developer Code . 381

Administering Work�lows . 382

Manually Kicking Off Work�lows . 382

Monitoring Work�lows . 382

Cancelling Work�lows . 383

Backing Up and Restoring. 384

The Con�iguration Database . 384

Farms . 385

Site Collections . 385

Lists and Libraries . 386

Search and Timer Jobs . 386

Modifying Crawls . 387

Kicking Off Crawls . 387

Summary . 388

Chapter 15: Managing Internet Information Services 7 389
Installing the Necessary Components . 390

Installing the Snap-in . 390

Installing the Web Server Role . 390

Loading the WebAdministration Cmdlets and Provider . 391

Installing the WMI Provider . 392

Browsing IIS:\ . 393

Scripting Deployments and Changes . 394

Using New-Item . 394

Creating Sites . 395

Creating Virtual Directories. 396

Creating Web Applications . 397

Creating Application Pools . 398

Con�iguring SSL. 398

Using the Provider to Make Changes . 399

Removing IIS Objects with the Cmdlets . 400

Advanced WebCon�iguration Settings. 400

Managing IIS . 403

Controlling IIS Services . 404

Backing Up and Restoring Con�igurations . 405

ftoc.indd xxvftoc.indd xxv 02/09/11 3:25 PM02/09/11 3:25 PM

xxvi

Contents

Digesting Log Files . 406

ConvertFrom-Csv . 406

Filtering Tips . 407

Summary . 407

Chapter 16: Managing System Center Operations
Manager 2007 R2 . 409

Exploring the Available Cmdlets . 409

Working with Alerts . 410

Processing Alerts in Bulk . 410

Updating Custom Fields in Alert Properties in Bulk . 413

Automating Maintenance Mode . 415

Adding and Removing Objects and Groups . 415

Automating Client-Side (Remote) Maintenance Mode. 417

Deploying and Con�iguring OpsMgr Agents and Network Devices 418

Con�iguring Agent Failover Without AD Integration . 419

Managing SNMP Device Failover . 419

Automating Agent Discovery and Deployment. 421

Verifying Agent Load Balance Across Management Servers. 422

Exploring Discovered Inventory Data . 423

Enumerating Classes and Discovered Instances . 423

Enumerating Monitored Objects and Relationships . 425

Windows PowerShell and the Command Noti�ication Channel. 426

Performing Simple Event and Log File Creation from

the Command Channel . 427

Forwarding SNMP Traps with Windows PowerShell. 429

Overrides . 431

Retrieving and Converting Overrides into Readable

Reporting Format . 431

Creating Overrides Programmatically. 434

Noti�ications . 435

Enabling and Disabling Noti�ications . 435

Working with Noti�ication Recipients . 435

Monitoring Scripts in Windows PowerShell . 436

Sample OpsMgr Scripts and Other Community Resources . 437

Where to Find and Share Samples on the Web . 438

Where to Find Free Support on Authoring Windows

PowerShell Scripts for OpsMgr . 438

Summary . 439

Chapter 17: Managing Microsoft Deployment
Toolkit 2010 . 441

Installing and Using the Cmdlets . 441

Exploring the MDT Windows PowerShell Provider . 442

Using the GUI to Create Your Scripts . 442

ftoc.indd xxviftoc.indd xxvi 02/09/11 3:25 PM02/09/11 3:25 PM

xxvii

Contents

Creating and Populating the Deployment Share . 443

Initializing the Deployment Share. 443

Creating the MDT Database . 444

Importing Operating Systems . 444

Importing Device Drivers . 445

Importing Applications . 446

Creating Task Sequences . 449

Managing the Deployment Share . 451

Con�iguring the Deployment Share. 451

Updating the Deployment Share. 452

Managing Media . 452

Summary . 454

Chapter 18: Managing Citrix XenApp 6 . 455
Installing and Using the Cmdlets . 455

What’s New in XenApp 6 . 456

Working with Administrators . 456

Retrieving Administrators . 456

Adding and Removing Administrators . 457

Enabling and Disabling Administrators . 458

Modifying Privileges . 459

Providing Applications . 462

Retrieving Applications . 462

Publishing New Applications . 463

Modifying Application Properties . 465

Importing/Exporting Applications . 465

Adding and Removing Assigned Accounts . 466

Removing and Disabling Applications . 466

Managing Sessions . 467

Enumerating Sessions . 467

Managing Session Processes . 469

Managing Sessions . 469

Maintaining Servers . 470

Managing Server Logons . 470

Getting Server Load. 471

Managing Load Evaluators . 471

Changing Server Zones. 473

Applying Load-Balancing Policies . 473

Creating Load-Balancing Policies . 473

Con�iguring Load-Balancing Policies . 474

Applying Filters to Load-Balancing Policies . 474

Worker Groups . 475

Adding and Removing Worker Groups . 475

Modifying Worker Groups . 476

Summary . 477

ftoc.indd xxviiftoc.indd xxvii 02/09/11 3:25 PM02/09/11 3:25 PM

xxviii

Contents

Chapter 19: Managing Citrix XenDesktop 5 . 479
Introducing Citrix XenDesktop 5 . 479

Examining the Windows PowerShell Tab . 480

Exploring the Snap-Ins . 481

Performing an Automated Environment Setup . 481

Administrators . 486

Explaining Access Control. 486

Creating Administrators . 487

Catalogs . 488

Creating Catalogs . 488

Managing Catalogs . 496

Removing Catalogs. 497

Provisioning . 497

Introducing Machine Creation Services . 498

Updating Master Images . 498

Desktop Groups . 499

Creating Desktop Groups. 499

Creating Application Desktop Groups . 502

Hosts . 505

Hosts PSProvider . 505

Adding Hosts. 506

Removing Hosts. 508

Summary . 509

Part V: Virtualization and Cloud Computing 511

Chapter 20: Managing Hyper-V 2008 R2 . 513
Hyper-V Management Interfaces . 513

WMI Management Classes . 513

Windows PowerShell Management Library for Hyper-V . 515

Managing Hosts . 516

Retrieving Information . 516

Using Show-HypervMenu . 516

Managing Virtual Machines . 517

Creating and Modifying Virtual Machines . 517

Controlling Virtual Machines. 518

Summary . 521

Chapter 21: Managing System Center Virtual Machine
Manager 2008 R2 . 523

Working with System Center Virtual Machine Manager 2008 R2 523

Installing and Loading the Cmdlets . 523

Backing Up the VMM Database . 524

Using the VMM Administrator Console to Write Scripts. 524

Connecting to VMM . 525

ftoc.indd xxviiiftoc.indd xxviii 02/09/11 3:25 PM02/09/11 3:25 PM

xxix

Contents

Working with Host Servers . 526

Adding Hosts to VMM . 526

Organizing Hosts . 528

Managing Clusters . 528

Adding Clusters . 528

Performing Maintenance on Host Servers . 530

Working with Virtual Machines . 531

Creating and Modifying Virtual Machines . 531

Removing Virtual Machines . 535

Controlling Virtual Machines. 535

Managing Checkpoints . 536

Libraries . 537

Creating a Library. 538

Finding Dependent Objects. 539

Summary . 539

Chapter 22: Managing Windows Azure . 541
Installing and Using the Windows Azure Service Manager Cmdlets 541

Installing the WASM Cmdlets . 542

Creating and Registering Your Certi�icate . 542

Managing Hosted Services . 544

Getting Hosted Service Information. 544

Starting and Stopping Deployments . 545

Get-OperationStatus . 546

Deploying New Code . 546

Scaling Services . 548

Managing Certi�icates . 548

Windows Azure Diagnostics . 549

Getting Logging Con�iguration . 549

Con�iguring Logging . 551

Forcing Logs to Transfer to Storage . 553

Summary . 554

Chapter 23: Managing VMware vSphere PowerCLI 557
Installing and Using the Cmdlets . 557

Installing PowerCLI . 557

Loading PowerCLI . 558

Connecting to a Host or vCenter Instance . 558

Retrieving Hosts and VMs. 559

Managing ESX and ESXi . 560

Putting Hosts in Maintenance Mode. 560

Inspecting Host Properties. 560

Managing Storage . 562

Managing Host Networks . 563

Con�iguring NTP Servers. 564

Working with Host Pro�iles . 565

ftoc.indd xxixftoc.indd xxix 02/09/11 3:25 PM02/09/11 3:25 PM

xxx

Contents

Getting Logs . 566

Gathering Performance Data from a Host. 567

Managing Virtual Machines . 568

Deploying New VMs. 568

Removing VMs . 569

Working with Virtual Hardware . 569

Managing VM Resource Con�iguration . 571

Updating VM Tools . 571

Starting and Stopping VMs . 572

Using Snapshots. 572

Invoking Scripts . 573

Managing vCenter. 573

Clusters . 573

Migrating VMs . 574

Managing Folders, Resource Pools, and Datacenters. 575

Getting Log Data . 575

Getting Performance Data. 576

Everything Else . 576

Summary . 577

Part VI: Beyond the Console 579

Chapter 24: Creating User Interfaces . 581
Working with Text Mode UI . 581

Getting Credentials . 582

Getting Strings. 583

Validating Input. 583

Building a Simple UI in Windows PowerShell Using Windows Forms 584

Using Windows Forms . 585

Building a GUI with Windows Forms — the Basics . 585

Using Windows Forms Controls . 586

Label Control . 586

Button Control . 588

Textbox Control . 589

Using Windows PowerShell and PrimalForms . 593

Using Windows Presentation Foundation . 595

Summary . 596

Chapter 25: Using the Windows PowerShell ISE 597
Key Features of the ISE. 597

Screen Layout. 598

Modifying the ISE Layout . 606

Using the ISE. 607

The ISE as an Alternative to the Windows

PowerShell Console . 607

ftoc.indd xxxftoc.indd xxx 02/09/11 3:25 PM02/09/11 3:25 PM

xxxi

Contents

Using the ISE to Edit Windows PowerShell Scripts/Modules. 607

ISE Pro�ile Files . 608

Debugging with the ISE . 608

Setting and Using Breakpoints in the ISE . 609

Debugging . 609

Extending the ISE . 610

Overview of the ISE Object Model . 610

What’s in $PsISE . 617

Sample Windows PowerShell ISE Add-On . 620

Third-Party Alternatives to the ISE . 620

Summary . 622

Index . 623

ftoc.indd xxxiftoc.indd xxxi 02/09/11 3:25 PM02/09/11 3:25 PM

flast.indd xxxiiflast.indd xxxii 02/09/11 3:24 PM02/09/11 3:24 PM

xxxiii

Welcome to Windows PowerShell 2.0 Bible. We hope that through reading this

book and working through the sample code we provide, you will learn a great

deal about using Windows PowerShell. This standard automation tool is sure

to be one of the most useful tools in your administration toolbox. Join us as, together, we

explore this powerful tool and how you can use it.

Overview of the Book and Technology
When the authors of this book got together to discuss the content of the book, we came to

a consensus that this book had to follow a new direction. We wanted to create a book that

was different from all of the existing Windows PowerShell books. And with “Bible” in the

name, we knew we had to really step it up.

All of the existing Windows PowerShell books fell into one of two categories:

� Core fundamentals books that explained the Windows PowerShell language itself,

but rarely demonstrated real-world application examples.

� Application-oriented books that explained how to use Windows PowerShell to

manage a single speci�ic application.

We wanted this book to be unique among all of the other Windows PowerShell books. We

cover the core language fundamentals for users who are new to Windows PowerShell and/

or Version 2, but we also take a selection of some of the most prevalent applications in the

IT ecosystem and dedicate an entire chapter to them. This book serves as a reference guide

for any system administrator managing Windows computers.

How This Book Is Organized
This book is organized into six parts. The �irst part of the book is the Introduction. This

section covers the basics of the Windows PowerShell language as well as the new features

added in the second version. If you are new to Windows PowerShell and/or Version 2, you

should start at the beginning.

Part II covers the desktop environment. In this section, the focus of the chapters is the

management of the Windows desktop and related technologies. Part III switches focus to

flast.indd xxxiiiflast.indd xxxiii 02/09/11 3:24 PM02/09/11 3:24 PM

xxxiv

Introduction

the server side of things to provide a thorough coverage of Windows Server 2008 R2 and its

various components, as well as coverage of server management.

Part IV looks at the applications that provide valuable additional capabilities to the server

environment. Virtualization and the cloud are hot topics in the server space today, so an

entire section is devoted to this topic in Part V.

Part VI takes Windows PowerShell beyond the console and shows some of the ingenious

ways to use Windows PowerShell. It describes how to take advantage of the capabilities of

a brand-new integrated scripting environment.

Part I: Introduction
Part I consists of Chapters 1 and 2 and covers Windows PowerShell basics. In Chapter 1, you

are introduced to the key components of the Windows PowerShell language. Here, you learn

the true power of the language. Next, in Chapter 2, you learn about the new enhancements

to Windows PowerShell and how such a powerful tool can be made even better.

Part II: Windows Desktop
Part II consists of Chapters 3 through 6 and includes information for the management of

desktop environments.

Chapter 3 focuses on the Windows 7 desktop operating system and how it can be effectively

managed by Windows PowerShell. Chapter 4 covers Microsoft’s of�ice productivity suite,

Of�ice 2010. Chapter 5 discusses the always important topic of security. Finally, Chapter 6

demonstrates Windows PowerShell’s various options for managing software on Windows

operating systems.

Part III: Server Management
Part III consists of Chapters 7 through 11 and covers the management of Windows Server

2008 R2 and core infrastructure.

Beginning with Chapter 7, you learn about the core Windows Server 2008 R2 operating

system. Chapters 8 and 9 cover server management starting with basic management

concepts and proceeding to more advanced management. Chapter 10 demonstrates the

advanced capability of managing Active Directory with Windows PowerShell. In Chapter 11,

Active Directory management is extended with the management of Group Policy.

Part IV: Server Applications
Part IV consists of Chapters 12 through 19 and includes coverage of several applications

that augment the server environment.

flast.indd xxxivflast.indd xxxiv 02/09/11 3:24 PM02/09/11 3:24 PM

xxxv

Introduction

In Chapter 12, both Microsoft Exchange Server 2007 and Microsoft Exchange Server

2010 are covered. Chapter 13 covers SQL Server 2008 R2, and Chapter 14 covers the

management of Microsoft SharePoint 2010 Server.

Chapter 15 expands to cover Internet Information Services (IIS). Chapter 16 enters the

Microsoft System Center space with System Center Operations Manager (SCOM) 2007 R2.

Chapter 17 discusses the Microsoft Deployment Toolkit 2010 and helps you manage your

deployment scenarios.

Chapters 18 and 19 cover the two most popular technologies created by Citrix

Systems, Inc. Chapter 18 covers the Citrix server application, Citrix XenApp 6, and

Chapter 19 covers the still-hot Citrix XenDesktop 5.

Part V: Virtualization and Cloud Computing
Virtualization and cloud computing is a technology area that has seen tremendous growth

and visibility in recent months. Chapters 20 through 23 cover key products in this area.

Chapter 20 deals with the Microsoft hypervisor Hyper-V, which is built into Windows Server

2008 R2 and only has to be enabled for you to begin using. System Center Virtual Machine

Manager is Microsoft’s enterprise solution for managing Hyper-V and is covered in Chapter 21.

Chapter 22 discusses Windows Azure, Microsoft’s cloud-based solution for hosting

applications. Chapter 23 presents on overview of how Windows PowerShell works as a

scripting language for use with VMware’s vSphere PowerCLI.

Part VI: Beyond the Console
Part VI introduces two key concepts that augment the scripts and the creation of scripts

in Windows PowerShell. Chapter 24 demonstrates the task of creating user interfaces and

Chapter 25 covers the Windows PowerShell ISE.

Who Should Read This Book
If you are someone who is interested in applying Windows PowerShell to real-world

environments, Windows PowerShell 2.0 Bible is de�initely a book you should read.

This book assumes that you have basic networking skills and a basic understanding of

Windows. Chapter 1 covers the basics of Windows PowerShell so if you are just starting

out, by all means, start at the beginning. Chapter 2 covers the new features introduced in

Windows PowerShell Version 2 if you need a refresher on what’s new.

Each of the remaining chapters covers an independent topic. Read through them to gain a

thorough knowledge of the capabilities of Windows PowerShell in managing the different

flast.indd xxxvflast.indd xxxv 02/09/11 3:24 PM02/09/11 3:24 PM

xxxvi

Introduction

components and applications of the Windows environment. Or you can use each chapter as

a reference for learning how to script against a speci�ic topic.

Tools You Will Need
At the bare minimum, you will need Windows PowerShell 2.0 installed on your system.

For the desktop section, you will need Windows 7, which includes Windows PowerShell 2.0

built in. You can download a 90-day evaluation copy of Windows 7 Enterprise Edition from

the Technet Evaluation Center at http://technet.microsoft.com/en-us/evalcenter/
cc442495. To install the Windows 7 operating system from the download, you will need a

system with the following general con�iguration:

� 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor

� 1 GB of RAM (32-bit)/2 GB RAM (64-bit)

� 16 GB available disk space (32-bit)/20 GB (64-bit)

� DirectX 9 graphics processor with WDDM 1.0 or higher driver

� DVD-compatible drive

� Internet access (fees may apply)

For the server section, you will need Windows Server 2008 R2, which includes Windows

PowerShell 2.0 built in. You can download a 180-day evaluation copy of Windows Server

2008 R2 from the Technet Evaluation Center at http://technet.microsoft.com/en-us/
evalcenter/ee175713.aspx. To install Windows 2008 R2 from the download, you will

need a system with the following general con�iguration:

� 1.4 GHz or faster 64-bit (x64) processor

� 512 MB of RAM

� 32 GB available disk space

� Super VGA (800 � 600) or higher-resolution monitor

� DVD-compatible drive

� Internet access (fees may apply)

Conventions Used in This Book
Throughout the book, special typography indicates code and commands. Commands and

code are shown in a monospaced font:

This is how code looks.

flast.indd xxxviflast.indd xxxvi 02/09/11 3:24 PM02/09/11 3:24 PM

xxxvii

Introduction

In the event that an example includes both input and output, the monospaced font is still

used, but input is presented in bold type to distinguish the two. Here’s an example:

$ ftp ftp.handsonhistory.com
Name (home:jake): jake
Password: ******

In a number of examples, you’ll see a variable in italics. The previous command might be

displayed as the following:

$ ftp hostname

In this case, you should replace “hostname” with the name of a particular host on your

network.

Finally, there are a number of examples in this book in which a block of code is followed

by the result of that code. The code appears as it would in the examples above. The result

of the code is what you would see returned on your screen and is displayed with a screen

covering the code:

State : Connected
Connection State : Connected
PowerState : PoweredOn

The following features are used to call your attention to points that are particularly

important:

Note
A note box provides extra information to which you need to pay special attention. �

Tip
A tip box shows a special way of performing a particular task. �

Caution
A caution box alerts you to take special care when executing a procedure, or damage to your computer hard-
ware or software could result. �

Cross-Reference
A cross-reference box refers you to further information, outside the existing chapter, about a subject. �

What’s on the Website
The authoring team has taken great pains to provide a wide range of code samples

throughout the book. We know how frustrating it can be to have to rekey

lengthy code listings. So, we’ve provided them for you on the book’s website at

flast.indd xxxviiflast.indd xxxvii 02/09/11 3:24 PM02/09/11 3:24 PM

xxxviii

Introduction

www.wiley.com/go/windowspowershell2bible. You’ll �ind the code listings from the book

as well as additional code examples and a variety of reference information.

Summary
We hope you will get your hands dirty and learn to manage many key software systems

through Windows PowerShell. If you do, we know that you will come to appreciate the

powerful tool at your disposal. Along the way, be sure to get involved in the Windows

PowerShell community.

To help you further your PowerShell learning, we have included several key websites that

will complement this book:

� Microsoft Script Center: http://technet.microsoft.com/en-us/scriptcenter

� PowerShell Groups: http://powershellgroup.org/

� The PowerShellCommunity.org: http://powershellcommunity.org/

You’ll �ind them to be excellent resources. We look forward to seeing you on the forums and

in the user groups.

Good luck!

flast.indd xxxviiiflast.indd xxxviii 02/09/11 3:24 PM02/09/11 3:24 PM

Windows
PowerShell® 2.0 Bible

flast.indd xxxixflast.indd xxxix 02/09/11 3:24 PM02/09/11 3:24 PM

flast.indd xlflast.indd xl 02/09/11 3:24 PM02/09/11 3:24 PM

Introduction

Part I

IN THIS PART
Chapter 1
Introduction to Windows
PowerShell

Chapter 2
What’s New in Windows
PowerShell V2

c01.indd 1c01.indd 1 03/09/11 10:43 AM03/09/11 10:43 AM

c01.indd 2c01.indd 2 03/09/11 10:43 AM03/09/11 10:43 AM

3

C H A P T E R

IN THIS CHAPTER
Managing Windows — the

challenges of the past

Introducing Windows
PowerShell

Understanding key Windows
PowerShell concepts

Discovering by leveraging the
community

Formatting with Windows
PowerShell

Automating administrative
functions with scripting

Extending Windows PowerShell
with snap-ins and modules

Installing Windows PowerShell

Customizing Windows
PowerShell with Profiles

Introduction to
Windows PowerShell

Windows PowerShell is Microsoft’s strategic administrative

task automation platform. It began life over 10 years ago and

has now become mainstream. Before looking at all of the

wonderful things that Windows PowerShell can do, this chapter starts

by looking at how we got here, and then examining what Windows

PowerShell is. This includes a brief overview of the language and

syntax of Windows PowerShell.

Cross-Reference
The contents of this chapter mainly refer to Windows PowerShell Version 1.
Version 2 added some great new features, and those are described more in
Chapter 2, “What’s New in Windows PowerShell V2.” The features described in
this chapter are all contained within Version 2, so everything you learn in this
chapter is fully usable in Version 2. ■

Managing Windows — The
Challenges of the Past
The path to Windows PowerShell has been a long but steady one

that really started with the launch of the IBM PC in 1981. Since then

management of systems has grown from something of a rarity to

where we are today. This book starts by looking at where we have

come from and the challenges that have arisen.

Management in the Early Days
Microsoft entered the PC operating system (OS) �ield in 1981, with

the launch of the IBM PC. The original PC was a non-networked �loppy

c01.indd 3c01.indd 3 03/09/11 10:43 AM03/09/11 10:43 AM

4

Part I: Introduction

disk–based machine. Those who had more than one machine managed by carrying around

�loppy disks, copying them as needed. There was no hard disk to hold either programs

or data. Subsequent versions of the DOS operating system added hard disk support, and

eventually, there was local area networking capability.

The growth in corporate networks was greatly enhanced by the introduction of Windows.

But management was more an afterthought than designed as a feature. This, of course,

led to tools like Symantec’s Ghost to help to manage DOS and Windows systems. While the

need to manage the systems was increasing, a number of architectural constraints of the

older 16-bit architecture made this more dif�icult. And of course, at that time, Microsoft

was not quite as focused on management as is the case today.

Management with Windows NT
The release of Windows NT 3.1 in the summer of 1993 marked a huge advance both in

terms of the product and also the start of focusing on enterprise management. Not only

was there a networking stack built in, but there was also a server version that enabled

domains. In those days, most management tasks were conducted with GUI applications

(for example, File Manager or User Manager). There was a rudimentary shell with a few

commands, but coverage was far from complete.

Subsequent releases of NT (Windows NT 3.5 and 3.51) added features, but there was no

real change in the overall management approaches within Windows NT itself. Microsoft

was embarking on the creation of the Systems Management Server, but the creation of what

we now know as System Center Con�iguration Manager took a number of years.

By the release of Windows 2000, some things had begun to change. Microsoft was pushing

hard into the enterprise market where manageability was a prerequisite. As any Unix

administrator would tell you, to manage large numbers of systems, you need automated

scripting. To some degree, it felt like the mandate changed from “You manage from the GUI”

to “You manage from the GUI and the command line.” There was �inally some acceptance

that all those Unix guys had been right all along. But management was still very much

piecemeal, with no overarching strategy or consistent toolset.

For Windows 2000, and more so for Windows Server 2003 and Windows XP, there was a

push for command-line parity. If you can do something from the GUI, you should be able

to do it from the command line. This led to a plethora of command-line tools from each

different product group and subgroup. This change was highly welcome, of course, but not

without challenges. None of the tools resembled any of the other tools, so what you learned

about one was de�initely not transferrable.

Management with Windows Server 2003
During the Windows 2003 days, things continued on — much as with Windows 2000 — but

with improved feature parity between the command line and GUI. There were really no

fundamental changes in the approach to managing Windows desktop and server systems,

at least for public consumption.

c01.indd 4c01.indd 4 03/09/11 10:43 AM03/09/11 10:43 AM

5

Chapter 1: Introduction to Windows PowerShell

By the time Microsoft released XP and Windows Server 2003, the very earliest version of

Windows PowerShell, or Monad as it was then called, had begun to surface. But Monad

wasn’t really enterprise-ready. Some groups within Microsoft began talking up this new

approach, but the mainstream audiences were not taking much heed at that point.

Another key aspect of managing this generation of systems was the huge number of Group

Policies added into the client OS (XP). Microsoft also beefed up the Windows Management

Instrumentation (WMI) components, although to some degree, this was probably more

useful to folks writing management tools than to IT professionals.

During this time period, Microsoft was pushing Systems Management Server (SMS, later to be

renamed System Center Con�iguration Manager), which was homegrown, as well as Microsoft

Operations Manager (renamed later to System Center Operations Manager), which Microsoft

acquired from a purchase. However, in those days, the individual products (that is, Operations

Manager and SMS) were very distinct and separate products. The package we now recognize

as Systems Center, and the other members of the family, were still some years off.

Introducing Windows PowerShell
To some degree, the death knell of the Management By GUI age was the publication of the

Monad Manifesto in August 2002. You can download this document from http://blogs
.msdn.com/b/powershell/archive/2007/03/19/monad-manifesto-the-origin-of-
windows-powershell.aspx.

The manifesto suggested that the key issue was the lack of “administrator-oriented

composable tools to type commands and automate management,” which were the domain

of scripting languages. The main scripting tools of the day, however, worked by using “very

low level abstractions such as complex object models, schemas and APIs.”

The paper goes on to suggest a broad architecture of components. Though a lot of details have

changed since that document was written, Windows PowerShell today delivers on the promise.

A year later, in September 2003, Microsoft demonstrated Monad in public for the �irst time

at the Professional Developers Conference. Though it took a number of years to get from

Monad to where Windows PowerShell is today, the result has made the journey worthwhile.

What Is Windows PowerShell?
Before you begin to use Windows PowerShell, you must understand a bit about it. This

section takes a look at what Windows PowerShell is and what it contains.

Windows PowerShell as a Task Automation Platform
Windows PowerShell is, �irst and foremost, Microsoft’s strategic administrative task

automation platform. It aims to help the administrator, the IT professional, to manage all

c01.indd 5c01.indd 5 03/09/11 10:43 AM03/09/11 10:43 AM

6

Part I: Introduction

aspects of a Windows system and the applications that run on them as ef�iciently as possible,

both locally and remotely. Such a tool needs to be focused on the administrator and work

with high-level task-oriented abstractions. For example, rather than worrying about bits

inside a �ile, the tool should work at the level of a user, process, service, and so on.

Since 2009, Windows PowerShell has been a part of Microsoft’s Common Engineering Criteria

(CEC) for Windows and Windows applications. The CEC mandates that all new applications

and all parts of Windows must have at least adequate Windows PowerShell support. If a

product or component does not meet those criteria, it does not ship. At least that’s the theory.

Note
You can read more about the CEC and look at the details and scorecards at Microsoft’s Common Engineering
website: www.microsoft.com/cec/en/us/cec-overview.aspx. ■

Windows PowerShell has several components:

� Rich administrative shell: On a par with the best of Unix shells in terms of both

ease of use and power

� Powerful scripting language: As rich and powerful as Perl, Ruby, and VBScript

� Production orientation: Aimed at IT professionals running large enterprise

environments where there is a strong need for secure, robust, and scalable scripting

� Focus on Windows and Windows applications: Works across all supported

versions of Windows and has to support all the applications

Although not stated in the Monad Manifesto, but noted at the �irst public outing of Monad a

year later, there was also a need for a rich, vibrant community. The community needed to, and

indeed has, focused Microsoft on doing the right things with Windows PowerShell and has

�illed the gaps in terms of additional features you can just plug into Windows PowerShell. The

staggering support provided by the community is nothing short of amazing.

This book examines every aspect of Windows PowerShell and shows you the product,

warts and all. But before diving deep, it’s necessary to review some of the key concepts

behind Windows PowerShell. If you are new to Windows PowerShell, you should take the

time to read this, but if you have a good basic understanding of Windows PowerShell, feel

free to skip over this next section.

Windows PowerShell’s Scripting Language
Windows PowerShell provides both a shell and a shell scripting language. In the Windows

PowerShell console, you can enter individual lines of Windows PowerShell’s language

constructs (for example, Create-AdUser, to create a new Active Directory account). But

you can also add a number of Windows PowerShell statements together into a script �ile

to automate more complex administrative tasks such as provisioning a user into your

environment (creating the Active Directory account, adding a SharePoint Site, adding the

users to groups, and so on).

c01.indd 6c01.indd 6 03/09/11 10:43 AM03/09/11 10:43 AM

7

Chapter 1: Introduction to Windows PowerShell

Windows PowerShell’s language is broadly based on C#, with concepts (for example, the

pipeline) taken from other great scripting languages. Windows PowerShell is, as Microsoft

points out, “on the glide scope” to C#. If you know Windows PowerShell, then reading C#

should be relatively straightforward and vice versa. Having said that, a number of constructs

in C# have not been added to Windows PowerShell because the focus of the two languages

is quite different: C# is aimed at professional programmers building applications, whereas

Windows PowerShell is aimed at IT professionals who manage those applications.

Later, this chapter presents the basics of this language. The description is brief and

provides only the basics. To really understand and use Windows PowerShell, you need

practice. Later chapters expand on the introduction you get in this chapter.

In writing this book, the authors wish to concentrate on using and leveraging Windows

PowerShell in Windows, and all the key applications you’re likely to run into. To avoid

hundreds of pages describing the details of the syntax and language in minute detail, we

prefer to let you re�ine that on the job. What follows here are the basics of the Windows

PowerShell language.

Note
Microsoft has done a fantastic job in adding great documentation on Windows PowerShell’s fundamentals
into the product. You can find these topics by typing Get-Help about_* at the Windows PowerShell prompt.
There are more than 90 help files that contain great details of each of the specific language features,
including examples. ■

Windows PowerShell in Production Scripts and
Admin GUIs
Windows PowerShell was designed for use both at the command line and in production-

oriented scripts. This requirement gives rise to the need to be very pithy at the command-

line console while verbose and rich in a production script. At the command line, you can

issue terse commands, making use of Windows PowerShell’s alias and parameter naming

conventions, which enable you to specify only the minimum. In production-oriented

scripts, spelling things out in full, along with providing rich validation and

error-handling features, becomes much more important.

Another aspect of Windows PowerShell is the ability to use it in building GUI administration

tools. In this approach, the key administrative functions are actually built as cmdlets. The GUI

just gathers enough data to call these cmdlets and then renders the output. This enables you

to create a simple GUI for the most common administrative tasks, which are often performed

by less skilled individuals. The less common administrative tasks, which are usually

performed by more skilled administrators, are carried out solely using cmdlets.

A great example of this is Microsoft Exchange. With Exchange 2007 and Exchange 2010,

the GUI (the Exchange Management Console) is relatively simple (certainly when compared

with the Microsoft Management Console snap-in that was included in earlier versions of

c01.indd 7c01.indd 7 03/09/11 10:43 AM03/09/11 10:43 AM

8

Part I: Introduction

Microsoft Exchange!). Adding a mailbox, for example, is done by the GUI gathering the

information (mailbox name and so on) and constructing a call to the New-Mailbox cmdlet.

The output from this cmdlet is then returned to Exchange. Exchange can then show the

results (i.e., an updated list of mailboxes).

With Exchange, at any rate, the command issued to create a new mailbox is shown once the

administrative action is complete. This allows you to copy it and then use it as the basis for

writing scripts to add more users. Other products, notably Microsoft Lync Server 2010, do

not provide such a feature. But in both cases, everything you can do at the GUI can be done

from a Windows PowerShell console. And from the Windows PowerShell console, you can

do more than you can in the GUI.

Next, you take a look at the concepts of Windows PowerShell and how you can take

advantage of them.

Key Windows PowerShell Concepts
Within Windows PowerShell are three core conceptual pillars: cmdlets, objects, and the

pipeline. It’s hard to talk about one without talking about the other two, so the de�initions

of these pillars, these key concepts, intertwine to some degree.

Cmdlets
A cmdlet is a small bit of executable code that performs some administrative task such as

deleting a �ile, adding a user, or changing the registry. Cmdlets are named with a verb-noun

syntax with strict guidelines for verb naming. An example cmdlet is Get-Process, which

returns information about processes running on a machine.

To ensure consistency, the set of verbs that developers can use is restricted through the use of

formal guidance (and runtime checking that emits an error if unapproved verbs are used in a

cmdlet). That helps to ensure that the “get” verb has the same semantics in Active Directory

as in Exchange — and that’s the same semantics for Get-Process.

Cmdlet nouns can vary more because they are task-speci�ic. A cmdlet’s noun, however,

should always be singular, possibly with a pre�ix to avoid collision (where two product

groups produce similarly named cmdlets that do potentially different things). Quest’s Active

Directory tools use the noun pre�ix QAD, whereas Microsoft’s Active Directory cmdlets use

the pre�ix AD. So, although both cmdlet sets provide a way to get a user in the AD, Quest’s tool

uses Get-QADuser, whereas Microsoft’s cmdlet is Get-AdUser.

To some degree, learning the verbs Windows PowerShell uses for any given task domain is

easy — these are standard (Get, New, Remove, and so on). What differs are the nouns, which

are in effect the task domain objects. Thus, in Active Directory (AD), you work with users

(Get-AdUser), groups (Get-AdGroup), and domains (Get-AdDomain), whereas in Lync

c01.indd 8c01.indd 8 03/09/11 10:43 AM03/09/11 10:43 AM

9

Chapter 1: Introduction to Windows PowerShell

Server you work with topology (Enable-CSTopology), analog device (Get-CSAnalogDevice),

location policy (Get-CSLocationPolicy), and so on.

Cmdlets can have aliases — shortcut names to simplify typing, particularly at the command

prompt. Thus, GPS is an alias for Get-Process. Windows PowerShell comes with some

built-in aliases, but you can easily add your own aliases in pro�ile �iles that run each time you

run Windows PowerShell.

Cmdlets can take parameters that tell the cmdlet how to work. The Get-Process cmdlet

has a property, -Name, which is used to tell Windows PowerShell the name of the processes

you want information about. Cmdlet property names always begin with a hyphen (-) and

are separated from the parameter value and other parameters by a space.

Windows PowerShell provides you with parameter value globbing; that is, specifying a

parameter value with wildcards to match potentially more than one object. Thus, you could

issue the cmdlet Get-Process –Name P*W to get all the processes that begin with a “p” and

have a “w” somewhere later in the process name.

Parameter full names, which can get long in some cases, can also be abbreviated. Windows

PowerShell lets you use the fewest number of characters necessary to distinguish one

parameter name from all the others.

Objects
Cmdlets consume and produce objects — we say Windows PowerShell is object-oriented.

An object is a computer representation of some tangible thing, such as a process running

on a computer, or a user in the Active Directory. The Get-Process cmdlet produces a set

of zero, one, or more process objects. In the absence of any direction from you, Windows

PowerShell renders the objects produced onto the screen in a format de�ined by Microsoft.

An object has some de�inition, or class, that de�ines what each object occurrence contains.

Get-Process produces objects belonging to the .NET class System.Diagnostics.Process.

A cmdlet can produce zero, one, or more occurrences of the class — Get-Process can

return any number of process instances, each representing a single process.

Note
Windows Powershell is built on top of .NET, but you don’t need to be a .NET expert to use Windows
PowerShell. As you learn more about Windows PowerShell, you will naturally learn more about .NET,
including the details of .NET objects. ■

Class instances have members that include properties, methods, and events. A property is

some attribute of the instance, for example, the CPU time used by a particular process.

A method is some function that the class knows how to do on an instance; for example, to

kill a speci�ic process, you could call that instance’s Kill() method. Events are speci�ic

things that an object can trigger and that you detect using Register-ObjectEvent.

c01.indd 9c01.indd 9 03/09/11 10:43 AM03/09/11 10:43 AM

10

Part I: Introduction

Classes can also have both static methods and static properties. These are properties

and methods of the class in general as opposed to a particular instance. For example, the

[System.Int32] class has a static property called MaxValue, which is the largest value of a

32-bit integer. This class also contains a static method called TryParse, which attempts to

parse a string into a 32-bit value (and returns a value to indicate if the parsing was successful).

Note
For some help on objects, type Get-Help About_Objects in Windows PowerShell. ■

The Pipeline
The pipeline is a device in Windows PowerShell that takes the output objects produced

by one cmdlet and uses them as input to another cmdlet. For example, taking the output

of Get-Process and sending it to Sort-Object to change the order of the process objects

would look like this in Windows PowerShell:

Get-Process –Name * | Sort-Object –Property Handles

The pipeline is not really a new concept. The Unix and Linux operating systems have had

this feature for decades. However, with Unix/Linux, the pipeline is most often used to pass

just text — with Windows PowerShell, the pipeline uses objects. That means when the

Sort-Object cmdlet in this pipeline gets a set of process objects to sort, it can tell exactly

what kind of object is being passed and precisely where to �ind the �ield(s) to sort on (that

is, it knows what the Handles property is and how to sort it).

By comparison, with Unix, you’d need to take the text output produced by one command

and do some text parsing, often called prayer-based parsing, and hopefully get the right

answer. Thanks to a cool feature in .NET called Re�lection, a cmdlet can look at actual

objects passed and not have to rely on pure text parsing.

Note
See www.codeproject.com/KB/dotnet/Reflection.aspx for more information on reflection. ■

The pipeline is an amazingly powerful construct, although it does take a bit of time for many

administrators to understand the concept and to start to use it ef�iciently.

Note
For more information on the pipeline in Windows PowerShell, type Get-Help About_Pipeline in Windows
PowerShell. ■

Discovery and the Community
Discovery is a central component of Windows PowerShell, because it enables you to �ind out

more about Windows PowerShell by using it. Windows PowerShell is in many ways

self-documenting, which is of huge bene�it to new and seasoned users alike.

c01.indd 10c01.indd 10 03/09/11 10:43 AM03/09/11 10:43 AM

11

Chapter 1: Introduction to Windows PowerShell

Windows PowerShell includes three key discovery-related cmdlets: Get-Help and

Get-Command. Get-Help displays help information about Windows PowerShell cmdlets

and Windows PowerShell concepts and Get-Command gets basic information about

cmdlets and other commands. A third cmdlet, Get-Member, enables you to harness .NET’s

re�lection capability to see what’s inside an object.

Get-Help
The Get-Help cmdlet provides a good introduction to individual Windows PowerShell

cmdlets. Get-Help provides details on each cmdlet, including how it works, its syntax,

parameter information, and examples of the cmdlet in use.

Get-Help can also provide information about Windows PowerShell concepts. More than 90

built-in “About_” �iles describe Windows PowerShell language constructs and concepts.

The conceptual help built into Windows PowerShell is an important part of discovery —

Get-Help really is your friend!

Every cmdlet in Windows PowerShell supports the -? switch, which gives basic help information

about that cmdlet. This enables you to type the following to get basic help information about

the Get-Process cmdlet:

Get-Process -?

Get-Command
The Get-Command cmdlet returns related, but different, discovery information. With

Get-Command, you can �ind out the names of the command that meet a certain criteria, such

as having a particular verb or noun, or coming from a particular add-in module.

For example, to �ind the name of the cmdlets that have a “Get” verb, you could type:

Get-Command –Verb Get

To �ind all the cmdlets that were added when you imported the Bitstransfer module

(a set of cmdlets shipped with Windows 7 and Windows Server 2008 R2), you could type:

Import-Module BitsTransfer
Get-Command -Module BitsTransfer

Note
Modules and the Import-Module cmdlet are features that are added with Version 2. Modules provide a
simple way of adding new sets of cmdlets into Windows PowerShell. Get-Command provides a great way to
discover the cmdlets added by a particular module. ■

c01.indd 11c01.indd 11 03/09/11 10:43 AM03/09/11 10:43 AM

12

Part I: Introduction

If you are about to start using some new module, one key way to discover the nouns that

belong to the module, such as BitsTransfer, is to type:

Get-Command –Module BitsTransfer | Group-Object –Property Noun |i
 Sort-Object Count –Descending
Count Name Group
----- ---- -----
 7 BitsTransfer {Complete-BitsTransfer, Get-BitsTransfer...}
 1 BitsFile {Add-BitsFile}

Get-Member
The Get-Member is another key discovery-based cmdlet. Get-Member takes any

object and tells you what’s inside. Thus, if you pipe the output of Get-Process to

Get-Member, Windows PowerShell returns details about the members of the

System.Diagnostic.Process objects that are produced by Get-Member. This description

includes the methods and properties supported by that object. By piping an unfamiliar

object to Get-Member, you can discover what it contains and how to interact with it.

The Windows PowerShell Community
Windows PowerShell was designed from the outset to be extensible. The Windows

PowerShell team alone could not produce all the cmdlets needed to manage Windows and

all the Windows applications. From the very beginning, Windows PowerShell had an add-in

model, the PsSnapin, that enabled developers to create new cmdlets and other extensions.

A developer could write a Windows PowerShell snap-in, known as a PsSnapin, in a .NET

language, typically C#. This could then be loaded and used on any system that has Windows

PowerShell loaded. Writing cmdlets was relatively easy and developers both inside and

outside Microsoft jumped at the challenge.

With Version 2 of Windows PowerShell, Microsoft added a new model for adding functionality

into Windows PowerShell: the module. A module enables you to do nearly everything a

snap-in could, but also enables you to write what are in effect script cmdlets — functions

that act like fully featured cmdlets. These functions could be used standalone as well as in a

pipeline, and could support the Get-Help facilities noted earlier.

The community has produced a number of outstanding additions to Windows

PowerShell — a full description of all the various add-ons would require a small book!

Two noteworthy examples are the PowerShell Community Extension (PSCX) and the Quest

AD tools. PSCX adds a number of highly useful cmdlets, for example, a set that works with

Microsoft’s message queuing feature. An even larger add-in was the Windows PowerShell

Pack, a mega-module that shipped as part of the Windows 7 resource kit (and is available

for free for download). This add-in provides hundreds of additional functions for use in a

variety of situations.

c01.indd 12c01.indd 12 03/09/11 10:43 AM03/09/11 10:43 AM

13

Chapter 1: Introduction to Windows PowerShell

Note
You can get the PowerShell Community Extensions from http://pscx.codeplex.com, the Quest tools from
www.quest.com/powershell/activeroles-server.aspx, and the PowerShellPack from http://archive
.msdn.microsoft.com/PowerShellPack. ■

The community is also a valuable resource for any IT professional or any Windows

PowerShell user when they come up with questions or issues. A variety of community

websites have sprung up that offer forums to help Windows PowerShell users.

Third-party sites include www.Powershell.com, www.PowerShellCommunity.org, and

www.PowerGui.org. A key Microsoft-sponsored site is The Scripting Guys Of�icial Forum at

http://social.technet.microsoft.com/Forums/en/ITCG/threads.

In addition, countless blogs and other areas provide great community support. Pretty

much anywhere someone can ask a question, or provide an answer to a question, you’ll �ind

passionate Windows PowerShell advocates. This includes Twitter, the microblogging site,

where you can ask simple questions and get answers in near–real time.

As with other Microsoft technologies, Microsoft has rewarded a number of Windows

PowerShell community members with the coveted Microsoft Most Valuable Professional

(MVP) award. If there’s somewhere someone can add to the Windows PowerShell

evangelism, you’ll probably �ind MVPs!

The community has played, and continues to play, a vital role in both guiding the future of

Windows PowerShell and in providing great resources to anyone who wants, or needs, to �ind

out more.

Windows PowerShell Language Constructs
As with any scripting or programming language, there is an underlying set of language

constructs you need to learn in order to use Windows PowerShell. You can divide these into

two broad camps: the basics of Windows PowerShell when operating from the keyboard,

and the extra features you use when writing production-oriented scripts. This section

introduces the key concepts.

Variables
Like most languages, Windows PowerShell supports the concept of a variable, a named

object you assign a value to and then use in other aspects of Windows PowerShell.

Variables are indicated in a script or from the command line by a $ and a variable name.

Thus, $A and $ThisIsALongVariable are both variables.

To assign a value to a variable, you use the assignment operator =. The following are

examples of creating variables:

$MagicNumber = 42
$MyName = “Rebecca Marie”
$Files = Get-ChildItem C:\PowerShellScripts

c01.indd 13c01.indd 13 03/09/11 10:43 AM03/09/11 10:43 AM

14

Part I: Introduction

The �irst example sets a variable to the value of 42. Windows PowerShell sets the value of

$MyName to the string “Rebecca Marie” in the second example, and in the third example,

the $Files variable (which most Windows PowerShell users just call $files) gets the

output of Get-ChildItem cmdlet on a particular folder.

In Windows PowerShell, you can use a variable to hold any sort of object, from simple

objects like numbers or strings to more complex objects like a Windows service or process,

In fact, because the data types come from .NET, a variable can hold any .NET data type you

assign to the variable. In .NET, each object you can create is known as a class. Classes are

at the core of .NET, and you use them all the time with Windows PowerShell to do all the

detailed work.

In the �irst part of the preceding example, Windows PowerShell sets the type of

$MagicNumber to be a 32-bit integer, System.Int32, and in the second example, Windows

PowerShell sets the type to string, or more formally, System.String. The third example is

a little harder because a folder can hold two different types of .NET objects: folders

(System.IO.DirectoryInfo) and �iles (System.IO.FileInfo). In these three cases,

Windows PowerShell works out what is the most appropriate type for a given assignment.

If you want to override the type, you can specify the type name explicitly. To assign a value

of 42 to $MagicNumber, but have that number be a 64-bit integer (to enable the use of much

larger numbers), you would use:

 [System.Int64] $BigMagicNumber = 424242424242424242

If you create a variable in this way, you cannot assign another type (for example,

System.Int32) to the variable because the type is set for the duration of the Windows

PowerShell session.

Note
For more help on variables, type Get-Help about_Variables in Windows PowerShell. ■

Operators
Operators act on variables and constants to produce new values that you can use in

Windows PowerShell scripts either to control the �low of execution or to assign to a

variable. Like most programming and scripting languages, Windows PowerShell supports a

rich set of operators, which include:

� Arithmetic operators: These operators perform basic arithmetic on numeric

types and include + (addition), – (subtraction), * (multiplication), \ (division), and

% (modulo). Note that you can add two strings and you can multiply a string by a

number. See the about_Arithmetic_Operators help �ile for more information on

these operators.

� Assignment operators: These operators assign the value of an expression to a

variable. Assignment operators include = (simple assignment) and +=, -=, *=, /=,

c01.indd 14c01.indd 14 03/09/11 10:43 AM03/09/11 10:43 AM

15

Chapter 1: Introduction to Windows PowerShell

and %=. The latter operators assign a variable the value of that variable plus

the expression to the right of the assignment operator. $s += 10, for example,

adds 10 to the value of $s and assigns the results back to $s. You can use the

same approach to multiply ($a *= 3), subtract ($a -= 32) or divide ($a /+ 10).

See the about_Assignment_Operators help �ile for more information on these

operators.

� Comparison operators: These operators compare two expressions and return

true (if the two expressions compare appropriately) or false. The comparison

operators include –eq (equal), -ne (not equal), -lt (less than), -ge (greater than or

equal), -like (wildcard match), -notlike (wildcard nonmatch), -match (regular

expression match), -notmatch (regular expression nonmatch), -band (Boolean

and), -bor (Boolean or), -bxor (Boolean exclusive or) and -bnot (Boolean not).

See the about_Comparison_Operators help �ile for more information on these

operators.

� Logical operators: These enable you to build more complex expressions and

include –and, -or, -xor (exclusive or), and –not (the alias for –not is !). See the

about_Logical_Operators help �ile for more information on these operators.

Windows PowerShell also has a number of more specialized operators, as follows:

� Redirection operators: These operators enable you to redirect output to a �ile

and include > (send output to a �ile), >> (append output to a �ile), 2> (send error

stream to a �ile), 2>> (append error stream to a �ile), and 2>&1 (send error and

regular output to the same �ile). See the about_Redirection help �ile for more

information on the redirection operators.

� Split operator: This operator splits one or more strings into substrings. See the

about_Split help �ile for more detail on the Split operator.

� Join operator: This operator joins one or more strings. See the about_Join help

�ile for more information on this operator.

� Type operators: These operators enable you to check if a variable or

expression is (or is not) of a particular type, and to convert an expression to

another type. See the about_type_operators help �ile for more details on the

type operators.

� Contains operator: This operator returns true if an element is contained within

an array, or false otherwise. For more information on arrays and the contains

operator, see the about_Arrays help �ile.

� Unary operators: These two operators (++ and --) add and subtract one from a

variable and store the result back into the variable. $a++ is the same as $a=$a+1

(and $a+=1), and $a — is the same as $a=$a=1 (or $a-=1).

� Format operator: The –f operator is used to format a composite format string,

which precedes the –f operator using values from the array following the

operator.

c01.indd 15c01.indd 15 03/09/11 10:43 AM03/09/11 10:43 AM

16

Part I: Introduction

Expressions
An expression is a set of operators and operands that result in a value. An operand is

some value that an operator can act on. Adding two numbers involves two operands (the

numbers) and an operand (that tells Windows PowerShell to add the two numbers).

In some cases, the resultant value can be a simple Boolean (that is, either true or false), and

in other cases it may be a numeric or some other value. Like most modern programming

languages, you can affect the order of calculation by enclosing sub-expressions in

parentheses. For example, here are some simple expressions:

$a=1; $b = $a * 10 # $b is assigned an expression based on the
 # value of $a
$a –gt 100 –or $b –le 21 # expression is true if a is more than
 # or $b is less than 22.
-not (1,2,3) –contains 3 # returns false
$area = $pi * ($radius *$radius) # area of a circle with a radius of $radius

Wildcards (–like) and Regular Expressions (–match)
As noted earlier, Windows PowerShell provides two types of special string comparison

operators, -like and –match (plus their alter egos of –notlike and –notmatch). The –like

and –notlike operators compare a string with a wildcard string returning true if there is

a match. The –match and –notmatch operators do much the same thing, but match against a

.NET regular expression. If you are not familiar with regular expressions, they are explained

later in this chapter.

You can specify wildcards to match on both one or multiple characters and also range.

In addition to “*” to match zero or more characters, and “?” to match either zero or one

character, Windows PowerShell wildcards also enable you to specify a range of characters

[a-b] or a set of characters [asfl] to compare. Here are some examples:

‘Cookham’ –like ‘C*’ # true
‘Cookham’ –like ‘Cook*’ # true
‘Cookham’ –like ‘C*kh?m’ # true
‘Cookham’ –like ‘C[aeiou][a-o]?ham’ # true

Windows PowerShell also supports the –match and –notmatch operators, which perform

regular expression matching. Regular expressions are a way of specifying rich pattern-

matching criteria that Windows PowerShell can use to match (or not) against another string.

People are easily able to differentiate strings like doctordns@gmail.com, 131.107.2.200,

and \\lon-dc1\documents\letter.docx. Simple wildcards are not adequate to do this sort

of rich pattern matching. Instead, Windows PowerShell uses .NET regular expressions.

For example:

‘rmlt@psp.co.uk’ -match ‘[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}’ # true
‘131.107.2.200’ –match ‘\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}’ # true

c01.indd 16c01.indd 16 03/09/11 10:43 AM03/09/11 10:43 AM

17

Chapter 1: Introduction to Windows PowerShell

Note
Regular expressions are a valuable skill and are complex in their own right. To learn more about regular
expressions, see the About_RegularEpressions help file. Also take a look at www.regular-expressions
.info for a tutorial on regular expressions, as well as a wealth of examples. ■

Case Sensitivity — or Not
For the most part, Windows is a case-insensitive operating system, in regard to the various

names and naming conventions used (for example, DNS names, NetBios names, �ilenames,

registry key names, and UPN names, to name a few). With very few exceptions, names are

case-insensitive. Windows does remember the case used and tries to preserve it for display

purposes, but in operation, Windows does not differentiate on the basis of case. That means

that a �ilename C:\FOO\FooBarXXyyXX.txt is the “same” as c:\foo\foobarxxyyxx.TXT.

The exceptions to case-insensitivity are small (you run across one case when accessing

Windows Active Directory using the ADSI interface).

Because Windows is, in effect, case-insensitive, it makes sense that, by default, Windows

PowerShell should be case-insensitive. And it is. The various comparison operators noted

earlier are case-insensitive. And in most cases, that makes sense. Most scripters use the

default comparison operators, which are case-insensitive. This can confuse users who have

more experience with Unix and Linux, where case sensitivity does matter.

For most administrative tasks in Windows and Microsoft applications, case sensitivity is

rarely important, although there may be cases where it does matter. Windows PowerShell

caters to those instances by providing case-sensitive versions of all the comparison

operators. This is done by adding a “c” to the start of the operator, to give us -ceq (case-

sensitive equal), -cne (not equal), -clt (less than), -cge (greater than or equal), -clike

(wildcard match), -cnotlike (wildcard nonmatch), -cmatch (regular expression match),

and -cnotmatch (regular expression nonmatch).

But case sensitivity does not end there. Because you have the ability to explicitly state case

sensitivity in a comparison operation, there’s an argument that says you should have the

ability to explicitly perform operations in a case-insensitive way. There is some symmetry

(being able to explicitly compare with case-insensitivity and case-sensitivity). To support

that, Windows PowerShell uses an “i” instead of a “c” at the start of each operator; thus,

you have -ieq (case-sensitive equal), -ine (not equal), -ilt (less than), -ige (greater than

or equal), -ilike (wildcard match), -inotlike (wildcard nonmatch), -imatch (regular

expression match), and -inotmatch (regular expression nonmatch).

This is demonstrated in the example here:

‘a’ –eq ‘A’ # True
‘a’ –ceq ‘A’ # False
‘a’ –ieq ‘A’ # True
‘COOKHAM’ –eq ‘cookham’ # True
‘COOKHAM’ –ceq ‘cookham’ # False
‘COOKHAM’ –ieq ‘cookham’ # True

c01.indd 17c01.indd 17 03/09/11 10:43 AM03/09/11 10:43 AM

18

Part I: Introduction

‘COOKHAM’ –like ‘c*’ # True
‘COOKHAM’ –clike ‘c*’ # False
‘Cookham’ –ilike ‘c*’ # True

Providers
Providers are Windows PowerShell data access components that provide a consistent

interface to different data stores. This enables you to use a consistent set of cmdlets to

access any data store for which a provider exists. Windows PowerShell comes with a set of

Providers, including:

� Alias: Provides access to the set of cmdlet aliases you have de�ined (using

New-Alias or Set-Alias)

� Environment: Provides access to the Windows environment variables set on your

computer

� FileSystem: Provides access to the �ile store in a way similar to how both Unix

shells and the Windows cmd.exe program display the �ile store

� Function: Provides access to the set of functions de�ined on your computer

� Registry: Provides access to the Windows registry

� Variable: Provides access to the set of variables in use

� Certi�icate: Provides access to the certi�icate store

Each provider enables you to create provider-speci�ic drives. When you use them, Windows

PowerShell accesses the different underlying data stores. To see Windows PowerShell’s

Provider coverage, try running the following on your computer:

Cd c:\
Dir
Ls
Get-ChildItem
Cd hkcu:
Ls
Cd cert:
Ls
Ls alias:dir

Note
For more information on Providers, see the about_Providers built-in help file. ■

Formatting Output
Unlike other scripting or programming languages, such as VBScript, Windows PowerShell

was designed from the outset to create output by default, thus keeping the user from having

to do a lot of work to get sensible output. This can dramatically simplify both command-line

c01.indd 18c01.indd 18 03/09/11 10:43 AM03/09/11 10:43 AM

19

Chapter 1: Introduction to Windows PowerShell

ad hoc usage as well as production scripts. You can also override Windows PowerShell’s

default formatting to create as complex an output as you might wish to.

Default Formatting
Whenever you run a cmdlet/pipeline/script, that action can leave objects in the pipeline.

For example, when you call Get-Process on its own, you leave a set of process objects in

the pipeline. Even just typing the name of a Windows PowerShell variable leaves object(s)

in the pipeline (that is, the object contained in the pipeline). In such cases, Windows

PowerShell attempts to format the objects using a set of simple rules that are supported by

customizable XML.

Windows PowerShell supports formatting XML, which describes how a particular object

class should be output, by default. Additionally, Windows PowerShell supports type XML,

which can state the properties that are to be output when a given object is displayed (the

type XML includes the properties to be output and not the speci�ic format to be used).

Microsoft’s default formatting and type XML are loaded each time you run Windows

PowerShell and provide a good default starting set. You can, of course, write your own to

either add to or improve what Windows PowerShell does by default.

When Windows PowerShell �inishes a pipeline (which can be one or more commands), it

looks to see if any objects are left over. If so, Windows PowerShell �irst looks at the loaded

format XML to see if there is a view of the objects (in the pipeline). For example, if you

run Get-Process, Windows PowerShell produces a set of System.Diagnostics.Process

objects. Windows PowerShell would then look to see if there is a view that’s been de�ined

of these objects in any of the loaded format XML �iles. If so, that view is chosen and de�ines

how Windows PowerShell formats the remaining objects.

If there are no view declarations, Windows PowerShell has to work out how to format the

properties. Via the .NET re�lection capability, Windows PowerShell can “see” what objects

are in the pipeline and what properties they have, so this is relatively straightforward.

If there is a PropertySet declaration in any of the registered type XML �iles, this de�ines

the speci�ic properties to be displayed. If there is no PropertySet declaration, Windows

PowerShell uses all the properties in the objects.

Finally, Windows PowerShell has to work out whether to format the objects in a table or a

list. If the number of properties to be displayed is four or less, Windows PowerShell formats

them as a table; with �ive or more, Windows PowerShell formats the objects as a list. When

formatting a list, Windows PowerShell, by default, determines the width to be used for

each column (unless there is display XML that speci�ies a speci�ic column width). Windows

PowerShell also uses the property name as the column header.

When formatting the System.Diagnostics.Process objects, Windows PowerShell

discovers a view for that object class in one of the prede�ined format XML �iles that directs

Windows PowerShell to generate a table with a set of prede�ined properties. This format

c01.indd 19c01.indd 19 03/09/11 10:43 AM03/09/11 10:43 AM

20

Part I: Introduction

XML also gets Windows PowerShell to perform some calculations on the underlying

property, for example, displaying the virtual memory used by a process in megabytes

(versus bytes) to improve readability.

Formatting Using Format-Table and Format-List
When composing a pipeline, rather than leaving objects in the pipeline for Windows

PowerShell to format by default, you can pipe them to either Format-Table or Format-List.

This enables you to override the properties displayed, their order, and whether to display the

objects as a table or list.

With both Format-Table and Format-List, you specify the speci�ic properties to be

displayed. Thus, you could do the following:

Get-Process –Name * | i
Format-Table –Property ProcessName, StartTime, Workingset64, CPU

This would produce the output you see in Figure 1-1.

FIGURE 1-1

Formatting a table with Format-Table

As you can see, this simple pipeline produces a nice output, although Windows

PowerShell is quite generous with the amount of space between each column. To avoid

using so much space, you can specify the AutoSize parameter. When you specify this

parameter, Format-Table �irst works out the largest width for a column (based on the

actual data being displayed) and then uses the minimum number of characters to ensure

only the minimum of space is left between each column in the table, as you can see in

Figure 1-2.

c01.indd 20c01.indd 20 03/09/11 10:43 AM03/09/11 10:43 AM

21

Chapter 1: Introduction to Windows PowerShell

FIGURE 1-2

Formatting a table with Format-Table and -AutoSize

By using Format-Table or Format-List, you can display any property of any object in either

a table or list format. If you don’t know an object’s property names (that is, the names you

specify to Format-Table or Format-List), then pipe the object to Get-Member. This outputs

a list of all the properties, their types, and whether you can get (only) or both get and set

that property on an instance of the object’s class. Piping Get-Process to Get-Member shows

you the properties of the System.Diagnostics.Process class, such as Priorityclass and

Starttime, but also that Priorityclass can be set and read, but Starttime is read-only.

Windows PowerShell offers a third useful format cmdlet, Format-Wide. This cmdlet

displays the values of just a single property of the object being displayed, for example, the

process name for each process that is returned by Get-Process. Figure 1-3 shows the use

of Format-Wide to format the process name of the processes.

FIGURE 1-3

Formatting a table with Format-Wide

Something you notice when using the format cmdlets is that the default format used to

display each property and the column/row labels are �ixed. Windows PowerShell, again

by default, chooses the best display format based on the data type being output and uses

the property name for the column/row header.

c01.indd 21c01.indd 21 03/09/11 10:43 AM03/09/11 10:43 AM

22

Part I: Introduction

Formatting with Windows PowerShell Hashtables
Windows PowerShell supports an object called a hashtable, a special sort of array that

contains entries with just a key and a value. Hashtables are discussed in more detail later

in this chapter. But for now, the hashtable(s) you use has a prede�ined set of keys, making

setting up a hashtable simple (although the syntax is a bit on the ugly side for most new to

Windows PowerShell, and is probably ugly for the rest of us, too).

You use a hashtable to tell Format-Table or Format-List how to format a particular

column or row. You can use what are known as calculated properties to include a row

or column title, an expression de�ining the actual value to display (for example, VM as

megabytes), and detailed format instructions on how to format numbers/dates. For use with

Format-Table, the hashtable can also contain a column width and a justi�ication (right/left).

To format a table of processes that contains process name, CPU time, and virtual memory

used when using a hashtable to alter the column headers and to specify how each property

is calculated and used, you could use the following script — with the results as shown in

Figure 1-4:

$ProcessHT = @{Label=”Process Name”;
 Expression={$_.Name};
 Alignment=”Right”
 Width=25}
$CpuHT = @{Label=”CPU Used”;
 Expression={$_.Cpu};
 FormatString=”N2”;
 Width=10}
$VmmHT = @{label=”Virtual Memory (MB)”;
 Expression={$_.VirtualMemorySize64/$(1mb)}
 FormatString=”N1”;
 Alignment=”Center”;
 Width=15}
Get-Process notepad| Format-Table $ProcessHT,$CpuHT,$VmmHT

FIGURE 1-4

Formatting a table with hashtables

c01.indd 22c01.indd 22 03/09/11 10:43 AM03/09/11 10:43 AM

23

Chapter 1: Introduction to Windows PowerShell

In this example, you create three hashtables, each describing a column you want

Format-Table to display. The �irst column is 25 characters wide and uses the process’s

name property as the data, which is right-aligned in the column. The second hashtable,

$CpuHT, uses “Virtual Memory” as the header of a 10 character–wide column that displays

the object’s CPU time. When this value is converted to a display string, the .NET format

string N2 (numeric with two digits of precision) is used to neatly format the result. The last

hashtable displays a �inal column entitled “Virtual Memory (MB).” This column contains

the virtual memory size, divided by 1 MB, that is left-centered in a 15-character column.

This example, which is a bit advanced, shows you how you can take advantage of the .NET

formatting and Format-Table or Format-List to format nearly any table or list just the

way you like it. There are other ways to create complex output, but I leave those as an

exercise you can complete once you have more experience with Windows PowerShell.

The way that you tell Windows PowerShell how to convert numbers and dates into text is

via the FormatString hashtable key. The format of what goes into the key is based on .NET.

You can get the full details of .NET’s numeric format strings at http://msdn.microsoft
.com/en-us/library/427bttx3(VS.71).aspx and .NET’s date and time format strings at

http://msdn.microsoft.com/en-us/library/97x6twsz(VS.71).aspx. Of course, as an

administrator, you might not want to take the time to customize the output because the

default output may be good enough.

Scripting
In this section, you look at the concept of Windows PowerShell scripts, what they contain,

and how you use them.

What Is a Script?
A script is nothing more than a text �ile of Windows PowerShell commands. Scripting is the

art and science of creating these �iles of commands and then executing them as a single

entity. You could create a script to provision a new user into your organization. This script

might take data from an Excel spreadsheet about the users, and might include creating a new

AD user account, adding that account to some security groups, adding a mailbox, a Uni�ied

Messaging mailbox, a Lync account, or a SharePoint site, plus setting all the necessary ACLs.

This complex script, the details of which are a matter of company business policy, is just

a set of calls to cmdlets (for example, New-AdUser, New-Mailbox, and so on) or calls to

functions you develop locally. They are all things you could do, a step at a time, from the

console. The only problem with that is it could take a long time, even assuming you typed

every statement perfectly each time. If your boss walks in with a spreadsheet containing

1000 new users he needs to get created as soon as possible, the thought of all that typing

would drive most folks over the edge!

c01.indd 23c01.indd 23 03/09/11 10:43 AM03/09/11 10:43 AM

24

Part I: Introduction

The beauty of a script is, once it is created, you can just run it, sit back, and watch it do all

the work. The script completes the same actions you might have performed at the console

far faster and more reliably. Scripting is the key to repeated and reliable automation, which

is, after all, the primary focus of Windows PowerShell.

Scripts can be of virtually any length, and generally consist of some or all of the following

components:

� Business logic: What the script is meant to do through the use of cmdlets and

associated processing pipelines. In the case of the provisioning script noted

earlier, it might add a user to the AD using New-ADUser (an AD cmdlet), then

create a mailbox for that account using New-Mailbox (an Exchange cmdlet),

and so on.

� Error handling: Every cmdlet can fail based on a large variety of factors. Trying

to add a user to AD might fail if you already have an account with the same name

as you are trying to add, or if AD is for some reason down.

� User input validation: Any time you get input from any user (even you!), treat it

with suspicion until you validate it thoroughly.

� Logging: Creating a detailed log that can be audited at some later date. If nothing

else, the logging can show your boss that you just added the 1,000 new users he

asked you to add 10 minutes ago.

� Windows PowerShell language constructs: You use these to orchestrate the

individual actions the script performs. These provide the rich glue that binds a

script together.

Two important programming constructs that you use in most scripts are known as

alternation and iteration. A script can do different things, that is, alternate, based on some

condition (create a special set of log entries if the creation of the user was not successful).

Also, scripts often process groups of objects (those 1,000 users you just added), iterating
through one or more individual objects one at a time, for example, creating each user for

each line on the Excel spreadsheet using the values on that spreadsheet line. Windows

PowerShell has rich syntax to enable you to do both of these.

Alternation or Conditional Execution
As noted, alternation happens when a script takes a different action depending on a

condition. Windows PowerShell provides several language control features for managing

alternation, namely the if statement and the switch statement. The if statement, which

has several variations, involves evaluation and expression, and depending on the value, it

performs different actions.

The basic form of an if statement is if (<condition>) { <action>}. For example:

if ($a –gt 100) {Write-Host ‘$a is big’}

c01.indd 24c01.indd 24 03/09/11 10:43 AM03/09/11 10:43 AM

25

Chapter 1: Introduction to Windows PowerShell

The second form uses an else clause, taken if the condition is not true. For example:

if ($a –gt 100) {Write-Host ‘$a is big’} else {Write-Host ‘$a is small’}

A third form enables you to have multiple mutually exclusive if clauses:

if ($A –gt 100){Write-Host ‘$a is big’}`
elseif ($A –gt 50) {Write-Host ‘$a is fairly big’}`
elseif ($A –gt 18) {Write-host ‘$a is fairly small’}`
else {‘$A is small or tiny’}

When writing more complex if statements, you may need to use the line continuation

character (`) at the end of the line, as in the preceding example. This stops Windows

PowerShell from just executing the �irst line of the if statement and enables the elseif

and �inal else statement in this example.

The second alternation construct supported by Windows PowerShell is the switch

statement (also known as the case statement in VB and other languages). This statement

takes a value and repeatedly compares it with a set of values — and takes the indication

action when these values are the same. Several variations on the switch statement make it

really preferable to the if statement for handling complex types of alternation.

The switch statement has the basic syntax:

switch (<expression} {
<value 1> {<action for expression = value 1}
<value 2> {<action for expression = value 2}
<etc.>
default {<action take for expression not equal to any value}
}

To see this in action, here’s a more real-life example that makes use of the PowerShell

Community Extensions:

$a = 1..4 | Get-Random –count 1
Switch ($a) {
1 {Write-host ‘number chosen is 1’}
2 {Write-host ‘number chosen is 2’}
3 {Write-host ‘number chosen is 3’}
4 {Write-host ‘number chosen is 4’}
Default {Write-Host ‘some other number chosen’}
}

This example assigns $a to a random number between 1 and 4 and then tests its value

using the switch statement. Of course, as long as the random number generator in Get-
Random is working, this snippet can only generate a random number greater than or equal

to 1 and less than or equal to 4, thus the default action can never be taken, so you could

probably omit that last line in the switch statement.

c01.indd 25c01.indd 25 03/09/11 10:43 AM03/09/11 10:43 AM

26

Part I: Introduction

With the switch statement, each potential value is checked. Thus, after checking if $a is 1

(and taking the action in the script block if so), by default, the switch statement then checks

if $a is 2, and so on. In some cases, $a may end up matching multiple values, for example:

$a = Read-Host ‘enter Y/yes or N/No’
switch ($a.toupper()) {
 ‘Y’ {$response = ‘YES’}
 ‘YES’ {$response=’YES’}
 ‘N’ {$Response=’NO’}
 ‘NO’ {$Response=’NO’}
 default {$Response=’Unknown’}}

In most situations, however, you want to avoid multiple comparisons because the values

you are checking against are mutually exclusive. In those cases, you can end the script block

with a break statement, which tells Windows PowerShell to jump to the end of the switch

statement. For example, the earlier switch statement might be more ef�iciently coded as:

$a = 1..4 | get-random –count 1
switch ($a) {
1 {Write-Host ‘number chosen is 1’; break}
2 {Write-Host ‘number chosen is 2’; break}
3 {Write-Host ‘number chosen is 3’; break}
4 {Write-Host ‘number chosen is 4’; break}
Default {Write-Host ‘some other number chosen’}
}

In this case, if $a is 1, Windows PowerShell performs the Write-Host, then jumps to the

line after the end of the switch statement. If $a is 1, then it can’t be equal to 2, 3, or 4, so

the additional checking is redundant. The break statement gives you �lexibility to handle

mutually exclusive values sensibly.

Two alternatives to the switch statement make use of wildcards and regular expressions.

In these variations, Windows PowerShell uses either a wildcard or regular expression

comparison: Does the value match the wildcard expression or the regular expression?

Examples of this are:

$a = read-host ‘enter Yes or No’
switch -wildcard ($a.ToLower())

{
 ‘y*’ { $response = ‘You entered Yes’}
 ‘n*’ { $response = ‘You entered No’ }
 default { “You entered something else” } }

and

$a = read-host ‘Enter Yes or No’; $reponse = “”
switch -regularexpression ($a.ToLower())
{

c01.indd 26c01.indd 26 03/09/11 10:43 AM03/09/11 10:43 AM

27

Chapter 1: Introduction to Windows PowerShell

 “^y” { $response = ‘You entered Yes’; break}
 “^n” { $response = ‘You entered No’ ; break}
 default { “You entered something else” } }

In the �irst of these two examples, Windows PowerShell did a wildcard comparison

between the expression $a.tolower() and the wildcard string ‘y*’. In the second

example, Windows PowerShell did a regular expression match between the expression

$a.tolower() and the regular expression ‘^y’. As you can see, you are free to use the

break statement as and when appropriate.

Iteration — Operating on a Collection or Array
As noted earlier, iteration involves looking at a number of objects one at a time. Windows

PowerShell has rich iteration support with a variety of syntax to carry out iteration.

Iteration is a programming construct present in every scripting or programming language

worth discussing. The idea is quite simple: you create some collection or array (all the �iles

in the folder M:\GratefulDeadShows, or all the processes that are consuming either over

1000 handles or 500 MB of virtual memory), then do some action or set of actions for the

members of that collection.

There are four basic iteration operators in Windows PowerShell (more than adequate for

all situations). Two of these have two alternative methods of use:

� for loop

� do until / do while loop

� while loop

� ForEach-Object and foreach statement

The for loop is one a number of programming languages have, and has the basic syntax:

for (<expression 1>; <expression 2>; <expression 3>) {<statements>}

The for loop starts by evaluating the expression <expression 1>. Typically, this initializes

a loop counter. Then, <expression 2> is evaluated and, if true, the statement block is

executed. Finally, <expression 3> is evaluated (typically, this just advances the loop

counter that was set in <expression 1>). The loop continues by reevaluating

<expression 2>, running the script block if it’s still true, and so on. Here’s an example:

For ($i=0; $i –lt 100; $i++){
 $i
}

In this example, $i is initialized to zero. Windows PowerShell then evaluates the

expression and, because $i is less than 100, the loop body is executed (which just prints out

the current value of $i, which the �irst time is zero). After the loop body is executed,

c01.indd 27c01.indd 27 03/09/11 10:43 AM03/09/11 10:43 AM

28

Part I: Introduction

$i is incremented by 1, then tested again to see if it’s still less than 100. In summary, this

loop prints out the numbers from 0 to 99. Many old-school programmers �ind this loop

contrast similar to what much earlier programming languages had.

The next three iteration constructs are really just variations on the theme of running a

script block until or while some condition is true.

The �irst, the do...until loop, runs a script block until some condition is true. For

example:

$i=0
Do {
 $i
 $i++
} until ($i –ge 100)

This example does the same thing as the for loop earlier. A simple variant on this is the

do . . . while loop, which outputs the numbers 1 through 99:

$i=0
Do {
 $i
 $i++
} while ($i –lt 100)

A third variation is the while loop, which looks like this:

$i=0
While ($i –lt 100)
 {
 $i
 $i++
}

All of these looping constructs do broadly the same thing: run some script block multiple

times, ending when some condition is true. In the case of the for loop and the while loop,

depending on how you construct it, the script block may not run, whereas for the do...
while or do...until case, the script block is always run at least once. These iteration

constructs work just �ine and may ease you into Windows PowerShell. But none of them makes

use of the pipeline, which is Windows PowerShell’s secret weapon against complex scripting!

With the foreach constructs, Windows PowerShell runs a script block inside a pipeline — once

for each member of the pipeline. Rather than having to construct some means to determine

when the loop should terminate, Windows PowerShell can simply run a script block for each

member.

The �irst foreach construct is the ForEach-Object cmdlet, which has a syntax like this:

ForEach-Object (<name> in <collection>) {<script block}

c01.indd 28c01.indd 28 03/09/11 10:43 AM03/09/11 10:43 AM

29

Chapter 1: Introduction to Windows PowerShell

In this construct, Windows PowerShell runs the script block for every object in the

collection. Suppose you had a set of music �iles in a single folder — some were .mp3, some

text (.txt), plus other �iles. Using the ForEach-Object statement, you could categorize

these like so:

#Initialize variables
$txtfile = $mp3file = $m4a = $other = 0
#Look at all files in c:\music
ForEach-Object ($file in (Get-Childitem c:\music) {
 switch ($file.extension) {
 “.txt” {$Txtfile++}
 “.mp3” {$Mp3file++}
 default {$other++}} }
#Display results
“$txtfile text files”
“$mp3file MP3 files”
“$other other files”

For a well-populated MP3 collection, the output might look like:

232 text files
12323 MP3 files
280 other files

In this foreach variant, you state the name you are going to use for the current object

being evaluated. Each time the preceding ForEach-Object loop is executed, the $file

variable is set to be the current object (that is, the current �ile in the C:\Music folder).

A simpli�ied version of foreach, the foreach statement, is used within a pipeline only. In

this variant, there is no “name in collection-name” clause. Instead, each time the loop runs,

the current object is represented by the variable $_. To recast the preceding example, you

might have this:

#Initialize variables
$txtfile = $mp3file = $m4a = $other = 0
#Look at all files in c:\music
Get-Childitem c:\music | foreach {
 switch ($_.Extension)
 {
 “.txt” {$Txtfile++}
 “.mp3” {$Mp3file++}
 default {$other++}
 }
}
#Now Display results
“$txtfile text files”
“$mp3file MP3 files”
“$other other files”

c01.indd 29c01.indd 29 03/09/11 10:43 AM03/09/11 10:43 AM

30

Part I: Introduction

In this example, each time through the loop, the current �ile object is represented by $_,

and therefore has a �ile extension property of $_.Extension.

It is these last two constructs that are most commonly used with Windows PowerShell.

The ForEach-Object cmdlet is, at least for some, preferable for more complex script blocks,

whereas the second is more appropriate in short one-liner type pipelines. But both can be

used interchangeably.

Error and Exception Handling
In the world of administrative scripting, errors occur. Some are minor and can be �ixed easily

as you develop a script. Others can be anticipated, trapped, and possibly worked around.

Although writing business logic is going to be your focus, you need to anticipate and manage

the rich possibility today’s computing environment provides as a source of error.

You can divide these errors into three broad classes. First are the syntax errors, where you

just typed the wrong syntax or perhaps misspelled a variable or cmdlet. For the most part,

these syntax errors are corrected pretty easily because Windows PowerShell won’t run the

script until the basic syntax is right and terminates if you try to access nonexistent cmdlets,

providers, and so on. Reasonable testing of your script exposes these issues for you to correct.

The second type of error is a logic error — your script runs �ine, but it produces the

wrong results. Logic errors can be hard to �ind, especially as the script grows in size and

complexity, though sometimes, you can look at a script and just see the error and quickly �ix

it. Other cases may be much harder to work out and discover the underlying issue.

The �inal type of error is the runtime error — something that should work, but doesn’t.

For example, if you use the Get-AdUser cmdlet from the Active Directory module, you

should get the relevant user(s) returned. But what if the domain controller is down, or the

network between you and the domain controller is down?

For pretty much any cmdlet that does something outside the local box, there is the

potential for a runtime error. The same applies for operations on your own computer — for

example, the comma-separated value �ile containing users you want to add to the Active

Directory does not exist, and so on.

Using an Advanced IDE
One thing that really helps you to detect and correct syntax errors is an advanced

Interactive Development Environment (IDE) in which you develop your code. Two speci�ic

features that really help you to eliminate syntax and possibly some logic errors are syntax

color coding and IntelliSense.

Color coding occurs when the code editor you are using displays different syntax tokens

using different colors. For example, if your strings are all color-coded dark red, and

suddenly you see a huge block of dark red characters, chances are you have missed either a

closing or opening string delimiter.

c01.indd 30c01.indd 30 03/09/11 10:43 AM03/09/11 10:43 AM

31

Chapter 1: Introduction to Windows PowerShell

IntelliSense is where the editor “knows” Windows PowerShell’s syntax and helps you type

it. For example, if you start to type the cmdlet Get-WmiObject, a suitably smart IDE would

recognize you’ve typed Get-, and pop up all the Get- cmdlets available. In effect, this is tab

completion on steroids and can save you a lot of time and effort — not only should it be a bit

quicker to type your scripts because the tool does the typing, but you also ensure the tool

types the syntax correctly and in full.

In terms of tools you can use, you can start using the Windows PowerShell’s Interactive

Script Environment (ISE). This comes as part of the installation of Windows PowerShell

on most systems. Windows PowerShell ISE is loaded by default on Windows 7 and when

you install Windows PowerShell on earlier client operating systems. For server systems,

particularly Server 2008 R2, you need to add this component separately. Sadly, Windows

PowerShell ISE is not supported on Server Core. Other tools you can use include Idera’s

Windows PowerShell Plus Professional, Quest’s PowerGui (free), and Sapien’s Primal Script.

Cross-Reference
See Chapter 25, “Using the Windows PowerShell ISE,” for more information on both the ISE and alternative
products. ■

Set-StrictMode Cmdlet
The Set-StrictMode cmdlet �inds a number of instances of incorrect syntax that might

otherwise work (albeit incorrectly) and reports at runtime on the error. For example, you

can call a cmdlet using .NET method invocation syntax and, though Windows PowerShell

may not complain when you enter such a statement, it almost certainly will not call the

cmdlet in the way you intended. Also, you might type a variable name incorrectly and refer

to a nonexistent and noninitialized variable, or perhaps a nonexistent property of an object.

These are easy mistakes to make, and can be hard to see in a large script.

Using Set-StrictMode causes Windows PowerShell’s parser to be extra strict and report

on issues like these (and others). When StrictMode is turned on, Windows PowerShell

generates a terminating error if best-practice coding rules are violated (that is, your script

stops when such things happen).

Using Set-StrictMode is a great idea while you are developing your script. You might

consider setting it in your pro�ile. See the “Customizing Windows PowerShell with Pro�iles”

section later in this chapter for more information about using pro�iles.

Debugging
Debugging is the process of removing logic and other errors from your script. Windows

PowerShell (both from the console and using the ISE) and other third-party tools provide

you a wealth of runtime debugging tools.

Although Windows PowerShell is “new,” the concept and practice of debugging has been

a part of the computing environment ever since Grace Hopper removed a moth from a

valve-based computer in the mid-1950s.

c01.indd 31c01.indd 31 03/09/11 10:43 AM03/09/11 10:43 AM

32

Part I: Introduction

You can take two broad approaches to runtime debugging. First, you can add diagnostic

statements to your script that display key information as your script runs. For example,

if you issue a Get-AdUser cmdlet, the diagnostic information output might include the

number of users returned and the names of the users. This might help you �ix a problem in

the �ilter (�iltering which users you want to get out of AD).

The second approach is to use debugger to step through your program line by line —

stopping now and again to look at the values of certain variables (perhaps even setting

some values temporarily). Windows PowerShell, both Windows PowerShell console and

Windows PowerShell ISE, have a debugging platform you can use.

To produce debug output, Windows PowerShell provides the Write-Debug cmdlet.

This cmdlet writes debug information to the console when directed. The neat thing

about Write-Debug is that it prints information only when you set the variable

$PSDebugPreference.

Windows PowerShell’s core debugging features are provided via seven core cmdlets:

� Set-PsDebug: Turns script debugging on and off, sets trace level, and can set a

strict level

� Set-PsBreakpoint: Enables you to set a breakpoint. You can break at a line/

column in a script, whenever a variable is used/set, or whenever a function/script

is called

� Get-PsBreakpoint: Gets a list of breakpoints currently set

� Disable-PsBreakpoint: Disables a particular breakpoint, but does not remove it

� Enable-PsBreakpoint: Enables a previously disabled breakpoint

� Remove-PsBreakpoint: Removes a previously set breakpoint

� Get-PsCallStack: Gets details on how a particular function or script was called

(that is, who called who to call who, and so on)

Note
For more information on the debugging features inside Windows PowerShell, see the about_Debuggers help
file. Also, run Get-Help on each of the preceding cmdlets for more information on how to use them. ■

Trapping Runtime Errors
As mentioned earlier, runtime errors can affect almost any script/function/cmdlet, even if

that bit of code ran thousands of times previously without issue. As Murphy’s Law posits:

anything that can go wrong, does so at the most inopportune time; Mrs. Murphy’s corollary

was that Murphy was an optimist.

Two Windows PowerShell syntax components enable you to catch and handle errors that

would otherwise be fatal. One is the trap statement and the other try/catch/finally

construct.

c01.indd 32c01.indd 32 03/09/11 10:43 AM03/09/11 10:43 AM

33

Chapter 1: Introduction to Windows PowerShell

The trap statement enables you to specify a set of commands, a script block to run when an

otherwise fatal error has occurred. For example, if you have a script that iterates through

a list of, say, 500 systems and does something with those systems — if one system is down,

the script would fail. In your script, you can trap such errors, write the information away to

a log �ile, or perhaps send mail or a page alert to an administrator, then continue. This turns

fatal errors into recoverable errors.

The trap statement on its own traps all errors in any code that follows, such as:

Trap {
 “Error Encountered in script – continuing”
 $Error[0] | out-file c:\scriptlog.txt –append
 “In {0}” –f | out-file c:\scriptlog.txt –append
 “On {0}, at {1}” –f $(hostname, $(get-date) |
 out-file c:\scriptlog.txt –append
 Continue
}
...

In this example, the script can go along executing and, if any error occurs, the trap

statement catches that error, prints out some information to a log �ile, and then continues.

Note
For more information on errors in general, see the about_Errors help file. For more information on the trap
statement, see the about_Trap help file. And see the about_Try_Catch_Finally help file for how to use
the try/catch/finally blocks to trap and handle runtime terminating errors. ■

Nonterminating Errors
In the preceding text, the errors discussed were terminating errors — that is, when the

script encountered an error, Windows PowerShell terminated the execution of that script.

However, a lot of errors that occur can be nonterminating. That means that Windows

PowerShell displays error information at the console and then continues to execute

your script.

Suppose you had a simple script that takes a �ile of �ile names and deletes them. This might

look something like this:

$Files = Get-Contents C:\Del.txt
Foreach ($File in $Files) {
 Remove-Item $file
}

Next, let’s suppose that one of the �iles (c:\foo\Foobar.txt) did not actually exist. In that

case, Windows PowerShell would produce an error like this:

Remove-Item : Cannot find path ‘C:\foo\foobar.txt’ because it does not exist.
At line:1 char:12

c01.indd 33c01.indd 33 03/09/11 10:43 AM03/09/11 10:43 AM

34

Part I: Introduction

+ remove-item <<<< foobar.txt
 + CategoryInfo : ObjectNotFound: (C:\foo\foobar.txt:String) i
 [Remove-Item], ItemNotFoundException
 + FullyQualifiedErrorId : i
PathNotFound,Microsoft.PowerShell.Commands.RemoveItemCommand

You have two options as to how to handle these nonterminating errors. First,

you could use the -ErrorAction parameter. Or you could use the -ErrorVariable

parameter.

The -ErrorAction parameter is a common parameter (available on all cmdlets) that tells

Windows PowerShell what to do with nonterminating errors. When you call a cmdlet, in

this case Remove-Item, you can specify four different values of -ErrorAction:

� SilentlyContinue: Windows PowerShell ignores the error, displays no error text,

and continues.

� Stop: Windows PowerShell stops, in effect turning a nonterminating error into a

terminating error.

� Continue: Windows PowerShell displays the error message and then continues,

which is the default action.

� Inquire: Windows PowerShell asks you want to do next.

You can also use the -ErrorVariable common parameter, typically in conjunction with

-ErrorAction. If you specify the -ErrorVariable parameter and provide a variable name,

Windows PowerShell stores any nonterminating errors in the variable name. If you precede

the variable name with a plus sign (“+”), Windows PowerShell appends any errors to the

variable, thus creating an array of errors found. Note that you must specify the variable

name without using a “$,” as follows:

Remove-Variable x
$Files = Get-Contents C:\Del.txt
Foreach ($File in $Files) {
 Remove-Item $file -ErrorAction SilentlyContinue -ErrorVariable +x
}
If ($x.count) {Write-Host (“{0} errors deleting files” -f $x.count)}
Elseif ($x) {Write-Host “1 Error deleting files”}
Else {Write-Host “All files deleted OK”}

Extending Windows PowerShell
with Snap-ins and Modules
Windows PowerShell was designed from the start to be extensible, which allows product

teams, third parties, and the community to create extensions. This section introduces the

snap-in, which came with V1, and shows a sample snap-in.

c01.indd 34c01.indd 34 03/09/11 10:43 AM03/09/11 10:43 AM

35

Chapter 1: Introduction to Windows PowerShell

Cross-Reference
The Module construct, added with Windows PowerShell V2, is another way to add functionality
into Windows PowerShell. Modules are explained in more detail in Chapter 2, “What’s New in Windows
PowerShell V2.” ■

Windows PowerShell Snap-ins
When Windows PowerShell shipped, as Version 1, there was a single method of

adding functionality — the snap-in, or PsSnapIn. The PSSnapin enabled developers

to create installable packages of cmdlets and providers, which could be used on other

machines and within other organizations. These extra cmdlets could be free (for example,

the Active Directory toolset from Quest) or commercial (for example, /n Software’s

networking cmdlets). Or they could be provided by some product or operating system

component (for example, the System Migration cmdlets included with Windows

Server 2008 R2).

Each snap-in has a full name (for example, Quest’s add-in tools for Active Directory:

Quest.ActiveRoles.ADManagement). You can use the Add-PsSnapIn cmdlet to add the

snap-in and the Remove-PsSnapIn cmdlet to remove the snap-in. Adding the snap-in makes

the cmdlets etc. available for use at the console or within a script.

From your Windows PowerShell console, you can �ind out what snap-ins have already been

added by using Get-PsSnapIn. Unless you have customized your environment by using

pro�ile �iles, if you run Get-PsSnapIn, you can see that Windows PowerShell has loaded a

core set of seven Windows PowerShell snap-ins:

� Microsoft.PowerShell.Diagnostics

� Microsoft.WSMan.Management

� Microsoft.PowerShell.Core

� Microsoft.PowerShell.Utility

� Microsoft.PowerShell.Host

� Microsoft.PowerShell.Management

� Microsoft.PowerShell.Security

To �ind out what cmdlets are inside each of the snap-ins, you can use the Get-Command

cmdlet, and specify a module name (that is, Microsoft.Powershell.Core). The results are

shown in Figure 1-5.

c01.indd 35c01.indd 35 03/09/11 10:43 AM03/09/11 10:43 AM

36

Part I: Introduction

FIGURE 1-5

Cmdlets contained in Microsoft.PowerShell.Core PsSnapIn

Windows PowerShell Modules
The snap-in was a good way of adding functionality, but it had several weaknesses:

� It was a compiled add-on, requiring developers to use a .NET language such as C#.

This made it dif�icult for nondevelopers to construct.

� It had to be installed, so developers needed to create an installer (which

fortunately was pretty easy to do!) and the user had to run the installation

process.

� It had to be registered in the system registry — for some locked-down

workstations, this meant the installation process failed.

For these key reasons, Microsoft created the module, which is part of Version 2. Windows

PowerShell modules are discussed in more detail in Chapter 2.

Installing Windows PowerShell
Before you can use Windows PowerShell, you need to install it. This ranges from the trivial

(it’s already there!) to the impossible (it’s not supported on Windows 2000 or earlier).

c01.indd 36c01.indd 36 03/09/11 10:43 AM03/09/11 10:43 AM

37

Chapter 1: Introduction to Windows PowerShell

Windows PowerShell Version Support
Basically, you need to do two things to get Windows PowerShell loaded on your system.

These two things vary a bit depending on what OS you have. The �irst thing is getting the

binary bits, and the second is installing them. Depending on your operating system, here’s

how to proceed:

� Windows 2000 (workstation or server) and earlier: Windows PowerShell is

not available or supported for these versions of Windows. There is some anecdotal

evidence that you can hack Windows PowerShell into Windows 2000, but it’s only

going to be a hack — there are missing components that make your experience

with Windows PowerShell on this OS extremely suboptimal.

� Windows XP, Windows Embedded, Windows Server 2003/Windows Server
2003 R2, and Windows Vista: For these operating systems, you can download an

OS Patch and install it.

� Windows Server 2008: Server 2008 includes Windows PowerShell V1 as a feature

you can install (but not in Server Core installations). You should just download V2

and use that, unless there is some business reason why you need V1.

� Windows 7 and Server 2008 R2 (Full install): Windows PowerShell is included

and is installed on these OSs. For Server 2008 R2, there’s even a shortcut icon to

Windows PowerShell prepopulated on the Start bar. For Server 2008 R2, the ISE

is included as a separate feature, which you can add. The ISE requires the .NET

Framework 3.5 SP1, which is also included if you choose to install the ISE.

� Server 2008 R2 (Server Core): For this version of Server Core, Windows

PowerShell V2 is included in the binaries, but you need to add Windows

PowerShell (and the .NET Framework to support it) before you can use it. Use the

Sconfig.exe program to add these two components. After starting Sconfig, just

enter 42 to add Windows PowerShell (some may �ind that amusing — after all, isn’t

Windows PowerShell the answer to everything?).

Getting Windows PowerShell for Downlevel OSs
Windows PowerShell is now part of the Windows Management Framework Core (WMFC)

component as described in KB article 968930 (see http://support.microsoft.com/
kb/968930). To add Windows PowerShell to your downlevel system, you need to add the latest

version of this component, which you can obtain from the KB page on Microsoft’s website.

When �inding the version for your system, be careful, because there are seven separate

versions of the WMFC component for different versions of the OS and for different

hardware platforms. Sadly, there is no support for Itanium.

Script Security and Execution Policy
After installing either the latest OS or installing the WMFC component onto an older OS, you

are ready to start running and using Windows PowerShell. You can use either the Windows

c01.indd 37c01.indd 37 03/09/11 10:43 AM03/09/11 10:43 AM

38

Part I: Introduction

PowerShell console (PowerShell.exe), Windows PowerShell ISE (PowerShellISE.exe)

on supported platforms, or any of the Windows PowerShell third-party applications such as

Windows PowerShell Plus, PowerGUI, and so on.

However, the �irst time you try to run a script within Windows PowerShell, you see the ugly

error message shown in Figure 1-6.

FIGURE 1-6

Scripts being blocked by Windows PowerShell’s default execution policy

Windows PowerShell has an execution policy that applies to each system on which you

install Windows PowerShell. This policy tells what scripts can run (all, signed, or none). It

is set up to be restrictive by default, but it is very easy for you to change.

The idea behind this is that it might be easy for a malware site to drop a malicious script on

your system that you could then be persuaded to execute. So far, there has been no reported

case of this vulnerability, but for naïve users, it may be safer to not have the ability to run scripts

until they know enough to not be too dangerous. In some higher-security environments, you

might want to prevent any but signed (and therefore well-scrutinized) scripts.

However, turning on a restrictive execution policy does not stop determined

administrators — they can easily just cut the script from the �ile in Notepad, and paste it

into a Windows PowerShell console. Even if execution policy is restricted, there are plenty

of ways a rogue user with administrative privileges can damage a system. Don’t forget,

cmdlets are only dangerous if you have the necessary permissions — Windows PowerShell

just makes it more ef�icient to do damaging things for those who already can!

The execution policy can take one of the following values:

� Unrestricted: You can run any script.

� RemoteSigned: You can run any local script, but scripts from a remote source must

be digitally signed (and that signature must be valid).

c01.indd 38c01.indd 38 03/09/11 10:43 AM03/09/11 10:43 AM

39

Chapter 1: Introduction to Windows PowerShell

� AllSigned: You can only run scripts that were digitally signed.

� Restricted: You can run NO scripts.

You can set the execution policy in three ways:

� Specify an ExecutionPolicy parameter when starting Windows PowerShell:
This allows you to set the policy for this invocation of Windows PowerShell.

� Enter Windows PowerShell and run Set-ExecutionPolicy and select a less
restricted policy (for example, RemoteSigned or Unrestricted): From then on,

all Windows PowerShell consoles obey this setting.

� Use Group Policy: By setting a group policy object (gpo), you can be granular in

which execution policy applies to which systems. Note that group policy overrides

any manual setting.

If you are going to use group policy, you need to either create your own group policy

administrative template or add the administrative template for Windows PowerShell as

published by Microsoft. You can get this template from www.microsoft.com/downloads/en/
details.aspx?FamilyID=2917a564-dbbc-4da7-82c8-fe08b3ef4e6d&DisplayLang=en.

Once you download and install this template, you can use it to set Windows PowerShell’s

default execution policy. Once set for a given machine, users on that machine can run any

scripts allowed by the execution policy you have set (and they can’t change it without

changing or removing the GPO).

Customizing Windows PowerShell
with Profiles
Windows PowerShell has four scripts it can run at startup. Known as profiles, these scripts

are run in “dot source” mode — thus, variables, functions, and so on that you create in the

pro�ile are persisted in the Windows PowerShell console. Most users create pro�ile �iles to

customize their Windows PowerShell console or ISE usage.

What Is a Profile?
A profile is a �ile that Windows PowerShell runs as part of starting up a Windows PowerShell

session. You can take advantage of four pro�iles, each of which runs before you see the

prompt in your Windows PowerShell window. Any variable, alias, or function you de�ine or

any provider you load is available for your use in the Windows PowerShell session. For more

information on scope, see the about_Scopes help �ile.

A pro�ile �ile is where you can put all the variables you want to persist in a session, de�ine

small functions or aliases, and where useful, create new provider drives. If you are going to

be developing large functions that you want to be made available within your PowerShell

c01.indd 39c01.indd 39 03/09/11 10:43 AM03/09/11 10:43 AM

40

Part I: Introduction

console (or for a script), it might be preferable to bundle them up into a module and then

just load that module either in your pro�ile or script, or only when you actually need it. This

might be a way to speed up your startup times!

Windows PowerShell enables you to use four separate pro�iles. These enable you to best

manage the Windows PowerShell environment. The four are known as:

� AllUsersAllHosts: This pro�ile runs for every user and for every Windows

PowerShell host.

� AllUsersCurrentHost: This pro�ile runs for every user running this speci�ic

Windows PowerShell host (for example, PowerShell.exe, PowerShell_ISE.exe,

and so on).

� CurrentUserAllHosts: This pro�ile runs for the current user only but for all hosts.

� CurrentUserCurrentHost: This pro�ile runs for the current user within only the

current host.

This �lexibility enables you to have, for example, different pro�iles when you run

PowerShell.exe versus the ISE and to have different pro�iles for different users. It also

enables system-wide pro�iles (that is, for any user using this system) and individual user

pro�iles.

When Windows PowerShell starts, it creates a variable for you, $profile, which points to

the CurrentUserCurrentHost pro�ile, which means you could have two — one for

PowerShell.exe and the other for PowerShellISE.exe. For most users, this is suf�icient. For

multiuser systems, the AllUsers pro�iles can be useful over and above the per-user pro�ile.

Where Are Your Profiles?
The four pro�ile �iles for use with PowerShell.exe are listed in Table 1-1. If you installed

Windows to a different drive, the location would change.

TABLE 1-1

Default Windows PowerShell Profiles for PowerShell.exe

Profile Name Profile Location

AllUsersAllHosts C:\Windows\System32\WindowsPowerShell\v1.0\profile.ps1

AllUsersCurrentHost C:\Windows\System32\WindowsPowerShell\v1.0\
Microsoft.PowerShell_profile.ps1

CurrentUserAllHosts C:\Users\<username>\Documents\WindowsPowerShell\
profile.ps1

CurrentUserCurrentHost C:\Users\<username>\Documents\WindowsPowerShell\
Microsoft.PowerShell_profile.ps1

c01.indd 40c01.indd 40 03/09/11 10:43 AM03/09/11 10:43 AM

41

Chapter 1: Introduction to Windows PowerShell

The pro�iles available for use with Windows PowerShell ISE are listed in Table 1-2.

TABLE 1-2

Default Windows PowerShell Profiles for PowerShell_ISE.exe

Profile Name Profile Location

AllUsersAllHosts C:\Windows\System32\WindowsPowerShell\v1.0\profile.ps1

AllUsersCurrentHost C:\Windows\System32\WindowsPowerShell\v1.0\
Microsoft.PowerShellISE_profile.ps1

CurrentUserAllHosts C:\Users\<username>\Documents\WindowsPowerShell\
profile.ps1

CurrentUserCurrentHost C:\Users\tfl\Documents\WindowsPowerShell\Microsoft
.PowerShellISE_profile.ps1

If you have other Windows PowerShell hosts, they may or may not implement additional

CurrentHost pro�iles. Once you’ve started up your Windows PowerShell host, you can �ind

out the pro�ile �iles for that host easily. Just run the following:

$profile | format-list *host* -force

Managing Profiles in the Enterprise
You have options as to how you use pro�iles, how you coordinate them, and how you keep

them up to date. This can provide �lexibility for large and small organizations alike. Some

things you could do include:

� Letting your Windows PowerShell users do their own thing and not control

pro�iles centrally.

� Putting all key corporate functions, aliases, and any locally developed scripts and

providers into a module.

� Using the AllUsersAllHosts pro�ile for common corporate standards, letting

users further customize their per-user pro�iles.

� Using group policy to deploy a startup script or a logon script that copies your

corporate AllUsersAllHosts pro�ile to the appropriate folder on administrative

workstations.

� Creating multiple pro�ile �iles for the different hosts used in your organization and

deploying these with group policy (startup or login script), depending on the level

of control you want to maintain.

� Providing a sample set of pro�ile contents and letting users download and use

them as appropriate.

c01.indd 41c01.indd 41 03/09/11 10:43 AM03/09/11 10:43 AM

42

Part I: Introduction

Summary
In this chapter, you looked at the basics of Windows PowerShell. You reviewed the path

leading to the release of Windows PowerShell, and you learned about the core components of

Windows PowerShell’s language. These components — cmdlets, objects, and the pipeline —

are the fundamentals on which the rest of this book rests.

You learned that you can use these concepts to create rich production-oriented scripts to

run your enterprise. Scripts can be a mixture of cmdlets, and existing console applications

that are combined with iteration and alternation processes. Add in a mixture of user input

validation and error handling to resolve the unpredictability inevitable in automation of your

computer environment, and you have rich tools to perform all manner of task automation.

This chapter �inished with a look at both installing Windows PowerShell and how you

might extend your Windows PowerShell environment with snap-ins and modules. These

additions come from a variety of places: some are built in, whereas others are either

commercially provided or have been created by Windows PowerShell’s vibrant community.

You also examined how you install Windows PowerShell (for those operating systems

where Windows PowerShell is not automatically loaded) as well as how to customize

Windows PowerShell using pro�ile �iles.

In the next chapter, you learn about the features added to Windows PowerShell’s Version 2. One

could devote an entire book to just what’s new in V2, but Chapter 2 avoids this by providing a

concise look at key features.

c01.indd 42c01.indd 42 03/09/11 10:43 AM03/09/11 10:43 AM

43

C H A P T E R

IN THIS CHAPTER
Getting to Version 2

Introducing remoting and jobs

Reviewing advanced functions

Introducing modules

Utilizing eventing

Introducing the ISE

Reviewing transactions

Using debugging and error
handling

Describing new cmdlets in V2

What’s New in
Windows PowerShell V2

This chapter looks at what’s new in Windows PowerShell

Version 2 (V2). The chapter begins with a short look at how we

got to V2 before looking at key features added in Version 2. Like

Chapter 1, this chapter does not go into a huge amount of detail about

these features. You can take advantage of the about_* text files to read

additional conceptual information that can help you to understand

more about the new features.

The Road to V2
The road from Windows PowerShell Version 1 to Version 2 was an

interesting one. Microsoft went from V1 to V2 via a set of Community

Technology Preview (CTP) releases, which were supported by an

active newsgroup. Initially, V2 was an out-of-band project; but for the

�inal release, Microsoft also took Windows PowerShell into Windows

as a full component. This move was great news for the future of

Windows PowerShell!

Like most product teams at Microsoft, shipping a version of a product is

a cause for celebration; but after a day or two, it’s back to work on the

next version. And so it was for the Windows PowerShell team on their

road to V2. Hardly any time seemed to elapse between shipping V1 and

the release of the V2 interim, prerelease builds.

The Version 2 Betas
Microsoft showed off the emerging V2 through three Community

Technology Preview (CTP) releases. These CTP releases were

c02.indd 43c02.indd 43 03/09/11 10:46 AM03/09/11 10:46 AM

44

Part I: Introduction

downloadable, fully featured beta versions. Although Microsoft used the term CTP as

opposed to Beta, these interim builds were ready for production. But they did provide a

great snapshot of the progress the team had made at the time each interim build shipped.

Each CTP got progressively richer and included more features. The �inal CTP shipped in

late December 2008. The CTPs were supported by a rich and vibrant online newsgroup

wherein the features were dissected and improvements suggested. The discussions with

the product team were amazingly productive and helped to shape many of the features.

Perhaps the best news that emerged from the team was how Windows PowerShell would

be supported and released going forward, namely that Windows PowerShell was to become

a component of Windows and be issued and serviced just like other Windows components.

With Windows PowerShell moving into Windows, Windows PowerShell is now a full

component of Windows, much like Control Panel, the Active Directory, and so on. That’s

great news, but at the same time, there is some bad news.

Whenever any component becomes part of Windows, the servicing model for that

component is the normal Windows service model: hot�ixes for critical issues, roll-up

patches in some cases, and occasional service packs. Thus, errors in Windows PowerShell

that might once have been �ixed with interim releases of Windows PowerShell can no

longer be shipped as easily. Instead, new features are only released with new versions

of the Windows operating system. Being part of the Windows operating system bene�its

Windows PowerShell and its users at one level, but waiting for operating system releases

also hampers the Windows PowerShell team’s ability to be agile.

What this means to you is that, at least until there’s a new version of the Windows

operating system, Windows PowerShell remains constant (aside from any high-priority bug

�ixes). This allows you to really get to know how Windows PowerShell bene�its you without

having to worry about regular feature upgrades.

V2 in Windows 7/R2
In August 2009, Microsoft released both Windows Server 2008 R2 and Windows 7

(although the formal marketing launch was some months later). Windows 7 got the lion’s

share of press attention, but the updated version of Windows Server was a major step

forward in terms of Windows PowerShell.

As part of this release, Windows PowerShell is installed by default into all versions of both

Windows Server 2008 R2 and Windows 7. On Windows 7, Windows PowerShell console and

Windows PowerShell Integrated Scripting Environment (ISE) are both installed — just hit

Start, type Windows PowerShell, and away you go with the console.

For Windows Server 2008 R2, Windows PowerShell V2 is not only installed, but there’s a

shortcut placed on the Start bar. But for this server version, only the Windows PowerShell

console is installed by default. If you want to install the Windows PowerShell ISE, you need

c02.indd 44c02.indd 44 03/09/11 10:46 AM03/09/11 10:46 AM

45

Chapter 2: What’s New in Windows PowerShell V2

to use Server Manager (or the Server Manager cmdlets) to add this feature. Note the ISE

requires the .NET Framework 3.5 SP1 — if you select Windows PowerShell ISE, Server

Manager automatically installs the updated version of the .NET Framework.

Windows PowerShell is not installed in any Windows 2008 Server R2 Server Core

installation. However, you can add both the .NET Framework and Windows PowerShell. You

easily add both by using sconfig.exe and specifying “42” (no doubt, Douglas Adams fans

will be amused by this). As you might expect, you do not get the ISE in Server Core — only

the console edition is available.

Tip
For the most part, managing Server Core installations is best done remotely, either using Server Manager or
using Windows PowerShell on the server core installation. Adding Windows PowerShell to each Server Core
installation does give you the option of “local management” should you need it. So, consider adding Windows
PowerShell to all Server Core installations at installation time. �

V2 on Downlevel OSs
Shortly after the release of Server 2008 R2 and Windows 7, Microsoft also released Windows

PowerShell Version 2 for downlevel operating systems (i.e., older version of Windows).

Speci�ically, support is provided for Windows XP, Windows Vista, Windows Server 2003,

Windows Server 2003 R2, and Windows Server 2008. All of these versions of Windows

PowerShell come for both x64 and i386 OSs.

There is no version of V2 for any Itanium-based version of Windows. Additionally, there is

no support for Windows 2000. There has been some anecdotal evidence that you can hack

V2 onto a Windows 2000 system, but there is suf�icient missing functionality in the OS to

make such an attempt relatively futile even if it is an interesting science project.

So what key features did Microsoft add in Version 2? The following sections look at the key

new features, starting with one of the most important new features: remoting.

Using Remoting
One of the key features needed to manage just about every computing environment is

the ability to manage and control systems remotely. This is a requirement that grows

increasingly critical as the number of computers in your organization grows. Though

you can easily manage one or two systems from a GUI, managing thousands or tens of

thousands becomes progressively more dif�icult — and, at some point, probably

impossible — at least at a reasonable cost (think how long it would take you to create a

terminal services connection to 10,000 computers one at a time in order to install

a hot�ix!).

c02.indd 45c02.indd 45 03/09/11 10:46 AM03/09/11 10:46 AM

46

Part I: Introduction

Windows PowerShell Version 1 did have remoting capabilities — that is, the ability to

access functions and features of some other remote computer. But V1’s remoting capability

was provided cmdlet by cmdlet and not across the board. Also, V1 used a different set

of underlying technologies based on Remote Procedure Calls (RPCs) to achieve the level of

remoting. Besides being fairly �irewall-unfriendly, the implementation of remote

management in V1 was patchy and inconsistent. Of all the new features in Version 2, a

universal remoting capability is perhaps the biggest addition.

What Is Remoting?
Remoting is a set of Windows PowerShell features that enables you to run scripts and

commands on another system, and return the results to a local system. Remoting enables you

to open up a connection to one, or more than one, system and work as though these systems

were local. You can load modules, use Providers, and run cmdlets and scripts on the remote

system(s). Results can be processed either remotely or locally.

With Windows PowerShell remoting, you can create a session to a remote computer, say,

from your desktop to your Lync server, using the New-PsSession cmdlet. You can use

this session to run a single command (for example, get a list of Lync users assigned to the

Cookham pool) and dispense with it upon completion. Or you can create and enter the

session and run commands on the remote system (including all data processing) as though

you were logged on to the remote machine from its local console.

Following are the three broad types of remoting in Windows PowerShell:

� 1:1: This is where you open a session to a remote machine, do some administrative

work, and then close the session. You might, for example, want to get mailbox

statistics from an Exchange mailbox by remoting into your Exchange server and

running the appropriate cmdlet(s).

� Fan-out: This is where you want to run a set of commands on multiple, perhaps

thousands or tens of thousands of computers. For example, you might want to use

Active Directory (AD) to determine all the computers in your domain, then remote

to each one and ensure that a particular hot�ix has been applied.

� Fan-in: This is where multiple administrators are all actively remoting in to a

particular machine. For example, suppose you are in the process of setting up

Lync. You might have two or three administrators from around your company all

remoting into the Lync server(s) to do some of the setup.

Windows PowerShell Remoting Architecture
Remoting in Windows PowerShell V2 makes use of several components beyond

PowerShell.exe. In Figure 2-1, you see a block diagram of the Windows PowerShell

remoting architecture.

c02.indd 46c02.indd 46 03/09/11 10:46 AM03/09/11 10:46 AM

47

Chapter 2: What’s New in Windows PowerShell V2

FIGURE 2-1

Windows PowerShell remoting architecture

*-PsSession

Invoke-Command

*-WSMAN cmdlets

WSMAN: Drive
New-WebServiceProxyWinrm.exe

MS-PSRP

MS-WSMV

WS-MAN

SOAP (Simple Object Access Protocol)

HTTP/HTTPS over TCP

As you can see in Figure 2-1, the remoting stack contains �ive key elements:

� TCP/IP and HTTP/S: The transport layer for remoting is HTTP/S run over TCP/IP.

This makes the remoting stack much more �irewall-friendly.

� SOAP: Simple Object Access Protocol, an XML-based remote object access protocol,

running over HTTP/S. This is the basis for XML web services as well as for WS-MAN.

� WS-MAN: Web Services Management layer standardized across platforms —

WS-MAN enables you to create and utilize endpoints on other machines. WinRM is

Microsoft’s implementation of WS-MAN.

� MS-WSMV: Web Service Management For Vista — de�ines, in effect, how WS-MAN

is done over WinRM in the Microsoft stack.

� MS-PSRP: The Windows PowerShell Remoting protocol. This is a stateful

protocol instantiating remote instances of Windows PowerShell, sending pipelines

to those instances, and getting results back. MS-PSRP runs over MS-WSMV and

WS-MAN.

The Windows TCP/IP stack, along with the HTTP/S suite, provides basic transport features

for all remoting activities. Although we refer to web services here, you do not need to

implement IIS to support Remoting. HTTP/S is merely the transport protocol used to utilize

WS-MAN and related management services.

Sitting on top of TCP/IP and HTTPS is SOAP. SOAP is an XML-based messaging protocol. It

enables you to set up a sender and receiver and send XML-formatted messages to and from the

c02.indd 47c02.indd 47 03/09/11 10:46 AM03/09/11 10:46 AM

48

Part I: Introduction

local and remote system. For the most part, SOAP is part of the management transport, but you

can use New-WebServiceProxy and call an XML web service directly (and get a response!).

WS-MAN is a standard, and on Windows, it is implemented by WinRM. With WS-MAN, you

can set up remote endpoints and, using SOAP, send messages back and forth. MS-WSMV is

used by Windows to manage this layer.

Windows PowerShell remoting sits on top of WS-MAN/WinRM. MS-PSRP enables a local

Windows PowerShell session to create a remote session on some remote machine and both

send pipelines to be evaluated and get the data returned from that processing.

Setting Up Remoting
Setting up remoting is relatively straightforward: you just run the Enable-PsRemoting cmdlet

on each remoting client and server. When you run this cmdlet, you are doing two things:

� Setting up the WinRM service. Enable-PsRemoting does this by calling the Set-
WsManQuickConfig cmdlet, which starts the WinRM service and sets the system

startup type to Automatic so that WinRM service starts each time the OS starts.

Next, it creates a listener to accept inbound requests on all IP addresses. Finally, it

enables �irewall exceptions for WS-MAN communication. This step enables basic

WinRM functionality on the local machine.

� Enabling Windows PowerShell remoting to listen for and receive management

instructions from a remote system. The setup process creates session con�iguration

objects that de�ine how a particular remote session is to work and sets the Access

Control Lists (ACLs) on these objects. Finally, the WinRM service is restarted with

these new endpoints de�ined and the new endpoint con�iguration objects active.

Session con�iguration objects provide you with a considerable amount of �lexibility in

controlling remoting sessions. Each time you create a remote session, Windows PowerShell

connects to a remote session con�iguration object that de�ines how the remote Windows

PowerShell session is to act. You can set ACLs to these objects to lock down certain users,

enabling them to use only the speci�ic session con�iguration you want to supply to that

user. You can also constrain what cmdlets the user can use in a remote session.

Using Remoting
You use remoting in two basic ways:

� To create a remote session using the *-PsSession cmdlets, and then enter that

session and use the remote system. These sessions are called persistent sessions.

� To run a script block or a script �ile on the remote system using Invoke-Command.

The short-lived sessions used in this case are referred to as ad-hoc or temporary

sessions.

You create a persistent session on a remote machine by using the New-PsSession cmdlet and

specifying the remote machine and the appropriate credentials for that remote machine, as

c02.indd 48c02.indd 48 03/09/11 10:46 AM03/09/11 10:46 AM

49

Chapter 2: What’s New in Windows PowerShell V2

needed. Once the session is created, you use Enter-PsSession to enter the session, after which

any commands entered are sent directly to the remote machine. This is shown in Figure 2-2.

FIGURE 2-2

A remoting session

In the example illustrated, we created a persistent session to the computer Cookham1.

You can then see we ran the Hostname command and it returned the local workstation

name. After entering the persistent session, you can run cmdlets and scripts, load and

use modules — in fact, you can do everything you can do in a local session, subject to the

constraints of the session con�iguration object you use to create the remote session.

Storing the session object as a variable ($s) allows easy use of that session as long as the

current Windows PowerShell session (on the local system) exists.

To run a one-off command or script on a remote machine, you could also use Invoke-
Command, as shown in Figure 2-3. You can also use Invoke-Command to run a command in an

existing session.

FIGURE 2-3

Remoting using Invoke-Command

c02.indd 49c02.indd 49 03/09/11 10:46 AM03/09/11 10:46 AM

50

Part I: Introduction

A less common form of remoting is known as implicit remoting. With implicit remoting,

you set up a session to a remote machine as normal, and then import cmdlets from

that remote session into your local session. To use implicit remoting, you �irst create a

persistent remote session with the target server. Over that session, you can optionally

load additional Windows PowerShell modules. Then, you use the Import-PsSession

cmdlet to import the session. Typically, you will limit the importation to just the cmdlets

that are within a module. For example, you could create a remote session to your Lync

2010 server, load the Lync module, use Import-PsSession, and just return the

Lync-related cmdlets.

When you import a remote session, Windows PowerShell converts the remote

cmdlets into local functions (with the same name and parameters). When you call these

functions, Windows PowerShell invokes the remote cmdlets for you. This would allow

you, for example, to have remote sessions to your Domain Controller, Exchange Server,

and Lync Server and use all the related cmdlets as though they existed on the local

machine.

Cross-Reference
For more information on setting up remoting, see the about_remote and about_remote_requirements
help files. For more information on all aspects of Windows PowerShell remoting, see The Administrator’s
Guide to Remoting at http://powershell.com/cs/media/p/4908/download.aspx. �

Serialization
When you retrieve data from a remote server to your workstation, PSRP serializes the

data into XML and deserializes it at the receiving end. Because of this, objects returned to

your workstation lose their methods. For example, if you set up a remote session and then

send a Get-Process to the remote machine, the remote machine takes the outputs left in

the pipeline and serializes them before the serialized objects are transported back to the

remoting client. Once at the remoting client, PSRP deserializes the objects automatically.

The upshot is that all the methods, for example, the process’s Kill() method, are lost and

cannot be used on the local machine.

This is not really an issue, and it is easy to work around where you need to. If you need,

for example, to kill a process on a remote machine, just execute the Kill() method on the

remote machine. By ensuring all the necessary processing is carried out remotely and data

returned only when it’s appropriate, you also tend to improve performance by avoiding

transporting data across the wire that is never actually used.

Working with Jobs
Another key feature in V2 is jobs. Jobs are related to (and often carry out) remoting tasks.

c02.indd 50c02.indd 50 03/09/11 10:46 AM03/09/11 10:46 AM

51

Chapter 2: What’s New in Windows PowerShell V2

What Is a Job?
A Windows PowerShell job is a script or script block that is executed in the background to a

given Windows PowerShell console. Like any script or script block, the execution can create

output that can be viewed once the job has completed.

Jobs enable you to run long-running scripts in the background, leaving the foreground

available. Jobs also enable you to keep the job’s output (again, as long as you keep the

foreground window open).

You manage jobs using the *-Job cmdlets. These enable you to create a new job, view

all jobs, stop a running job, wait (block) until a particular job has completed, and get the

results of a job’s execution.

Using Jobs
To create a new job, you use the Start-Job cmdlet. This cmdlet enables you to specify

either a script �ile or a script block as the source of the job. You can also specify parameters

including credentials and authentication providers, initialization scripts (scripts to run

before the job itself — sort of a pro�ile for the job), and input objects (which can also come

from the pipeline). For example:

Start-Job -Name WMI1 -File C:\Foo\Wmi1sto.ps1

You use Get-Job to view jobs within the current Windows PowerShell window. To stop

a job, use Stop-Job, and to remove all details of a job, use Remove-Job and specify the

ID or name of the job. When you run a job, any output is saved, in memory, by Windows

PowerShell. Once the job is �inished, you can get the job’s results by using Receive-Job.

You can see the code to create a job, retrieve the results, and remove a job in Figure 2-4.

FIGURE 2-4

Using jobs

Create the jobWait for completion

Get results

Results

(gone after received)

Remove job

c02.indd 51c02.indd 51 03/09/11 10:46 AM03/09/11 10:46 AM

52

Part I: Introduction

In addition to using the *-Job cmdlets, some cmdlets support an -AsJob parameter that runs

the cmdlet as a job. You can then manage the job and retrieve the output in the normal way!

Potential Glitches Associated with Jobs
Jobs are a wonderful addition with V2, but two small issues might catch you unaware.

First, as noted earlier in this chapter, jobs are associated with a Windows PowerShell

instance (the command line or a runspace in ISE). If that instance closes, all jobs and all

the related information are lost. So, if you have just �inished 10 jobs spanning thousands of

machines and you close Windows PowerShell, all the existing jobs — completed, in action,

and waiting to start — are gone, along with any unprocessed results from the completed

jobs. Be careful to complete your processing of any job or jobs before you close the

Windows PowerShell window.

The second potential problem you may encounter is that the Receive-Job cmdlet, by

default, displays the results and then removes them. If you wanted to look at the results a

second time, you can’t. To avoid this happening, use the Keep parameter to Receive-Job.

That way, Windows PowerShell keeps the job’s output for reuse. For example:

Start-Job -file C:\Longjob.ps1 -name Longjob
Receive-Job -Name Longjob -Keep

Caution
It may be tempting to run lots of jobs in parallel. Assuming the computer was infinitely powerful, this might
make sense. Windows PowerShell always starts any new job as soon as it’s created (for example, after a
Start-Job cmdlet). If you have too many jobs, especially those that run for a long time, you could slow
your machine down significantly. Modern versions of Windows handle multiple jobs with ease, especially on
today’s multiprocessor, multithreaded computer systems. But only up to a point. Running larger numbers of
jobs causes a lot of paging because each job fights all the other jobs for limited resources. As a rule of thumb,
keep the number of active jobs at, or just below, the number of cores on your computer. �

For more information on Windows PowerShell jobs, look at the content help topics about_
jobs, about_job_details, and about_remote_jobs.

Using Advanced Functions
Windows PowerShell V1 was fairly simple and provided a limited set of features, especially

when compared with cmdlets. Windows PowerShell V2 introduces advanced functions,

which are much richer and enable you to, in effect, write cmdlets purely in script. In

particular, you can also now write functions that function fully in a pipeline.

This section describes these new functions and looks at two key aspects of advanced

functions: comment-based help and parameter bindings.

c02.indd 52c02.indd 52 03/09/11 10:46 AM03/09/11 10:46 AM

53

Chapter 2: What’s New in Windows PowerShell V2

What’s New with Advanced Functions?
A function is a named script block that you can execute. Functions can take parameters,

which can come from a pipeline; functions can also produce output. In V2, there is no real

difference between a function and an advanced function. The advanced refers to the extra

things you can now do with features (e.g., comment-based help).

A function might look like this:

Function hello { Write-Host “Hello World”}

If you enter that function de�inition into Windows PowerShell, nothing appears to

happen until you run it by entering hello in Windows PowerShell. You can see the results

in Figure 2-5. This is the same behavior as you saw with functions in Version 1.

FIGURE 2-5

Running a function

Function definitionFunction execution

Function results

Functions can take a parameter block that identi�ies and describes the parameters that

you can pass to a function. You name each parameter, and can optionally type them and get

Windows PowerShell to conduct some degree of validation on the parameters by adding

.NET attributes to a parameter. For example, here’s a parameter block and accompanying

function body:

Function Foo {
Param (
 [string] $name = $(Throw “You must specify name”),
 [ValidateSet(“A”, “B”, “C”)]
 [string] $class,
 [ValidateRange(2,7)]
 [int] $version)

“Name = {0}” -f $name
“Class = {0}” -f $class

c02.indd 53c02.indd 53 03/09/11 10:46 AM03/09/11 10:46 AM

54

Part I: Introduction

“Version = {0}” -f $version

}

If you call this function, you must specify at least the name parameter. If you do specify

either the class or version parameters, then Windows PowerShell validates what you

enter based on the Validation attributes. If you specify the class parameter, you must

specify either A, B, or C, while the version number, if speci�ied, has to be between 2 and 7.

Note
For more information on advanced functions, see the about_functions, about_functions_advanced,
about_functions_advanced_methods, and about_functions_advanced_parameters help files. �

Comment-Based Help
Comment-based help (CBH) is a feature of V2 where you add comments to function and/

or scripts. These comments can be understood and used by Get-Help so that scripts and

functions you develop can have the same rich help experience that cmdlets can enjoy. This

is a major improvement in usability/discovery.

With CBH, you enter a set of comments to a script or function �ile. These comments contain

speci�ic Windows PowerShell help keywords, preceded by a dot (.) and associated help content.

You can enter the help comments either using a comment block (a block of text surrounded by

a <# and a #>) or a block of comments, where each comment line begins with a pound sign (#).

The keywords and their related information can appear in any order within the comment block.

Comment-based help must appear either at the beginning of a function or a script body,

at the end of a function body, or before the function keyword. Note, there cannot be more

than one blank line between the last line of the function help and the line containing the

function keyword. Help is kind of brittle in that if you make a mistake such as using an

incorrect help keyword, you do not get an error message or a full set of help information.

Here’s a sample help block for the Foo function shown earlier:

<#
.SYNOPSIS
 This script demonstrates use of Windows PowerShell validation parameters in
 a param block.
.DESCRIPTION
 This script defines three parameters and displays the values
 passed. You can use this to test out validation of the parameters
.PARAMETER Name
 The first parameter - any string
.PARAMETER Class
 Second parameter - must be a string of either A, B, or C
.PARAMETER Version
 Third parameter - must be a number between 2 and 7 inclusive.
.EXAMPLE
 Foo -Name “hello” -Class “C” -version 4

c02.indd 54c02.indd 54 03/09/11 10:46 AM03/09/11 10:46 AM

55

Chapter 2: What’s New in Windows PowerShell V2

 Illustrates a correct call
.EXAMPLE
 Foo “hello” D 3
 Illustrates an erroneous call
#>

If you combine this help block with the function Foo noted earlier and load it, you can then

use Get-Help to get help on the function, as illustrated in Figure 2-6.

FIGURE 2-6

Using comment-based help

Note
For more information about using comment-based help in Windows PowerShell, see the Windows PowerShell
help topic about_Comment_Based_Help. �

Cmdlet Binding
Cmdlet binding is a term referring to how function parameters are bound at runtime. With cmdlet

binding, a function is able to act like a cmdlet and get parameter(s) from the pipeline as well

as from the command line. Cmdlet binding also enables you to implement con�irmation, where

the function asks for con�irmation before carrying out some possibly risky operation in your

function, and to specify a default parameter set name, which can be useful if you have functions

with multiple parameter sets, especially where most parameters end up taking default values.

c02.indd 55c02.indd 55 03/09/11 10:46 AM03/09/11 10:46 AM

56

Part I: Introduction

To invoke cmdlet binding, you need to add the CmdletBinding() attribute to the start of

the function body, like this:

Function foo{
[CmdletBinding(SupportsShouldProcess=<Boolean>
 ConfirmImpact=<String>,
 DefaultParameterSetName=<String>)]
Parm ...
Rest of function ...
}

Note
For more details on cmdlet binding and how it works, see the about_functions_CmdletBindingAttribute
help file. For more information about confirmation requests, see the MSDN page http://go.microsoft
.com/fwlink/?LinkId=136658. �

Splatting
An interesting new feature with V2 is splatting. Splatting is a technique that uses a hashtable

to pass parameters to advanced functions (and cmdlets). The idea is fairly simple: instead of

having multiple parameters and their values speci�ied on a call to a function or cmdlet, you

can create a hashtable and just pass the hashtable instead. The hashtable would have a row

for every parameter you want to pass, where the row’s key is the parameter name and the

row’s value is the value for that parameter. Consider a really simple function:

Function F1 {
Param ($P1, $P2, $P3, $P4)
...
}

In V1 (and V2) you could invoke the parameter like this:

F1 -P1 “P1 value” -P2 42 -P3 “P3 value” -P4 $Xxx

If there are a lot of parameters, or if the parameter values are long, this approach becomes hard

to read. With splatting, you would �irst create a hashtable and then call the function like this:

Create hashtable for F1
$F1ht=@{P1 = “P1 value”
 P2 = 42
 P3 = “P3 value”
 P4 = $Xxx} # where $Xxx was calculated earlier
Now call F1 passing the hashtable
F1 @F1ht

This approach is certainly a cool feature. It allows you to make calls to complex cmdlets

or functions in a more readable way. For example, creating a new user in Active Directory

could require more than �ive parameters — which means very long lines or adding line

breaks to aid readability. With splatting, this becomes a lot easier to read. Splatting also

enables you to programmatically add parameters (as you parse user input) more simply.

c02.indd 56c02.indd 56 03/09/11 10:46 AM03/09/11 10:46 AM

57

Chapter 2: What’s New in Windows PowerShell V2

Working with Modules
Modules are a way of packaging Windows PowerShell scripts and cmdlets for distribution

and reuse. This section describes modules and looks at the three types of modules: script

modules, manifest modules, and implicit modules . Modules both supersede snap-ins as

a way of adding new cmdlets and Providers into Windows PowerShell and provide a great

way for enterprises and others to manage sets of related code. Because, in effect, cmdlets

can now be written in script, modules provide a great way to package related functions,

cmdlets, Providers, and so on into manageable units that can be leveraged by other

Windows PowerShell users in your organization.

What Is a Module?
In Windows PowerShell, a module is a unit of code that you can add in, or remove, from your

Windows PowerShell console (or other Windows PowerShell host). You use the Import-Module

cmdlet to import the module into your console and Remove-Module to unload the module.

Modules can contain cmdlets, Providers, script, functions, variables, and other tools/�iles.

The three types of modules are script modules, manifest modules, and implicit modules.

Each of these module types enables you to package code, provide different features, and

have different use cases.

Modules are, by default, located in one of two places: C:\Users\<user>\Documents\
Windows PowerShell\Modules (for user-speci�ic modules) and C:\Windows\system32\
Windows PowerShell\v1.0\Modules\ (for system-wide modules). In both cases, this

assumes you install Windows using the normal installation folder defaults. You create a

module by creating a folder in one of these two folders. The name of the folder is the name

of the module. The contents of this folder vary depending on the module type. You can

explicitly load modules from other locations by providing a full path to Import-Module.

Tip
If you are going to be using profiles extensively, you might want to create two variables (such as $mod and
$sysmod) and two drives (such mod: and sysmod:) in your profile to point, respectively, to the default user
module folder and the default system module folder. You can do this as follows:

$mod = (Dir Env:PsModulePath).Value.Split(“;”)[0]
$sysmod = (Dir Env:PsModulePath).Value.Split(“;”)[1]
New-PSDrive -Name mod -Root $mod -PSProvider FileSystem
New-PSDrive -Name Sysmod -Root $sysmod -PSProvider FileSystem �

Script Modules
A script module is essentially a Windows PowerShell script de�ining functions (and variables)

that is saved as a .psm1 �ile. The �ile is saved under one of your module folders with the same

name as the folder. Thus, a script module called Module1 would live in C:\Users\<user>\
Documents\Windows PowerShell\Modules\Module1\Module1.psm1.

c02.indd 57c02.indd 57 03/09/11 10:46 AM03/09/11 10:46 AM

58

Part I: Introduction

When you import a script module, Windows PowerShell runs the script to de�ine functions,

create variables, and so on. You use a script module where you want to create and use a set

of related script cmdlets.

An excellent example of a script module is the Windows PowerShell Management Library

for Hyper-V. Written by James O’Neill (and downloadable free from http://pshyperv
.codeplex.com/), this module has around 80 functions that enable you to manage Hyper-V

without the need for Microsoft’s System Center Virtual Machine Manager product. If you

are using Hyper-V, then take a look at this module!

A key difference between scripts and script modules is that you can control which

functions, variables, and so on created in the .psm1 �ile are visible after the import is

complete. By controlling the objects exported, using Export-ModuleMember, you can have

helper functions and internal variables that your (exported) functions use, but that are not

exposed to the module’s user.

Here is a very simple module with three functions, only one of which is exported:

Module 1 - Really simple module
Write-Host “Loading Module 1”
Function Foobar { “In module1”}
Function Foobar2 {“Also in Module”}
Function Barfoo { foobar; foobar2}
Export-ModuleMember -Function Barfoo

This script module is saved as C:\Users\tfl\Documents\Windows PowerShell\Modules\
module1\module1.psm1. Figure 2-7 shows this module, Module1, in use — the example

�irst imports the module and then invokes the functions inside the module. Note that the

function Foobar cannot be called after the module is loaded (because it’s not exported).

However, the function Barfoo can be called. Because it was exported, you can use it, and it

can call the two nonexported functions, as you can see.

FIGURE 2-7

Simple script module

c02.indd 58c02.indd 58 03/09/11 10:46 AM03/09/11 10:46 AM

59

Chapter 2: What’s New in Windows PowerShell V2

Manifest Modules
A manifest module is a module that contains a module manifest that speci�ies the module

content and other components (typically, but not always, other compiled code). Manifest

modules, in effect, replace the snap-in from V1, although for compatibility reasons, snap-

ins continue to be supported.

A module manifest contains a hashtable with prede�ined keys, which is stored in a .psd1

�ile underneath a module folder. The hashtable can be manually created, or you can use

New-ModuleManifest to create the manifest.

Here is a simple module manifest:

#
Module manifest for module ‘mmodule1’
@{
ModuleToProcess = ‘Mmodule1’
ModuleVersion = ‘1.0’
GUID = ‘051c7eb1-01f1-4813-a821-83f111e791d3’
Author = ‘Thomas Lee’
CompanyName = ‘PS Partnership’
Copyright = ‘2011’
Description = ‘Module 1 converted to Manifest Module’
FunctionsToExport = ‘BARFOO’
}

In the manifest, you see the basic documentation (author, company name, and so on), along

with a module to process. This module manifest (which is saved as Mmodule1.psm1) is found

in the same folder as Mmodule1.psd1. This enables you to convert a simple script module into

a richer manifest module by just adding a manifest (and possibly other �iles as needed).

Manifest modules allow you to specify a number of attributes about a module by adding

keys to the manifest’s hashtable. The preceding example shows eight of the more common

attributes you can specify.

Note
For a more complete list of the module attributes, see http://msdn.microsoft.com/en-us/library/
dd878337%28VS.85%29.aspx. �

Implicit Modules
Implicit modules are modules created by Windows PowerShell when you use the Import-
PsSession cmdlet to import the cmdlets from a remote session into your local session, as

noted earlier in this chapter. Windows PowerShell creates an implicit module and converts

the remote cmdlets into local (proxy) functions. Thus, when you use the functions that

Windows PowerShell autogenerates when it creates the implicit module, you actually run

the cmdlets on the remote machine.

c02.indd 59c02.indd 59 03/09/11 10:46 AM03/09/11 10:46 AM

60

Part I: Introduction

For example, suppose you have two machines, a local system and a remote server, and you

want to use cmdlets from the ServerManager module on the remote server. You �irst create

a remote session to the remote server, as follows:

$S = New-PsSession -Computer Cookham11

Once the session is created, you can load the ServerManager module as follows:

Invoke-Command -Session $S -ScriptBlock {Import-Module ServerManager}

Finally, you can import the remote ServerManager module into the local session by typing:

Import-PSSession $S -Module ServerManager

Once completed, you can run any of the cmdlets contained in the ServerManager module

from your local machine. When these cmdlets run, Windows PowerShell runs them on the

remote machine (Cookham2) rather than locally. You can see this in Figure 2-8.

FIGURE 2-8

Implicit remoting

As you can see in Figure 2-8, the implicit module is created when you import the remote

session. It has a name that is generated by Windows PowerShell that incorporates a

Globally Unique Identi�ier (GUID). And as you can also see, only the three cmdlets in the

Servermanager module are imported into the local session.

You can, if you want, import an entire PsSession from a remote machine. That means,

however, all the cmdlets you normally run could be overwritten by proxy functions.

Windows PowerShell detects this and does not create command proxies for remote

commands that would override, or “clobber,” local commands. Should you want this to

happen, you could use the -AllowClobber parameter to Import-PsSession, as follows:

Import-PsSession $s -AllowClobber

c02.indd 60c02.indd 60 03/09/11 10:46 AM03/09/11 10:46 AM

61

Chapter 2: What’s New in Windows PowerShell V2

For more information on Import-PsSession and implicit modules, see the help text for

Import-PsSession.

Making Use of Eventing
Eventing is the ability to register for events that occur in Windows and when these events

occur, execute the code you registered. For example, each time a process starts, you

could get Windows PowerShell to dump information about the new process to assist in

troubleshooting. This section �irst describes eventing, then looks at how you could use it.

What Is Eventing?
Eventing enables you to respond to asynchronous event noti�ications that Windows and

many .NET and Windows Management Instrumentation (WMI) objects support. Events

are a fundamental part of programming in Windows, albeit possibly less useful for

administrators who use Windows PowerShell.

The concept behind eventing is fairly simple. With eventing, you have two pieces of code.

For example, you might have a script that is running based on a scheduled task. That script

might encounter some condition and can raise (or signal) an event, perhaps that it has

completed its work. A second bit of code, perhaps a second script running on that same

system, can register for events. When the �irst bit of code raises the event, the second can

handle the event and do something appropriate to the event, perhaps just log the successful

completion of the �irst script, or maybe invoke an additional script.

Using Eventing
To use eventing in Windows PowerShell, you �irst subscribe to events generated by .NET,

WMI, or the Windows PowerShell engine itself. To subscribe (or register, as Windows

PowerShell calls it) for an event, you use Register-ObjectEvent (to register for a .NET

Object event), Register-EngineEvent (to register for a Windows PowerShell engine event

or an event raised by New-Event), or Register-WmiEvent (to subscribe to a WMI event).

After subscribing to an event, for example, subscribing to the elapsed timer event from the

System.Timers.Timer class, you can poll the event queue using the Get-Event cmdlet.

Each time you call this cmdlet, you can specify to get all the events, or you can be more

speci�ic and use the -EventIdentifier parameter to get events of a speci�ic type or

the -SourceIdentifier to get events from a speci�ic event source.

In general, polling can be somewhat tedious, especially because you have to wait until

the event occurs anyway. Polling also means you have to write a loop to check to see if

there’s an event, then wait a bit and try again, and again, and again. This approach wastes

CPU cycles.

c02.indd 61c02.indd 61 03/09/11 10:46 AM03/09/11 10:46 AM

62

Part I: Introduction

To avoid polling, you can use the Wait-Event cmdlet in your script to wait until the event

has occurred. Once the event �ires, your script continues, and you can process the event.

This is an improvement on polling, but still means your script/session is blocked until the

event occurs and Windows PowerShell returns from Wait-Event.

Another eventing technique is to use the -Action parameter in conjunction with one of

the Register-*Event cmdlets. This enables you to specify a script block that Windows

PowerShell runs when the event �ires. This is illustrated by the following script fragment:

Run notepad (code assumes 1 copy of notepad running)
notepad
Now get the process object for this process
$process = Get-Process -Name Notepad
Register for the ‘exited’ event
Register-ObjectEvent -Input $process -EventName Exited `
 -Action {Write-Host “notepad has exited”}

When you run this code, you �irst start a copy of Notepad and then get the process details

for Notepad. When you use Register-ObjectEvent, Windows PowerShell runs the script

block when the process completes and the exited event is raised. This script block then

writes a message to the host. You can see the results of this in Figure 2-9.

FIGURE 2-9

Eventing with Windows PowerShell

Start Notepad and

register for Exited Event

Message after Notepad has exited

Eventing is a fairly advanced feature and tends to be used only in more complex scenarios.

For example, you might create a script that runs other scripts on multiple machines, raising

events as the script executes. You could then have a separate dashboard script that handles

the events raised and displays progress of the scripts.

c02.indd 62c02.indd 62 03/09/11 10:46 AM03/09/11 10:46 AM

63

Chapter 2: What’s New in Windows PowerShell V2

Using the Integrated Scripting Environment
The Integrated Scripting Environment, or ISE, is a Unicode-based GUI alternative to the

Windows PowerShell console. It offers a basic set of IDE features — much easier to use than

Notepad and the console, but without some of the richer features in third-party tools.

Cross-Reference
This section is just a quick introduction because there’s more information later in this book in Chapter 25,
“Using the Windows PowerShell ISE.” In that chapter, you find more information on the ISE and how to
customize and extend it for your own use. �

You can use the ISE both to access Windows PowerShell and to develop scripts. The ISE

is designed to be a better scripting environment than Notepad, and speci�ically supports

Unicode, which is of great value in those countries where the local language is rendered

in Unicode. The ISE also enables you to create customizations to further improve your

productivity.

Supporting Transactions
The basic ability to support transactions was added to V2, but has not really been widely

used. With V2, the registry Provider is the only Provider that supports transactions. This

section introduces the idea of transactions and shows how transactions are supported in V2.

The Need for Transactions
The idea of transactions comes from databases but can be used in almost any IT scenario.

A transaction is a set of changes that are atomic — either they all happen or none of them

happen. Transactions are essential in banking environments, for example, where you move

money between two accounts. There needs to be a debit and a credit — and both have to

occur for the transaction to make sense.

With Windows PowerShell, individual Providers are able to implement transactions

(although only the Registry Provider actually does). With a transaction-enabled Provider,

you can begin a transaction, perform any number of updates to the data in the

Provider, and then either commit the transaction (and publish all the changes), or roll

the transaction back.

In task administration, there is often a desire to implement transactions across the

product, for example, to transaction complex provisioning — either the object is fully

provisioned or not. Unfortunately, such global support of transactions is not implemented

yet, although this may happen in a future version of Windows PowerShell. If you need

such functionality in your scripts, you have to write your own more complex scripts to

implement any required transactioning.

c02.indd 63c02.indd 63 03/09/11 10:46 AM03/09/11 10:46 AM

64

Part I: Introduction

Transaction Support for V2
Transactions, in general, are supported in two ways. First, a set of standard transaction

cmdlets lets you de�ine a transaction and then use it. Second, these cmdlets only work

against a Provider that supports transactions. You can see which Providers on your system

are capable of supporting transactions by typing Get-PsProvider.

Using the registry Provider’s transaction support, you would start the transaction by

using the Start-Transaction cmdlet. Subsequent registry operations (for example,
creating a new key or value entry) are done as normal using the *-Item cmdlets, but each

registry update is done specifying the -UseTransaction property. Once the transaction

is complete, you signal completion to Windows PowerShell by using the Complete-
Transaction cmdlet. If you �ind some reason why the transaction should be rolled back

(and, in effect, undone), you signal that by calling the Undo-Transaction cmdlet.

Figure 2-10 shows a simple example of a registry handling with transactions.

FIGURE 2-10

Registry transactions

Cross-Reference
For more information on setting up transactions in Windows PowerShell, see the about_remote and about_
transactions help file. �

c02.indd 64c02.indd 64 03/09/11 10:46 AM03/09/11 10:46 AM

65

Chapter 2: What’s New in Windows PowerShell V2

Debugging and Error Handling
Debugging scripts was dif�icult in V1. With V2, Microsoft added 10 debugging-related

cmdlets you can use at the console and the ISE, along with ISE menu items you can use to

debug your scripts. In addition to the speci�ic debugging-related cmdlets, you can also use

the Windows PowerShell ISE to debug your scripts.

Debugging from the Command Line
The debugging cmdlets in V2 revolve around the concept of breakpoints — points in a script

where Windows PowerShell should stop and let you examine what the script has done so

far, look at variables, and so on.

As with most traditional debugging environments, you can set a breakpoint at a particular

line in a script. You can also set a breakpoint on a command (stop when you hit the

command) or on a variable (break when a variable is used). This provides a rich set of

debugging features.

The breakpoint-related cmdlets in Windows PowerShell V2 are:

� Set-PSBreakpoint: Sets a breakpoint in a script.

� Get-PSBreakpoint: Gets the breakpoints set in the current Windows PowerShell

session.

� Disable-PSBreakPoint: Disables a breakpoint but does not remove it.

� Enable-PSBreakPoint: Enables a previously disabled breakpoint.

� Remove-PSBreakpoint: Disables and removes a breakpoint.

After setting breakpoints, you run your script(s), which run as normal until a breakpoint

is reached. What happens then is based on using the Set-PSDebug cmdlet. This cmdlet lets

you turn script debugging on or off and can toggle StrictMode.

StrictMode is a V2 Windows PowerShell feature that you use to tell Windows PowerShell

how strict to be when running a script. StrictMode is similar to using Option Explicit in

Visual Basic.

With StrictMode on, and set to Version 2 (Set-StrictMode -Version 2), Windows

PowerShell enforces coding rules in any code that you try to execute. If you use these

Version 2 settings with Set-StrictMode, Windows PowerShell prohibits references to

uninitialized variables, nonexistent properties of an object, function calls that use the

syntax for calling object methods, and variables without any name.

Here is an example of turning on StrictMode and trapping a coding error:

Set StrictMode
Set-StrictMode -Version 2

c02.indd 65c02.indd 65 03/09/11 10:46 AM03/09/11 10:46 AM

66

Part I: Introduction

Define a function
function uses a variable that has not yet been defined
Function X {$x = $foo}
Call this function
X
The variable ‘$foo’ cannot be retrieved because it has not been set.
At line:1 char:22
+ Function X {$x = $foo <<<< }
 + CategoryInfo : InvalidOperation: (foo:Token) [],
RuntimeException
 + FullyQualifiedErrorId : VariableIsUndefined

The situations detected by Set-StrictMode typically come about as the result of a typo —

typing a variable name or property name almost correctly. Setting StrictMode is a great

way to �ind the typos that could render a script runnable, but not useful.

Two other V2 debugging-related cmdlets are Write-Debug and Write-Verbose. You can

use these cmdlets in any script you write, but they will output information only if you’ve

enabled output. To enable Write-Debug to output, you turn on debugging by using Set-
PsDebug. To enable verbose output, either set $VerbosePreference or use the -Verbose
parameter in any cmdlet. You can set $VerbosePreference to one of four values:

� SilentlyContinue: Write-Verbose produces no output, and your script continues.

� Stop: Write-Verbose produces the verbose output, and your script stops.

� Continue: Write-Verbose produces the verbose output and your script continues.

� Enquire: Write-Verbose produces the verbose output, and Windows Powershell

inquires as to what you want to do (i.e., stop, continue).

If you use the -Verbose parameter in any cmdlet, Windows PowerShell displays verbose

output in the same way as with Write-Verbose.

With Write-Debug, you can add write statements throughout your scripts, which would

result in output only if you set debugging on — the rest of the time, Windows PowerShell

just skips over them.

Note
For more information about the Windows PowerShell debugger, see the about_Debuggers help file. �

Using Try/Catch/Finally
Handling errors with Version 1 was pretty basic — you could just use the Trap command

and trap any terminating errors. But with Windows PowerShell V2, Microsoft added some

new error-handling syntax: Try/Catch/Finally. These operators, which come from C#,

enable you to try to run some potentially breakable cmdlet or sequence of cmdlets and

catch (and handle) errors that might occur, particularly runtime errors (for example, disk

c02.indd 66c02.indd 66 03/09/11 10:46 AM03/09/11 10:46 AM

67

Chapter 2: What’s New in Windows PowerShell V2

not found, network host not available, and so on). This can make error reporting a lot easier

as well as enabling you to recover more easily for certain types of errors.

Here’s a simple example of Try/Catch:

Try {
$computers = import-csv c:\foo\computers.csv
“number of rows: {0}” -f $computers.count
} Catch {
“c:\foo\computers.csv file not found”;
}

In this example, the code �irst tries to open the �ile c:\computer.csv and then displays

how many rows were created in the �ile. If this �ile exists, the code prints out how many

lines were in the �ile, but if the �ile does not exist, then that error is trapped and a suitable

error message is written out.

The Try/Catch blocks can be used in conjunction with a third syntax block, Finally. This

enables you do something whether or not an error was captured. Typically, this is where

you might do cleanup based on work done in the Try block.

New Cmdlets
Windows PowerShell V2 added over 100 new cmdlets. This chapter has introduced you to

many of the more important ones.

Some of the additional new cmdlets include Get-Hotfix, Send-MailMessage, Get-
ComputerRestorePoint, Add-Computer, Reset-ComputerMachinePassword, and Get-Random.

Note
Perhaps the best way to discover all the new cmdlets in Windows PowerShell V2 is to use Bing’s Visual
Search feature to look at all Windows PowerShell cmdlets at www.bing.com/visualsearch?g=Windows
PowerShell_cmdlets#toc=0&version_rbid=1. �

Summary
In this chapter, you looked at what’s new in Windows PowerShell V2 and saw how this

version of Windows PowerShell adds a wealth of valuable new features and cmdlets.

Version 2 added a lot of very powerful features, including remote management, background

jobs, advanced functions, modules, eventing, the ISE, transactions, and debugging.

In the next section of this book, you examine the use of Windows PowerShell from your

client desktop, including interoperating with Microsoft Of�ice 2010. Chapter 3 looks at

Windows PowerShell in Windows 7.

c02.indd 67c02.indd 67 03/09/11 10:46 AM03/09/11 10:46 AM

c02.indd 68c02.indd 68 03/09/11 10:46 AM03/09/11 10:46 AM

Windows Desktop

Part II

IN THIS PART
Chapter 3
Managing Windows 7

Chapter 4
Managing Microsoft Office 2010

Chapter 5
Managing Security

Chapter 6
Managing and Installing Software

c03.indd 69c03.indd 69 03/09/11 10:47 AM03/09/11 10:47 AM

c03.indd 70c03.indd 70 03/09/11 10:47 AM03/09/11 10:47 AM

71

C H A P T E R

Managing Windows 7

Windows PowerShell allows you to troubleshoot Windows 7

problems and verify that patches have been installed.

You are also able to manage Windows Search, performing

searches and adding or removing folders in the search catalog. Finally,

you can use Windows PowerShell to manage files and folders in

Windows 7.

Troubleshooting Windows 7
with Windows PowerShell
Windows 7 comes with over 100 built-in scripts designed to facilitate

troubleshooting. The number of scripts may vary, depending on which

applications or service pack level your computer is running. You will

need to import the scripts before you can use them. Because the

scripts are provided in a module, you use the Import-Module cmdlet

with the required parameter Name, and the name of the module,

which is TroubleshootingPack. The following example imports the

TroubleshootingPack module, which enables you to access any of the

built-in troubleshooting packs:

Import-Module -Name TroubleshootingPack

The built-in scripts are located in the C:\Windows directory, in a subfolder

named Diagnostics. The actual scripts are in separate subfolders under

the System subfolder of the Diagnostics folder.

To get a list of the available troubleshooting packs, you use the

Get-ChildItem cmdlet, with the parameter Path. The following

IN THIS CHAPTER
Troubleshooting Windows 7

Managing Windows Search

Checking hotfix status

Managing files and folders

c03.indd 71c03.indd 71 03/09/11 10:47 AM03/09/11 10:47 AM

72

Part II: Windows Desktop

example shows the current troubleshooting packs located under the Windows\Diagnostics\
System folder. The output is shown in Figure 3-1.

Get-ChildItem -Path $Env:WinDir\Diagnostics\System

FIGURE 3-1

Default troubleshooting packs

You can �ind more information about any of the listed troubleshooting packs using the

Get-TroubleshootingPack cmdlet, along with the required parameter Path. The following

example shows the default information returned by the Get-TroubleshootingPack cmdlet.

The default information returned is the troubleshooting pack’s Id, Name, Publisher, and

Version.

$TroubleshootingPack = @{
Path = “$Env:WinDir\Diagnostics\system\aero”
}
Get-TroubleshootingPack @TroubleshootingPack
Id Name Publisher Version
-- ---- --------- -------
AeroDiagnostics Aero Microsoft Windows 1.0

You can get more detailed information about the troubleshooting pack by piping the output

of the Get-TroubleshootingPack cmdlet to either the Format-List cmdlet or the

Select-Object cmdlet. The next example shows that the troubleshooting pack Aero

troubleshoots “Display aero effects such as transparency”:

$TroubleshootingPack = @{
Path = “$Env:WinDir\Diagnostics\system\aero”
}

c03.indd 72c03.indd 72 03/09/11 10:47 AM03/09/11 10:47 AM

73

Chapter 3: Managing Windows 7

Get-TroubleshootingPack @TroubleshootingPack | Select-Object Description
Description

Display Aero effects such as transparency.

If you are not sure which troubleshooting pack will help with a particular problem, you

can show the description of all currently installed troubleshooting packs. The following

example �irst sets the variable $PackPath to the directory where the troubleshooting packs

are stored, and then lists the name and description for each one:

$PackPath = “$Env:WinDir\Diagnostics\System”
ForEach ($Pack in Get-ChildItem $PackPath)
{
Get-TroubleshootingPack -Path $PackPath\$Pack | Select-Object Name, Description
}

You can run any of the troubleshooting packs using the Invoke-TroubleshootingPack

cmdlet, with the required parameter Pack. The Pack parameter does not take a �ile path;

you need to either pipe the results of a Get-TroubleshootingPack cmdlet, or save that

result into a variable and use that variable as the Pack parameter’s value. The following

example runs the printer troubleshooting pack with the default options. When run without

options, a troubleshooting pack sends the output to the console only, and you will typically

be prompted to choose one or more options.

$TroubleshootingPack = @{
Path = “$Env:WinDir\Diagnostics\System\Printer”
}
$PrinterPack = Get-TroubleshootingPack @TroubleshootingPack
Invoke-TroubleshootingPack -Pack $PrinterPack

To save the output to a �ile, you can add the optional Result parameter. The Result

parameter speci�ies the path where you would like the result �iles saved. Output is saved

in two �iles: DebugReport.xml and ResultReport.xml. A third �ile, results.xsl, will be

saved in the same path. This �ile is an XLS style sheet, de�ining how to display the two XML

report �iles. You can view either of the report �iles by double-clicking them in Windows

Explorer or by using the Invoke-Item cmdlet described later in this chapter.

A further parameter to the Invoke-TroubleshootingPack cmdlet is the AnswerFile

parameter. An answer �ile allows the script to bypass questions the troubleshooting pack

asks. You create the answer �ile with the Get-TroubleshootingPack cmdlet, passing the

required parameters Pack and AnswerFile. The AnswerFile value can be either a path and

�ilename, or just a �ilename. If you do not specify a path, the �ile will be saved in the current

working directory.

The following example creates an answer �ile for the search troubleshooting pack, which

troubleshoots Windows Search. The output of the example shows the steps involved in

creating the answer �ile.

c03.indd 73c03.indd 73 03/09/11 10:47 AM03/09/11 10:47 AM

74

Part II: Windows Desktop

$TroubleshootingPack = @{
Path = “C:\Windows\Diagnostics\System\Search”
AnswerFile = “SearchAnswerFile.xml”
}
$Search = Get-TroubleshootingPack @TroubleshootingPack
PS> $Search = Get-TroubleshootingPack @TroubleshootingPack

Please answer the following questions
You will be asked a series of questions from the specified package.
The answers you provide will be stored in an answer file that
 you can use to automate question responses during package execution

Press enter to continue

What problems do you notice?
Select all that apply.

[1] Files don’t appear in search results.
[2] E-mail doesn’t appear in search results.
[3] Search or indexing is slowing down the computer.
[4] My problem isn’t listed above. (Please provide a description
 on the next page.)
[5] None of the above

[?] Help
[x] Exit
:1

Please describe your problem
Enter a brief description of your problem in the box below:
:missing files
PS>

Once you have the answer �ile created, you pass it to the AnswerFile parameter of the

Invoke-TroubleshootingPack cmdlet. This is shown in the following example, using the

answer �ile you created in the previous example:

$myPack = @{
Path = “C:\Windows\Diagnostics\System\Search”
}
$Options = @{
AnswerFile = “SearchAnswerFile.xml”
}
Get-TroubleshootingPack @myPack | Invoke-TroubleshootingPack @Options

You can get the path and description for all troubleshooting packs by modifying the

previous example. The next example lists all current troubleshooting packs, removing the

c03.indd 74c03.indd 74 03/09/11 10:47 AM03/09/11 10:47 AM

75

Chapter 3: Managing Windows 7

$Env:WinDir\Diagnostics\System part of the path, and displaying the folder name and

description. This output is shown in Figure 3-2.

$PackPath = “$Env:WinDir\Diagnostics\System”
$Format =@{Label=’Name’;Width=35;Expression={Split-Path $_.Path -Leaf}},
“Description”
$Packs = @()

ForEach ($Pack in Get-ChildItem $PackPath)
{
$Packs += Get-TroubleshootingPack -Path $PackPath\$Pack
}
$Packs |Format-Table $Format

FIGURE 3-2

Default troubleshooting packs

Because the Get-TroubleshootingPack cmdlet requires the entire path, you still need to

add the $Env:WinDir\Diagnostics\System part of the path to the string you pass to the

Path parameter.

You can create a function to get the troubleshooting pack and invoke it in one call. This makes

using the troubleshooting packs more convenient. Listing 3-1 provides a sample function.

LISTING 3-1

The Use-TroubleshootingPack Function

Function Use-TroubleshootingPack
{
param ([string]$Pack,
[string]$AnswerFile = $null,
[string]$Result = $null)

continues

c03.indd 75c03.indd 75 03/09/11 10:47 AM03/09/11 10:47 AM

76

Part II: Windows Desktop

LISTING 3-1 (continued)

if (!(Get-Module troubleshootingpack))
{
Import-Module TroubleshootingPack
}
$packPath = “$Env:WinDir\Diagnostics\System\$pack”
$myPack = @{
Path = $packPath
}
$Options = @{
}
if ($Result)
{
$Options += @{
Result = $Result
}
}
if ($AnswerFile)
{
$Options += @{
AnswerFile = $AnswerFile
}
}
Get-TroubleshootingPack @myPack |Invoke-TroubleshootingPack @Options
}

You can use this function by passing the required parameter Pack. The following example

runs the search troubleshooting pack, prompting for input:

Use-TroubleshootingPack -Pack search

The next example runs the troubleshooting pack Audio, saving the results in c:\scripts\
results:

Use-TroubleshootingPack -Pack Audio -Result c:\Scripts\Results

This �inal example runs the troubleshooting pack Search, using a previously created

answer �ile, saving the results in the folder C:\scripts\Results:

$TroubleshootingPack = @{
Pack = “search”
AnswerFile = “C:\scripts\AnswerFiles\Search.xml”
Result = “C:\scripts\Results”
}
Use-TroubleshootingPack @TroubleshootingPack

c03.indd 76c03.indd 76 03/09/11 10:47 AM03/09/11 10:47 AM

77

Chapter 3: Managing Windows 7

Managing Windows Search
Managing Windows Search requires that you download the Interop DLL from Microsoft.

An Interop DLL allows you to use a COM library as a .NET class. The DLL is part of the

Microsoft Windows Search 3.x SDK, which you can download from www.microsoft
.com/downloads/en/details.aspx?FamilyID=645300AE-5E7A-4CE7-95F0-
49793F8F76E8&displaylang=en.

The SDK is a self-extracting zip �ile. The SDK extracts to C:\Windows Search 3x SDK by

default. Examples in this chapter use this path.

Once you have downloaded and extracted the SDK, you can load the DLL into

Windows PowerShell. The following example loads the Windows Search DLL. These

two lines will need to be included at the top of any script designed to manage Windows

Search.

$dllpath = “C:\Windows Search 3x SDK\Managed\Microsoft.Search.Interop.dll”
Add-Type -Path $dllpath

Discovering Which Folders Are Currently Indexed
You can discover which folders are currently indexed within any Windows PowerShell

console.

After the DLL is loaded, you need to create an instance of the search manager class. This

class is called CSearchManagerClass. Because you need to reference this class within the

script, load the instance into a variable, as shown here:

$Search = New-Object -TypeName Microsoft.Search.Interop.CSearchManagerClass

This results in an object of the CSearchManagerClass class pointed to by the $Search

variable. Once you have the search class loaded into the $Search variable, you need to load

the search catalog into another variable. Currently, the only catalog is the SystemIndex.

The following line shows an example of loading the search catalog:

$Catalog = $Search.GetCatalog(“SystemIndex”)

Now that you have the catalog loaded, you need to create an interface to the scope rule

manager, again storing the interface in a variable, as shown here:

$ScopeManager = $catalog.GetCrawlScopeManager()

You have now loaded the DLL and created all the necessary objects. From this point on, you

will need to initialize a few variables, and then you can run your search.

First, you need to de�ine an array to hold the returned scope rules, as well as a Boolean

variable ($true or $false) to indicate the beginning of the enumeration. You also have to

c03.indd 77c03.indd 77 03/09/11 10:47 AM03/09/11 10:47 AM

78

Part II: Windows Desktop

create a variable to hold the output of each loop through the enumeration process. These

steps are shown here:

$ScopeRules = @()
$FirstLoop = $true
[Microsoft.Search.Interop.CSearchScopeRule]$CurrentScope = $null
$Enumeration = $ScopeManager.EnumerateScopeRules()

Note
Enumeration refers to the procedure of listing all members of a set. �

You can handle the enumeration of the scopes in a Do-While loop. The search returns an

object for each rule in the system index. You can output them to an array for later processing,

as shown here, or just output them to the standard output if you are not interested in

manipulating the objects.

In the following example, the results of the enumeration are stored in the array variable

$ScopeRules. To examine the results, you can simply enter $ScopeRules in the console.

The type accelerator [ref] is a pointer to the System.Management.Automation
.PSReference .NET type. This type de�ines an object that is a value or variable reference.

Do
{
$Enumeration.Next(1,[ref]$CurrentScope,[ref]$null)
$FirstLoop = $false
$ScopeRules += $CurrentScope
}While ($CurrentScope -ne $null -or $FirstLoop)
PS> $ScopeRules

PatternOrURL IsIncluded IsDefault
------------ ---------- ---------
csc://{S-1-5-21-2223528128... 1 1
file:///*\$RECYCLE.BIN* 0 1
file:///*\DfsrPrivate* 0 1
file:///*\System Volume In... 0 1
file:///C:\ProgramData* 0 1
file:///C:\ProgramData\Mic... 0 1
file:///C:\ProgramData\Mic... 1 1
file:///C:\Users\ 1 1
...

Patterns and URLs that are indexed are indicated with a 1 in the IsIncluded �ield. Patterns

and URLs that are speci�ically excluded are indicated with a 0 in the IsIncluded �ield.

You can �ilter the output to list just patterns that are indexed by Windows search by piping

$ScopeRules to the Where-Object cmdlet, as shown here:

$ScopeRules |Where-Object {$_.IsIncluded} |Select-Object PatternOrUrl

c03.indd 78c03.indd 78 03/09/11 10:47 AM03/09/11 10:47 AM

79

Chapter 3: Managing Windows 7

Logically, therefore, you can list the patterns that are speci�ically excluded from Windows

search by using the Where-Object cmdlet and specifying !$.IsIncluded:

$ScopeRules |Where-Object {!$_.IsIncluded} |Select-Object PatternOrUrl

The entire script to list all patterns of currently indexed folders is shown in Listing 3-2.

LISTING 3-2

Determining Which Folders Are Currently Indexed

$dllpath = “C:\Windows Search 3x SDK\Managed\Microsoft.Search.Interop.dll”
Add-Type -path ($dllpath)
$Search = New-Object Microsoft.Search.Interop.CSearchManagerClass
$Catalog = $Search.GetCatalog(“SystemIndex”)
$ScopeManager = $catalog.GetCrawlScopeManager()
$ScopeRules = @()
$FirstLoop = $true
[Microsoft.Search.Interop.CSearchScopeRule]$CurrentScope= $null
$Enumeration = $ScopeManager.EnumerateScopeRules()
Do
{
$Enumeration.Next(1,[ref]$CurrentScope,[ref]$null)
$FirstLoop = $false
$ScopeRules += $CurrentScope
}while ($CurrentScope -ne $null -or $FirstLoop)
$Filter = @{
FilterScript = {$_.IsIncluded}
}
$ScopeRules |Where-Object @filter |Select-Object -Property PatternOrUrl

You can show which patterns of folders are explicitly excluded from indexing by switching

the $Filter hash, as shown here:

$Filter = @{
FilterScript = {!$_.IsIncluded}
}

Adding Folders to the Index
You need to load the DLL and create references to the catalog as if you were searching the

index before you can add items to the index. Let’s put the relevant code into a function. The

complete Load-Search function is shown in Listing 3-3. You will need to dot source the

function when you call it, as shown in the following code:

. Load-Search

c03.indd 79c03.indd 79 03/09/11 10:47 AM03/09/11 10:47 AM

80

Part II: Windows Desktop

Tip
Dot sourcing refers to the practice of placing a period and a blank space in front of a Windows PowerShell
script or function. This causes all variables within the script or function to be global variables. Global variables
are available to every script, function or cmdlet run within the current Windows PowerShell session. �

LISTING 3-3

The Load-Search Function

Function Load-Search
{
$dllpath = “C:\Windows Search 3x SDK\Managed\Microsoft.Search.Interop.dll”
Add-Type -path ($dllpath)
$Search = New-Object Microsoft.Search.Interop.CSearchManagerClass
$Catalog = $Search.GetCatalog(“SystemIndex”)
$ScopeManager = $catalog.GetCrawlScopeManager()
}

Once you have the DLL and references loaded, you add folders to the index with the

AddUserScopeRule() method of the ScopeManager class. The following example, when

used in conjunction with the Load-Search function, adds the folder c:\Scripts to the

user’s scope rules. This means that the folder C:\Scripts will be searchable as well.

. Load-Search
$ScopeManager.AddUserScopeRule(“file:///c:\Scripts*”,$true,$false,$null)
$ScopeManager.SaveAll()

You can also add default scope rules with the AddDefaultScopeRule() method of the

ScopeManager class. The following example adds the default scope rule for the �ilesystem

C:\ArchiveFiles*, and all �iles in that path:

. Load-Search
$ScopeManager.AddDefaultScopeRule(“file:///C:\ArchiveFiles*”,$true,$null)
$ScopeManager.SaveAll()

In both the AddUserScopeRule() and the AddDefaultScopeRule() methods, the �irst

parameter is the path that you want to add to the scope rules. The second parameter is a

Boolean that determines if the path is included in indexing (true), or explicitly excluded

from indexing (false). For the AddUserScopeRule() method, the third parameter is another

Boolean that indicates whether to overwrite child rules. If set to $true, existing child rules

will in effect be deleted. The �inal parameter of both methods is a �lag parameter,

FOLLOW_FLAGS, which indicates whether the path is to be indexed or just followed.

Both previous examples have added a local folder to the search index. You can add a

network shared folder by replacing the file:/// handler with the otfs:// �ile handler.

The following example adds the network shared folder \\karl-pc\shared to the user

scope rules:

c03.indd 80c03.indd 80 03/09/11 10:47 AM03/09/11 10:47 AM

81

Chapter 3: Managing Windows 7

. Load-Search
$ScopeManager.AddUserScopeRule(“otfs://karl-pc\shared*”,$true,$true,$null)
$ScopeManager.SaveAll()

You can verify that the folders have been added by running the script in Listing 3-2, or by

running just the search part of the script in Listing 3-2. You could create a function for that

part of the script as well. This is shown in Listing 3-4. Notice that this function requires the

Load-Search function from Listing 3-3.

LISTING 3-4

List-Scope Function

Function List-Scope
{
param ([bool]$Included = $true)
. Load-Search
$ScopeRules = @()
$FirstLoop = $true
[Microsoft.Search.Interop.CSearchScopeRule]$CurrentScope= $null
$Enumeration = $ScopeManager.EnumerateScopeRules()
Do
{
$Enumeration.Next(1,[ref]$CurrentScope,[ref]$null)
$FirstLoop = $false
$ScopeRules += $CurrentScope
}while ($CurrentScope -ne $null -or $FirstLoop)
$Filter = @{
FilterScript = {$_.IsIncluded -eq $Included}
}
$ScopeRules |Where-Object @filter |Select-Object -Property PatternOrUrl
}

By default, the List-Scope function will show patterns included in the index. You can add

the Included parameter with a value of $false to show patterns that are not included in

the index as shown in the following example:

List-Scope -Included $false

Removing Folders from the Index
Once again, you need to load the DLL and create references to the catalog as if you were

searching the index before you can remove items from the index.

You will continue to use the Load-Search function shown in Listing 3-3. Don’t forget to dot

source the function.

c03.indd 81c03.indd 81 03/09/11 10:47 AM03/09/11 10:47 AM

82

Part II: Windows Desktop

Once the Load-Search function is loaded, the relevant methods of the ScopeManager class

are RemoveScopeRule(), RemoveDefaultScopeRule(), and RevertToDefaultScope(). The

following example removes the default scope rule file:///C:\ArchiveFiles*:

. Load-Search
$ScopeManager.RemoveDefaultScopeRule(“file:///C:\ArchiveFiles*”)
$ScopeManager.SaveAll()

The next example removes the network shared folder \\karl-pc\shared from the user

scope rules:

. Load-Search
$ScopeManager.RemoveScopeRule(“otfs://karl-pc\shared*”)
$ScopeManager.SaveAll()

 The �inal example removes all user scope rules:

. Load-Search
$ScopeManager.RevertToDefaultScopes()
$ScopeManager.SaveAll()

Re-Indexing the Search Catalog
After adding or removing rule scopes, you can force a re-index all of the URLs in your

catalog or speci�ic URLs in the catalog. While the index is in process, the catalog retains the

old data until it is overwritten by new data, or removed.

Once again, you will use the Load-Search function shown in Listing 3-3 to load the DLL and

create references to the catalog:

. Load-Search

Now that the search function is loaded, you can re-index the catalog with the Reindex(),

ReindexMatchingURLs(), or ReindexSearchRoot() methods of the Catalog interface. The

following example re-indexes all URLs in the catalog:

$Catalog.Reindex()

Note
Both the Reindex() and Reset() methods of the Catalog interface require that you are running in an elevated
shell. Right-click on the Windows PowerShell icon and select “Run as Administrator.” �

The ReindexMatchingURLs() method re-indexes only matching URLs and takes one

parameter, the URL to be re-indexed. The following example re-indexes the network shared

folder \\karl-pc\shared*:

. Load-Search
$Catalog.ReindexMatchingURLs(“otfs://karl-pc\shared*”)

c03.indd 82c03.indd 82 03/09/11 10:47 AM03/09/11 10:47 AM

83

Chapter 3: Managing Windows 7

You use the ReindexSearchRoot() method to re-index a search root. This method also

takes one parameter. In this case, the parameter is the URL on which the search is rooted.

Before you can re-index a search root, you will need to discover your search roots. You do

this with the EnumerateRoots() method of the search root class.

As always, you will need to load the DLL and create references to the catalog. Because

listing roots is similar to listing scope rules, the List-Root function in Listing 3-5 will look

familiar.

LISTING 3-5

List-Root Function

Function List-Root
{
param ([bool]$Included = $true)
. Load-Search
$ScopeRoots = @()
$FirstLoop = $true
[Microsoft.Search.Interop.CSearchRootClass]$CurrentRoot= $null
$Enumeration = $ScopeManager.EnumerateRoots()
Do
{
$Enumeration.Next(1,[ref]$CurrentRoot,[ref]$null)
$FirstLoop = $false
$ScopeRoots += $CurrentRoot
}while ($CurrentRoot -ne $null -or $FirstLoop)
$ScopeRoots |Select-Object -Property RootURL
}

Again, remember to dot source the function:

. List-Root

Now that you have your roots, you can call the ReindexSearchRoot() method of the

Catalog interface. The following example re-indexes the network shared folder

\\karl-pc\shared*:

$Catalog.ReindexSearchRoot(“otfs://karl-pc\shared*”)

You can also reset the catalog. When you reset the catalog, all URLs are re-indexed. This

can take a long time, and should be done only if there is an issue with the search index, as

identi�ied by the search troubleshooting pack.

Once again, you will use the Load-Search function from Listing 3-3 to load the DLL and

create references to the catalog.

c03.indd 83c03.indd 83 03/09/11 10:47 AM03/09/11 10:47 AM

84

Part II: Windows Desktop

Once the search function is loaded, you can reset the catalog with the Reset() method of the

Catalog interface. The Reset() method takes no parameters. The following example resets the

catalog:

. Load-Search
$Catalog.Reset()

Checking HotFix Status
You can list updates supplied by Microsoft’s Component-Based Servicing that are installed

on your Windows 7 computer with the Get-HotFix cmdlet. These updates are commonly

referred to as Quick Fix Engineering updates. Speci�ically, this does not include updates

provided by Windows Update, or via an MSI installer.

The Get-HotFix cmdlet, when run without parameters, returns a list of all these updates.

You can pass the optional parameters Id or Description to specify which hot�ix to

examine, or what type of hot�ix to list. A further parameter, ComputerName, enables you to

search for hot�ixes on remote computers.

Cross-Reference
Searching for hotfixes on remote computers is examined in depth in Chapter 8, “Performing Basic Server
Management.” �

The following example retrieves all hot�ixes installed on the local computer. The default

data displayed is the computer name, hot�ix description, hot�ix ID, who installed the hot�ix,

and when the hot�ix was installed. The hot�ixes are not sorted in any particular order.

Get-HotFix

The following code shows two examples. The �irst example returns information on the

hot�ix with the Id of KB975467, and the second example returns information on all hot�ixes

with the Description of update, sorted by the install date:

Get-HotFix -Id KB975467
Get-HotFix -Description “update” |Sort-Object InstalledOn

Managing Files and Folders
In this section, you manage security on �iles and folders. You learn to search for �iles using

built-in cmdlets and Windows Search. You also learn how to open �iles from Windows

PowerShell.

Setting Security on Files and Folders
Windows PowerShell includes two cmdlets for managing �ile and folder security descriptors:

Get-Acl and Set-Acl. The Get-Acl cmdlet retrieves objects that represent the current

c03.indd 84c03.indd 84 03/09/11 10:47 AM03/09/11 10:47 AM

85

Chapter 3: Managing Windows 7

security descriptor for the �ile or folder. Once you have the security descriptor, you can

either use it as is, or modify it and then apply it with the Set-Acl cmdlet. It is easier to copy

a security descriptor or modify one and then apply it with the Set-Acl cmdlet than it is to

create a new security descriptor.

Tip
Security descriptors, in this case, represent the file and folder permissions. �

Copying Security from One File or Folder to Another
Copying security from one �ile or folder to another can be accomplished by passing the output of

the Get-Acl cmdlet to the Set-Acl cmdlet, specifying the parameter Path to each cmdlet. The

following example copies the security descriptor from the folder c:\scripts to the folder

d:\scripts:

Get-Acl -Path c:\scripts\book | Set-Acl -Path d:\scripts\test

If you only want to copy security from one �ile to another, you specify the full path to each

�ile. The next example copies the security descriptor from the �ile c:\scripts\test.ps1 to

the �ile d:\scripts\test.ps1:

Get-Acl -Path c:\scripts\test.ps1 | Set-Acl -Path d:\scripts\test.ps1

As you can see, copying security from one folder to another, or one �ile to another, is quite

simple with Windows PowerShell.

Modifying Security on a File or Folder
You can also modify security on an existing �ile or folder with the Get-Acl and Set-Acl

cmdlets.

First, you get the current security descriptor with the Get-Acl cmdlet. Then, you can build

a new access rule and add it to the previously retrieved security descriptor. Finally, you

write the new security descriptor to the �ile or folder. The following example adds the user

Karl-Laptop\Sherry to the security descriptor for the path c:\scripts, giving that user

ReadData rights:

$CurrentAcl = Get-Acl -Path c:\scripts
$User = “Karl-Laptop\Sherry”
$AccessRight = “ReadData”
$Object = @{
TypeName = “System.Security.AccessControl.FileSystemAccessRule”
ArgumentList = $User,$AccessRight,’Allow’
}
$AccessRule = New-Object @Object
$CurrentAcl.SetAccessRule($AccessRule)
Set-Acl -Path c:\scripts -AclObject $CurrentAcl

c03.indd 85c03.indd 85 03/09/11 10:47 AM03/09/11 10:47 AM

86

Part II: Windows Desktop

Note
More information on the System.Security.AccessControl.FileSystemAccessRule class is available on MSDN:
http://msdn.microsoft.com/en-us/library/system.security.accesscontrol
.filesystemaccessrule.aspx. �

If you wanted to give this user access to all �iles in a folder that did not have inheritance set,

you would pass the output of the Get-ChildItem cmdlet through a foreach loop. The next

example adds the user Karl-Laptop\Sherry to the security descriptor for all �iles in the

path c:\scripts, giving that user ReadAndExecute rights. You re-create the $CurrentAcl

security descriptor for each �ile, because each �ile could potentially have different

permissions, and you only want to add the new security descriptor to each �ile.

$User = “Karl-Laptop\Sherry”
$AccessRight = “ReadAndExecute”
$Object = @{
TypeName = “System.Security.AccessControl.FileSystemAccessRule”
ArgumentList = $User,$AccessRight,’Allow’
}
$AccessRule = New-Object @Object
foreach ($file in Get-ChildItem c:\scripts -Recurse)
{
$CurrentAcl = Get-Acl -Path $file.FullName
$CurrentAcl.SetAccessRule($AccessRule)
Set-Acl -Path $file.FullName -AclObject $CurrentAcl
}

Note
For more information on inheritance, see TechNet: http://technet.microsoft.com/en-us/library/
cc758779(WS.10).aspx. �

Table 3-1 lists the possible values for the $AccessRight variable.

TABLE 3-1

Access Rights

ListDirectory ReadData WriteData CreateFiles

CreateDirectories AppendData ReadExtendedAttributes WriteExtendedAttributes

Traverse ExecuteFile DeleteSubdirectoriesAndFiles ReadAttributes

WriteAttributes Write Delete ReadPermissions

Read ReadAndExecute Modify ChangePermissions

TakeOwnership Synchronize FullControl

c03.indd 86c03.indd 86 03/09/11 10:47 AM03/09/11 10:47 AM

87

Chapter 3: Managing Windows 7

Listing Unique File Extensions
You can list unique �ile extensions in a folder by combining the output of the Get-ChildItem,

an array, and the Select-Object cmdlet. The following example lists all unique �ile

extensions in c:\scripts, sorted from a to z:

$Extensions = @()
$Item = @{
Path = “C:\scripts”
Recurse = $true
}
$Where = @{
FilterScript = {!$_.psIsContainer -AND $_.Extension}
}
$files = Get-ChildItem @Item | Where-Object @Where
foreach ($file in $files)
{
$Extensions += $file.Extension.SubString(1).ToLower()
}
$Extensions |Select-Object -Unique |Sort-Object

You can modify this example to provide a count of each extension by removing the Select-
Object cmdlet, and sending the results through the Group-Object cmdlet. The NoElement

parameter provides the quantity and name of the extensions, without listing each

extension in a group. This is shown in the following example:

$Extensions = @()
$Item = @{
Path = “C:\scripts”
Recurse = $true
}
$Where = @{
FilterScript = {!$_.psIsContainer -AND $_.Extension}
}
$files = Get-ChildItem @Item | Where-Object @Where
foreach ($file in $files)
{
$Extensions += $file.Extension.SubString(1).ToLower()
}
$Extensions | Group-Object -NoElement
Count Name
----- ----
 499 ps1
 487 txt
 149 csv
 313 htm
 32 vbs
 15 xml

c03.indd 87c03.indd 87 03/09/11 10:47 AM03/09/11 10:47 AM

88

Part II: Windows Desktop

The following example lists all unique �ile extensions in c:\scripts, listing the quantity of

each, and sorting by count:

$Extensions = @()
$Item = @{
Path = “C:\scripts”
Recurse = $true
}
$Where = @{
FilterScript = {!$_.psIsContainer -AND $_.Extension}
}
$Grp = @{
NoElement = $true
}
$Table = @{
Property = @{Label=”Extension”;Expression ={$_.Name}},
@{Label=”Quantity”;Expression ={$_.Count}}
AutoSize = $true
}
$files = Get-ChildItem @Item | Where-Object @Where
foreach ($file in $files)
{
$Extensions += $file.Extension.SubString(1).ToLower()
}
$Extensions |Group-Object @Grp |Sort-Object Count |Format-Table @Table

Counting a Specific Type of Files
You may be interested in knowing exactly how many of a speci�ic �ile extension you have

on your computer. Once again, you accomplish this with the Get-ChildItem and Group-
Object cmdlets. This example shows the count of .ps1 �iles in c:\scripts:

$Item = @{
Recurse = $true
Force = $true
ErrorAction = “SilentlyContinue”
}
$Grp = @{
Property = {$_.Extension}
NoElement = $true
}
Get-ChildItem -Path C:\scripts -Include “*.ps1” @Item |Group-Object @Grp

The �inal example shows the count of .psm1 and .ps1 �iles in c:\scripts:

$ChildItem = @{
Path = “C:\scripts”
Include = “*.psm1”,”*.ps1”
}
Get-ChildItem @ChildItem @Item |Group-Object @grp

c03.indd 88c03.indd 88 03/09/11 10:47 AM03/09/11 10:47 AM

89

Chapter 3: Managing Windows 7

Finding Empty Folders
Another task that you may need to perform is to �ind empty folders on your hard drive.

If you de�ine empty folders as folders that have neither �iles nor folders in them, you can

list them with a combination of the Get-ChildItem, Where-Object, and Select-Object

cmdlets. The following example shows all folders in C:\Scripts and subfolders that are

empty:

$Item = @{
Path = “C:\Scripts”
Recurse = $true
Force = $true
}
$Filter = @{
FilterScript = {$_.PSIsContainer -eq $True}
}
$Where = @{
FilterScript = {($_.GetFiles().Count -eq 0) -and
($_.GetDirectories().Count -eq 0)}
}
$a = Get-ChildItem @Item |Where-Object @Filter
$a |Where-Object @Where |Select-Object FullName

Searching with Windows Search
You can also search using the Windows Search catalog introduced earlier in the chapter.

This search will be much quicker than the previous searches because the results are

already cataloged, and you need to query only that catalog. The downside to searching

via Windows Search is that the search will only retrieve the list of �iles that are indexed. If

you are looking for a list of .json �iles, which are in c:\json, and that folder is either not

included in the index or speci�ically excluded, the search will return no data.

The search syntax can be either a form of SQL known as Windows Search SQL, or a syntax

known as Advanced Query Syntax, which is actually the default search syntax for Windows

Search. The examples in this chapter use Windows Search SQL.

Create a function that takes the search criteria as parameters. You could include this

function in your $profile script to ensure that the function is always available. The Find-
Files function is shown in Listing 3-6.

LISTING 3-6

Find-Files Function

function Find-Files
{
param(

continues

c03.indd 89c03.indd 89 03/09/11 10:47 AM03/09/11 10:47 AM

90

Part II: Windows Desktop

LISTING 3-6 (continued)

[CmdletBinding(DefaultParametersetName=”p2”)]
[Parameter(ParameterSetName=”P1”)]
[string]$Sql,
[Parameter(ParameterSetName=”P2”)]
[string[]]$Output,
[Parameter(ParameterSetName=”P2”)]
[string]$Type,
[Parameter(ParameterSetName=”P2”)]
[string]$Modifier)
if (!$Sql)
{
$sql = “Select $Output from SystemIndex Where System.$Type $Modifier”
}
$cnx = “Provider=Search.CollatorDSO;Extended Properties=’Application=Windows’;”
$connection = New-Object System.Data.OleDb.OleDbConnection $cnx
$command = New-Object System.Data.OleDb.OleDbCommand $sql,$connection
$connection.Open()
$adapter = New-Object System.Data.OleDb.OleDbDataAdapter $command
$dataset = New-Object System.Data.DataSet
[void] $adapter.Fill($dataSet)
$connection.Close()
$dataSet.Tables |Select-Object -Expand Rows
}

This simple function enables you to search the catalog by specifying the output you want,

along with the type of search, and the speci�ic items you are interested in. The function

requires that you pass either the Sql parameter, or all three of the parameters Output,

Type, and Modifier. The Sql parameter is a complete Structured Query Language string.

The Output parameter de�ines the data you want to see, the Type parameter de�ines the

speci�ic type of �ile you are looking for, and the Modifier parameter describes the speci�ic

�ile or �iles you are looking for.

The following example �inds all music �iles by the artist John Mellencamp. The data you

send to the function is case-insensitive. You could also search for john mellencamp or for

the type of music.artist.

$Files = @{
Output = “filename, path, size”
Type = “Music.Artist”
Modifier = “= ‘John Mellencamp’”
}
Find-Files @Files

c03.indd 90c03.indd 90 03/09/11 10:47 AM03/09/11 10:47 AM

91

Chapter 3: Managing Windows 7

The following example �inds all �iles that are over the size of 1000000000 bytes:

$LargeFiles = @{
Output = “path, size”
Type = “Size”
Modifier = “> 1000000000”
}
Find-Files @LargeFiles

The next example �inds all �iles with a �ile extension of .jpg:

$PictureFiles = @{
Output = “filename, path”
Type = “FileExtension”
Modifier = “= ‘.jpg’”
}
Find-Files @PictureFiles

Note that in all these examples, the Modifier parameter needs the SQL comparison operator

to operate.

You can also specify a complete Windows Search SQL string for the search. The following

example �inds all �iles that are larger than 10000 bytes. This example returns the System
.ItemUrl and System.ItemNameDisplay. The System.ItemNameDisplay is a cleaner

version of the �ilename used in previous examples.

$FindSql = @{
Sql = “SELECT System.ItemUrl,System.ItemNameDisplay
FROM SystemIndex WHERE System.Size >= 10000”
}
Find-Files @FindSql

All of these examples can be piped to any of the Export cmdlets or any of the Format cmdlets.

For more information on searching the index with Windows Search SQL, see http://msdn
.microsoft.com/en-us/library/bb231256(v=VS.85).aspx.

Opening a File Using Its Default Handler
You can open a �ile with its default handler using the Invoke-Item cmdlet, passing the required

parameter Path or LiteralPath. This will enable you to open a script �ile in your default editor

from within Windows PowerShell. Normally, if you enter the name of a script �ile in a Windows

PowerShell console, the script will run. Of course, that’s what you would normally want.

If you want to edit that script �ile, you can navigate to it via Windows Explorer and double-

click it, or you can use the Invoke-Item cmdlet. The following example opens the script �ile

c:\scripts\test.ps1 in your default script editor:

Invoke-Item -Path c:\scripts\test.ps1

c03.indd 91c03.indd 91 03/09/11 10:47 AM03/09/11 10:47 AM

92

Part II: Windows Desktop

The default script editor is Windows Notepad. However, this can be changed by third-party

tools such as PowerGui. Another interesting use of the Invoke-Item cmdlet is to edit your

Windows PowerShell pro�ile. Normally, entering $Profile in the Windows PowerShell

console will output the path to the pro�ile. The following example opens your Windows

PowerShell pro�ile in your default script editor. You can then modify the $profile script

and save it. The updated $profile script will be loaded the next time you start Windows

PowerShell.

Invoke-Item -Path $Profile

Caution
When first installed, Windows 7 does not create the folder or file that contains a user’s profile. In this case,
Invoke-Item -Path $Profile will generate an error. You would need to create the folder and a new
file first. This can be done with the New-Item cmdlet. The code line New-Item -ItemType File -Path
$Profile -Force will overwrite an existing profile, so use caution. �

You can also open all �iles in a speci�ic path at once using Invoke-Item. The next

example opens all �iles in the path c:\scripts\results that were created earlier in the

troubleshooting section of this chapter:

Invoke-Item -Path C:\scripts\results*

Usually, you’d only be interested in the two .xml �iles returned when running the

troubleshooting pack, and not the .xsl �ile because it only describes how to display the .xml

�iles. You can open only the .xml �iles by specifying the �ile extension as part of the Path

parameter. The following example opens all .xml �iles in the path c:\scripts\results:

Invoke-Item -Path C:\scripts\results*.xml

The previous two examples will work only if the default handler for that �ile type allows

more than one instance to run. Assuming your default media player is Windows Media

Player, this example plays only the �irst .wma �ile in the path:

Invoke-Item -Path C:\Music\Journeyman*.wma

The proper way to play all the .wma �iles would be to use a playlist. The �inal example plays

all the music �iles in the playlist C:\Music\Journeyman\Journeyman.wpl:

Invoke-Item -Path C:\Music\Journeyman\Journeyman.wpl

Summary
In this chapter, you learned how to take advantage of Windows 7’s built-in troubleshooting

scripts and created a function to facilitate troubleshooting Windows 7. You learned how

to add and remove folders in Windows Search, creating additional functions to manage

Windows Search.

c03.indd 92c03.indd 92 03/09/11 10:47 AM03/09/11 10:47 AM

93

Chapter 3: Managing Windows 7

You explored managing security on �iles and folders, �inding all �iles of a speci�ic type, and

discovered how to �ind empty folders on your computer. You also explored searching the

Windows Search catalog for speci�ic �iles, creating another function that allows you to quickly

search the catalog.

You learned how to �ind out which hot�ixes are installed on the local computer, and how

to search for a speci�ic hot�ix. Finally, you learned how to open �iles with their built-in �ile

handlers.

Next, you learn to leverage Microsoft Of�ice 2010 with Windows PowerShell and work with

Excel, Word, and Outlook.

c03.indd 93c03.indd 93 03/09/11 10:47 AM03/09/11 10:47 AM

c03.indd 94c03.indd 94 03/09/11 10:47 AM03/09/11 10:47 AM

95

C H A P T E R

Mi crosoft’s suite of Office applications is utilized heavily in most

organizations. It is because of this widespread usage that

there is a natural tendency to want to automate tasks with the

different Office applications. Scripts have a tendency to fall into two

categories when working with Microsoft Office.

The �irst category of script types covers output and reporting. You

may �ind that you want a script to do some processing and then

create a �ile in one of the Of�ice formats like a Word document, Excel

spreadsheet, OneNote, or PowerPoint presentation. With a script

in this category, you often want to format the data in speci�ic ways.

For example, you may want to output a set of data to Excel and then

automatically generate a graph or chart from this data set.

The second type of script is based on making it easier to complete

repetitive tasks. Everyone in the modern age has encountered a task

where they need to go back through a document and �ix something.

This may or may not be a good enough reason for you to want to

write a script to tackle a problem. However, if you had to �ix the same

problem in millions of documents, writing a script to handle the task

would be essential.

Windows PowerShell enables you to create the logic that can handle

your requirements regardless of the type of script you need to create.

In this chapter, you explore some of the ways you can use Windows

PowerShell to interact with the Microsoft Of�ice suite.

Managing Microsoft
Office 2010

C H A P T E R

IN THIS CHAPTER
Working with the COM objects

Scripting against Word

Scripting against Excel

Scripting against Outlook

c04.indd 95c04.indd 95 02/09/11 10:39 AM02/09/11 10:39 AM

96

Part II: Windows Desktop

Introducing the Office COM Objects
Scripting against Microsoft Of�ice is done primarily through a series of Component Object

Model (COM) interfaces. The wonderful thing about this object model is that most of the

code that has been around since 2000 is still usable. The bad news is that it is hardly ever

written in Windows PowerShell and will require you to be keen with transcribing code

to make use of it. Even the indispensible MSDN documentation for the interfaces that is

available doesn’t always explain everything you need to know to use the objects. This

chapter keeps things as simple as possible by providing you with solutions to common tasks

that you can use right away.

Note
In addition to the object model you will see in this chapter, there are other techniques that allow you to
interact directly with the documents. These techniques are based on the fact that most of the Microsoft
Office 2010 applications use an XML-based document format that can be modified directly. This chapter
does not explore these methods. �

The Office Application Objects
The �irst step in scripting Of�ice is to create the COM object that represents the application

you are going to script against. Each Of�ice application has its own Application object you

must create or bind to.

� Access.Application

� Excel.Application

� InfoPath.Application

� OneNote.Application

� Outlook.Application

� PowerPoint.Application

� Publisher.Application

� Visio.Application

� Word.Application

Note
Microsoft Project can also be scripted against, but in order to do so, you must use native .NET objects instead
of COM. For the purpose of this book, you will be looking at Word and Excel with a few examples of some of
the other applications near the end of the chapter. �

Depending on your requirements, a script can create a new application or it can bind to an

instance of an Of�ice application that has already been started.

c04.indd 96c04.indd 96 02/09/11 10:39 AM02/09/11 10:39 AM

97

Chapter 4: Managing Microsoft Office 2010

Creating a New Application
You create the Application object by using the ComObject parameter of the New-Object

cmdlet. Most of the time, the �irst thing you will do after you receive the object is to make the

application visible. This is not always needed, but it de�initely helps during the development

of an Of�ice script so that you can see what your script is doing as you try different methods.

$app = New-Object -ComObject ‘Word.Application’
$app.Visible = $True

Binding to Existing Applications
If the Of�ice application was already launched manually and you want to bind to the

application object, you can use the GetActiveObject static method of System.Runtime
.InteropServices.Marshal to do so:

$marshal = [System.Runtime.InteropServices.Marshal]
$app = $marshal::GetActiveObject(‘Word.Application’)

Cleaning Up after Your Office Scripts
When you are done using an Of�ice application, it is common to call the Quit() method of

the application object to close the Of�ice application. Sometimes, this will close the window,

but it will not completely stop the process from running. This can lead to problems in some

applications. To handle this, you can use the ReleaseComObject() static method of System
.Runtime.InteropServices.Marshal. It is also necessary to call the Collect() and

WaitForPendingFinalizers() static methods of the GC class. This class, also known as

the garbage collector, controls the release of memory by the system. In addition, it is

good practice to remove the variable for the application object because it is no longer

in use. Listing 4-1 shows an example of how to bind to an open Excel application and close

it cleanly.

LISTING 4-1

Binding to an Open Excel Application, Exiting the App, and Performing Cleanup

$marshal = [System.Runtime.InteropServices.Marshal]
Bind to an already opened Excel application
$app = $marshal::GetActiveObject(‘Excel.Application’)
Close the application
$app.Quit()
Clean up
$marshal::ReleaseComObject($app)
[gc]::Collect()
[gc]::WaitForPendingFinalizers()
Remove-Variable -Name app

c04.indd 97c04.indd 97 02/09/11 10:39 AM02/09/11 10:39 AM

98

Part II: Windows Desktop

Automating Microsoft Word
Many of the scripts people create to automate Microsoft Word revolve around

formatting the look and feel of a document. Sometimes, a script will also perform inline

editing of the document’s content. This section looks at some examples of these

common tasks.

Note
As with all of the Microsoft Office applications, it is possible to automate nearly every task that you can
perform manually given enough time and research. When working with these objects, you will find that the
documentation on MSDN is indispensible. The normal Windows PowerShell introspection using cmdlets like
Get-Member will take you only so far. Each of the objects you will work with has an enormous number of
properties, methods, and events, and many of them are not easy to figure out without doing a bit of reading.
Unfortunately, the code in the documentation is not normally in Windows PowerShell so it can require
interpretation at times. �

Creating or Opening a Document
Documents are created by using the Add() method of the Documents property of your

Application object. The following line of code is used to invoke this method:

$doc = $app.Documents.Add()

Note
The samples in this chapter build upon variables that were created in previous sections. For example, the
preceding snippet uses the $app variable. Though this variable is not explicitly created in the snippet,
it was created earlier in the chapter. You should expect to see the $doc variable again soon, and you should
be on the lookout for $selection as well. �

You open a document by invoking the Open() method of the Documents property of your

Application object:

$doc = $app.Documents.Open(‘c:\doc1.docx’)

Adding Content
With a document created or opened, you can now begin to add or manipulate the text

and formatting within the document.

Adding Text
You can use the Text property found within the Content property of a Document object

to set or read the text within a Word document as follows:

Set the contents of the document
$doc.Content.Text = “Hello World!`r`n”

c04.indd 98c04.indd 98 02/09/11 10:39 AM02/09/11 10:39 AM

99

Chapter 4: Managing Microsoft Office 2010

Read and display the contents of the document
$doc.Content.Text

It is more common, however, to use the Selection property of the Application object to

manipulate the contents of a document. The Selection object indicates the cursor position

in a document as you are typing. For example, the following will write “Hello World” in the

position where the cursor is within the Word document:

$selection = $app.Selection
$selection.TypeText(“Hello World!”)

The advantage to using this method to insert text over setting $doc.Content.Text is that

you can set the selection to different positions or ranges within your text, just as you would

when editing a Word document with a mouse. For example, if you wanted to remove

the exclamation point in the “Hello World!” text you entered above, you could highlight the

exclamation point by holding the Shift key and pressing the arrow once to the left followed

by hitting the Backspace key. Programmatically, we can set the selection by de�ining a

new start position for the selection that is one character back from its current position.

A Selection object has a Start property you can use to do this.

$selection.Start = $selection.start - 1

In order to use Windows PowerShell to mimic the behavior of hitting the Backspace key,

you can use the TypeBackspace() method of the Selection object.

$selection.TypeBackspace()

Here is another example that shows how you can explicitly set both the start and end position

of the Selection object by using the SetRange() method. These two lines of code select the

word Hello and change it to Goodbye:

$selection.SetRange(0,5)
$selection.TypeText(“Goodbye”)

Finally, here are two more examples that demonstrate how the Selection object allows

you to create scripts that emulate the behavior of a user who is working in Word with a

keyboard and mouse. This example invokes the EndKey() method to move the selection

to the end of the line and then calls on the TypeParagraph() method to start a new

paragraph.

$selection.EndKey()
$selection.TypeParagraph()

Working with Bullets
Bullets are managed by modifying the properties of the range that makes up a paragraph

you are interested in converting to or from a bullet list. Paragraph objects are obtained as

a property of a Document object. Listing 4-2 details the technique.

c04.indd 99c04.indd 99 02/09/11 10:39 AM02/09/11 10:39 AM

100

Part II: Windows Desktop

LISTING 4-2

Creating a Bulleted List

$app = New-Object -ComObject ‘Word.Application’
$app.visible = $true
$doc = $app.Documents.Add()
$selection = $app.Selection

$selection.TypeText(“Bullet List:”)
$selection.TypeParagraph()

Select the second paragraph and turn it into a bulleted list
$range = $doc.Paragraphs.item(2).Range
$range.ListFormat.ApplyBulletDefault()

$selection.TypeText(“Item1”)
$selection.TypeParagraph()
$selection.TypeText(“Item2”)
$selection.TypeParagraph()

Select the fourth paragraph and set its style to normal
$range = $doc.Paragraphs.item(4).Range
$range.Style = “Normal”

$selection.TypeText(“Back To Normal”)

Creating Hyperlinks
Hyperlinks are stored in the Document object. To create one, you must select a range of text

and then add a new hyperlink to the collection within the Document object. The following

snippet shows an example of how to do this:

$text = ‘website’
$url = ‘http://www.wiley.com’
$selection.TypeText($text)
$selection.Start -= $text.Length
$range = $selection.Range
$doc.HyperLinks.Add($range, $url, $null, $null, $null) |Out-Null

Note
In the previous example, the last line uses the Out-Null cmdlet to suppress the output of the cmdlet. The
Add() method of HyperLinks creates a HyperLink object. If you do not use Out-Null, the object will be
displayed to the screen when the script is run. This is not necessarily a bad thing, but it is worth noting in
case you would like to suppress any unexpected output while using Windows PowerShell. �

c04.indd 100c04.indd 100 02/09/11 10:39 AM02/09/11 10:39 AM

101

Chapter 4: Managing Microsoft Office 2010

Inserting Images
Images, like hyperlinks, are stored in the Document object. Images live in a larger

collection of different shapes that exist in the document. To add an image, you must use

the AddPicture() method of the Shapes property of a Document object. The following

shows how this is done:

$x = 0
$y = 30
$wrap = [Microsoft.Office.Interop.Word.WdWrapType]::wdWrapTopBottom
$linkToFile = $false
$saveWithFile = $true
$doc.Shapes.AddPicture(‘C:\ps.jpg’,$linkToFile,$SaveWithFile,$x,$y)
$doc.Shapes.Range(1).WrapFormat.Type = $wrap

Note
Two colons in a row have been used after a class name in brackets a few times in this chapter as a way of invok-
ing static methods. However, the preceding example uses this to access the values in an enumeration. One
great thing about the tab completion in Windows PowerShell is that you can use it to help you see what values
are available within an enumeration. If you type [Microsoft.Office.Interop.Word.WdWrapType]::
followed by the tab key over and over, you will see every option that is available. This can be an extremely
useful method of self-discovery in Windows PowerShell, especially when dealing with the Office COM objects
that use these enumerations. �

Adding Tables
Tables also belong to the Document object. They are created by passing a range, number

of rows, and number of columns to the Add() method of the Tables property within the

Document object. Listing 4-3 shows how this is done.

LISTING 4-3

Inserting the Output of Get-Process into a Table

$app = New-Object -ComObject ‘Word.Application’
$app.visible = $true
$doc = $app.Documents.Add()
$selection = $app.Selection

$processes = get-process
$selection.TypeText(“Processes:”)
$selection.TypeParagraph()

$range = $doc.Paragraphs.item(2).Range
$table = $doc.Tables.Add($Range,$processes.count,2)
$table.cell(1,1).Range.Text = “PID”

continues

c04.indd 101c04.indd 101 02/09/11 10:39 AM02/09/11 10:39 AM

102

Part II: Windows Desktop

LISTING 4-3 (continued)

$table.cell(1,2).Range.Text = “ProcessName”
$row = 2
foreach ($process in $processes) {
 $table.cell($row,1).Range.Text = $process.ID
 $table.cell($row,2).Range.Text = $process.ProcessName
 $row++
}

Headers and Footers
The Headers and Footers collections belong to the Section object for each document. This

makes sense because in Word, a section can have a different set of headers and footers. The

following shows how you can grab the �irst section of a document and create a header

and footer:

$section = $doc.Sections.Item(1)

$header = $section.headers.item(1)
$header.Range.Text = “Here is my header”

$footer = $section.Footers.Item(1)
$footer.Range.Text = “Here is my footer”

Searching for Text
The Selection object contains a Find property, which enables you to set the properties of

a search and then execute the search. Here is an example of how it can be used:

$find = $selection.Find
$find.Text = ‘psbible’
$find.Forward = $False
$find.MatchWholeWord = $False
$find.Execute()

Replacing Words
When using the Find object to �ind the text you want to replace, it will automatically place

the selection over the word that you have found. This makes it easy enough to just execute

$selection.TypeText(‘ReplacementWord’) to replace what you have just searched for.

However, you can also invoke the Execute() method with speci�ic parameters to let Word

handle the replacement for you. Listing 4-4 shows an example of how this can be used to

replace text in a document.

c04.indd 102c04.indd 102 02/09/11 10:39 AM02/09/11 10:39 AM

103

Chapter 4: Managing Microsoft Office 2010

LISTING 4-4

Replacing All Text in a Word Document with Different Text

$app = New-Object -ComObject ‘Word.Application’
$app.visible = $true
$doc = $app.Documents.Open(‘C:\psbible.docx’)
$selection = $app.Selection

$find = $selection.Find
$word = ‘psbible’
$matchcase = $false
$matchwholeword = $false
$matchwildcards = $false
$matchsoundslike = $false
$matchallwordforms = $false
$forward = $true
$wrap = [Microsoft.Office.Interop.Word.WdFindWrap]::wdFindContinue
$format = $null
$replacewith = ‘wiley’
$replace = [Microsoft.Office.Interop.Word.WdReplace]::wdReplaceAll

$find.Execute($word,$matchcase,$matchwholeword,$matchwildcards,i
$matchsoundslike,$matchallwordforms,$forward,$wrap,$format,i
$replacewith,$replace)

Copy and Paste
When you have text in a selection, you can use the Copy(), Cut(), and Paste() methods of a

selection object to manipulate the data in the clipboard:

� $selection.Copy()

� $selection.Cut()

� $selection.Paste()

Note
Office COM scripts can be fun to watch because of the speed at which the tasks occur; they are relatively
slow. It almost feels like you are watching someone type and work on a document at superhuman speed —
obviously, not fast for a computer, though. One shortcut to entering data into an Office application is to
populate the clipboard in Windows PowerShell by piping text into clip.exe and then using the Paste()
method to quickly put the data into your document. �

Formatting Text
Text formatting is applied to a section of text by calling the appropriate method or by

modifying the appropriate properties of a range object.

c04.indd 103c04.indd 103 02/09/11 10:39 AM02/09/11 10:39 AM

104

Part II: Windows Desktop

Using Fonts
Font is the name of a property that exists in a Range object. By simply changing one of the

properties of the Font object, you can modify the font for the range of text:

$text = “PowerShell Rules!”
$selection.TypeText($text)
$selection.Start -= $text.length

$selection.Range.Font.Name = ‘Lucida Console’
$selection.Range.Font.Size = 20
$selection.Range.Font.Bold = $true
$selection.Range.Font.Italic = $true
$uvalue = [Microsoft.Office.Interop.Word.WdUnderline]::wdUnderlineSingle
$selection.Range.Font.Underline = $uvalue

Note
The COM objects are very robust. You can oftentimes accomplish a task in more than one way. For example, the
underline can be set directly by setting the underline property of a range rather than doing it through the font. It’s
also possible to access the Font directly from a selection object rather than using the Range property to get to it.
Combine this with the fact that the COM objects are so comprehensive, and it is very easy to get confused and
lost when exploring this object model. All the more reason to keep things as simple as possible for this chapter. �

Highlighting Text
Highlighting text is simply done by specifying the HighlightColorIndex of a range.

The values for this property come from the WdColorIndex enumeration. For example, to

highlight the �irst paragraph in a document with yellow, you would do the following:

$range = $doc.Paragraphs.Item(1).Range
$color = [Microsoft.Office.Interop.Word.WdColorIndex]::wdYellow
$range.HighlightColorIndex = $color

Applying Styles
You can set a selection of text to be one of the default style types by setting the Style

property of a Range object to a value in the WdBuiltInStyle enumeration. The following

shows how this can be accomplished to convert an entire document to the normal style:

$selection.SetRange(0,$doc.Content.End)
$norm = [Microsoft.Office.Interop.Word.WdBuiltinStyle]::wdStyleNormal
$selection.range.style = $norm

Style Sets
To switch the style set for the document, you must invoke the ApplyQuickStyleSet()

method of the Document object. For example, you can change the style set to modern by

using the following:

c04.indd 104c04.indd 104 02/09/11 10:39 AM02/09/11 10:39 AM

105

Chapter 4: Managing Microsoft Office 2010

$doc.ApplyQuickStyleSet(‘Modern’)

Spell Checking
You can tap into the Word spell checker for your current document or for any String you

want to validate. You can determine whether or not a bit of text is valid by passing the text

to the CheckSpelling() method of the application object:

$app.CheckSpelling($doc.Content.Text)

In addition, you can ask for suggestions for a particular word by passing the word to the

GetSpellingSuggestions() method of an application object. Listing 4-5 shows a snippet

of code that enables you to create a report of the suggestions to correct each misspelled

word in a Document object.

LISTING 4-5

Creating a Report of Misspelled Words in a Word Document

$app = New-Object -ComObject ‘Word.Application’
$app.visible = $true
$doc = $app.Documents.Add()
$doc.Content.text = ‘The anser to the meening of lief is PowerShel.’

$selection = $app.Selection

$report = @()
foreach ($word in ($doc.Words |Select -ExpandProperty Text)){
 if (!($app.CheckSpelling($word))) {
 $result = New-Object -TypeName psobject -Property @{Mispelled=$word}
 $sug = $app.GetSpellingSuggestions($word) |Select -ExpandProperty name
 if ($sug) {
 $report += New-Object psobject -Property @{
 Misspelled = $word;
 Suggestions = $sug
 }
 }
 else {
 $report += New-Object -TypeName psobject -Property @{
 Misspelled = $word;
 Suggestions = “No Suggestion”
 }
 }
 }
}
$report |Select -Property Misspelled, Suggestions

c04.indd 105c04.indd 105 02/09/11 10:39 AM02/09/11 10:39 AM

106

Part II: Windows Desktop

The following shows a sample of the report that Listing 4-5 creates:

Misspelled Suggestions
---------- -----------
anser {answer, anger, answers}
meening {meaning, meeting, mining}
lief {life, lie, lied, lies...}
PowerShel PowerShell

Printing
Printing can be done by calling the PrintOut() method for either a Document or

Application object. This method takes a large number of parameters. Listing 4-6

provides an example of how to use this method along with some examples for the common

parameters you may need to change when printing a document.

LISTING 4-6

Printing a Word Document

$app = New-Object -ComObject ‘Word.Application’
$app.visible = $true
$doc = $app.Documents.Open(‘C:\psbible.docx’)

$background=[ref]$False
$append=[ref]$False
$range=[ref][Microsoft.Office.Interop.Word.WdPrintOutRange]::wdPrintAllDocument
$outputfilename=[ref] [System.Reflection.missing]::Value
$from=[ref][System.Reflection.missing]::Value
$to=[ref] [System.Reflection.missing]::Value
$is=[ref][Microsoft.Office.Interop.Word.WdPrintOutItem]::wdPrintDocumentContent
$copies=[ref] 1
$pages=[ref][System.Reflection.missing]::Value
$patype=[ref][Microsoft.Office.Interop.Word.WdPrintOutPages]::wdPrintAllPages

$doc.PrintOut($background,$append,$range,$outputfilename,$from,$to,$items,i
$copies,$pages,$pagetype)

Saving a Document
You save a document by invoking either the Save() or SaveAs() method of a Document

object. The Save() method takes no parameters.

$doc.Save()

c04.indd 106c04.indd 106 02/09/11 10:39 AM02/09/11 10:39 AM

107

Chapter 4: Managing Microsoft Office 2010

The SaveAs() method can be invoked simply by specifying the full path to the �ile you

would like to save the document as:

$file = ‘C:\psbible\doc1.docx’
$doc.SaveAs([ref] $file)

The SaveAs() method has a number of parameters you may optionally use, but the most

common one is to specify a different �ile type. You do that by specifying the appropriate

type in the WdSaveFormat enumeration. For example, if you wanted to save the document

as an HTML �ile, you could do so with the following:

$type = [Microsoft.Office.Interop.Word.WdSaveFormat]::wdFormatHTML
$file = ‘C:\psbible\doc1.html’
$doc.SaveAs([ref] $file, [ref] $type)

Working with Microsoft Excel Spreadsheets
Working with Word had you using Application, Document, Selection, and Range objects.

Excel uses Application, Workbook, Worksheet, Cell, and Range objects.

Creating and Opening a Workbook
After you have retrieved an Excel.Application COM object, you can invoke the Add()

method of the Workbooks property to create a new workbook:

$app = new-object -ComObject Excel.Application
$app.Visible = $true
$wb = $app.Workbooks.add()

To open an existing workbook, you can use the Open() method on the same Workbooks

property. You should specify the full path to the Excel document you want to open when

you call this method.

$wb = $app.Workbooks.Open(‘c:\psbible.xlsx’)

Worksheets
For each workbook, there is a Worksheets property you can use to select the worksheet you

would like to work with. You select a speci�ic worksheet by invoking the Item() method of

the Worksheets property. This method enables you to enter the ordinal item number or the

worksheet name you would like to select. For example, when you create a new workbook, it

is created with three worksheets by default. You could use either of these two lines of code

to get access to the second worksheet, which is named Sheet2 by default:

$ws = $wb.Worksheets.Item(2)
$ws = $wb.Worksheets.Item(‘Sheet2’)

c04.indd 107c04.indd 107 02/09/11 10:39 AM02/09/11 10:39 AM

108

Part II: Windows Desktop

You can also inspect the Name property of a workbook to see what worksheets it contains:

$wb.Worksheets |Select Name

In addition to the Worksheets property, you can also get the sheet that is currently active

in Excel by using the ActiveSheet property of a workbook object:

$ws = $wb.ActiveSheet

Adding a New Worksheet
Worksheets can be added by invoking the Add() method on the Worksheets property:

$ws = $wb.Worksheets.Add()

Removing a Worksheet
There is a Delete() method you can invoke on a workbook or a worksheet. The only

problem with this method is that it will prompt the user for con�irmation of whether or not

this is what they want to do.

$ws.Delete()

Caution
If you run this example, you will delete the worksheet. The $ws variable is used throughout the remaining
examples of the book. Make sure that you add a worksheet back before continuing if you are following
along with the examples. �

Working with Cells
Once a Worksheet object has been obtained, you can begin working with the underlying

cells. There is a Cells property that you can use, but working with a Range object for either

a single cell or a set of cells makes your code more consistent.

Selecting a Cell
Obtaining a single cell involves passing a cell name to the Range() method of a Worksheet object:

$cell = $ws.Range(‘A1’)

Writing to a Cell
The value of the cell can be set or viewed by using the Value2 property of the cell object:

Set the cell value to psbible
$cell.Value2 = ‘psbible’
View the value of the cell
“The cell value is: “ + $cell.Value2

c04.indd 108c04.indd 108 02/09/11 10:39 AM02/09/11 10:39 AM

109

Chapter 4: Managing Microsoft Office 2010

You can use Excel functions within a cell as you normally would when you are working

in Excel. This is done by setting the value of the cell to a string of text that contains the

formula for the cell. For example, to set the value of A1 to the number 1 and then the value

of B1 to A1 plus one, you would do the following:

$ws.Range(‘A1’).Value2 = 1
$ws.Range(‘B1’).Value2 = ‘=A1+1’

Selecting Ranges of Cells
A range is created by specifying more than one cell when invoking the Range() method. To

select the group of four cells from A1 to B2, you would use the following:

$range = $ws.Range(‘A1’,’B2’)

Because this Range object is the same as the one used to select a single cell, you can use the

Value2 property to set all of the cells to a single value:

$range.Value2

However, do not try to view the Value2 property if the values are not identical or it will

break all of your COM objects. Rather than doing that, you need to inspect the Value2

property of each cell in the range:

$range.cells |Select value2

Caution
During the development of a script that interacts with the Office COM objects, it is possible to throw every-
thing out of whack for seemingly no reason. These types of problems are due to known issues, but they are
never documented or they are hidden in a forum post well away from where you are working. These manifest
as nuisances that can make the development of a script a very excruciating process. Many times, the only way
to fix these types of problems is to kill the executable for the Office application via Task Manager and then
start over. For example, the excel.exe or outlook.exe process would need to be killed if you are having
problems with Excel or Outlook. �

It is common to write to a range of cells by looping through the cells in a range. Listing 4-7

shows an example of this technique.

LISTING 4-7

Writing the Output of Get-Process to Excel

$app = New-Object -ComObject ‘Excel.Application’
$app.visible = $True

$wb = $app.Workbooks.Add()
continues

c04.indd 109c04.indd 109 02/09/11 10:39 AM02/09/11 10:39 AM

110

Part II: Windows Desktop

LISTING 4-7 (continued)

$ws = $wb.Worksheets.Item(1)

$columns = @(‘Name’,’Id’,’CPU’)
$processes = Get-Process

$endcolumn = [char]([int][char]’A’ + $columns.Count - 1)
$endrow = $processes.Count + 1
$endcell = “$endcolumn$endrow”
$range = $ws.Range(‘A1’,$endcell)

$currentcell = 1

Add the header row
foreach ($column in $columns) {
 $range.Cells.Item($currentcell).Value2 = $column
 $currentcell++
}

#Insert the data
foreach ($process in $processes) {
 foreach ($column in $columns) {
 $range.Cells.Item($currentcell).Value2 = $process.($column)
 $currentcell++
 }
}

Note
Faster techniques exist that you can use to get data into a range of cells. You can use the Paste function to
input data, or you can convert an object to a multidimensional array and then supply it to the range. The
method outlined in Listing 4-7 is a much simpler method to wrap your head around. Just remember that if
speed becomes an issue, there are options you can explore. �

Cell Properties and Formatting
Styles can be applied to a range of cells through the Styles property of a Range object:

$range.Style = ‘Title’
$range.Style = ‘Normal’

Ranges also have a Font property where you can control the font of the data within the

range of cells:

$range.Font.Size = 20
$range.Font.Name = ‘Lucida Console’

c04.indd 110c04.indd 110 02/09/11 10:39 AM02/09/11 10:39 AM

111

Chapter 4: Managing Microsoft Office 2010

You can access a number of other properties within a Range to set different characteristics

about the range of cells:

$range.ColumnWidth = 20
$range.RowHeight = 50
$range.WrapText = $True
$range.MergeCells = $True
$range.NumberFormatLocal = ‘$0.00’

In addition to standard ranges, it can also be helpful to grab a range of rows or columns.

Fortunately, it is easy to grab a row or column directly from a worksheet. Range objects that

represent a row or a column also have a special Autofit() method that you can call to set

the row or column to automatically adjust its size based on the size of the data inside of it.

Set column A to autofit
$ws.Columns.Item(1).Autofit()

Set all of the columns in a worksheet to autofit
$ws.Columns.Autofit()

Managing Data
A very common automation task within Excel is to sort or �ilter data. Sorting and �iltering

are done by invoking either the Sort() or AutoFilter() method on a Range object.

Sorting
Sorting a range of cells requires you to specify the column that should act as the key on

which the range will be sorted. In addition, you can specify the order in which you would

like to sort the data:

$order = [Microsoft.Office.Interop.Excel.XlSortOrder]::xlDescending
$sortcolumn = $ws.Columns.Item(1)
$range.Sort($sortcolumn,$order)

In addition to a simple sort on a single column, you can specify additional columns to sort

on. Here’s an example of a sort that sorts on column A, then column B, and �inally on column

C. This sort also uses another optional parameter that allows you to specify whether or not

the �irst row is a header row.

$range = $ws.range(‘A1’,’C6’)
$order = [Microsoft.Office.Interop.Excel.XlSortOrder]::xlDescending
$hasHead = [Microsoft.Office.Interop.Excel.XlYesNoGuess]::xlYes
$scol1 = $ws.Columns.Item(1)
$scol2 = $ws.Columns.Item(2)
$scol3 = $ws.Columns.Item(3)
$range.Sort($scol1,$order,$scol2,$null,$order,$scol3,$order,$hasHead)

c04.indd 111c04.indd 111 02/09/11 10:39 AM02/09/11 10:39 AM

112

Part II: Windows Desktop

Note
There is one $null placed in the middle of the method invocation in this example that seems out of place.
This argument is used only when working with pivot tables. �

Filtering
When you click the �ilter button on an Excel document, it turns your �irst row into a drop-

down list that enables you to �ilter the data in the spreadsheet. You can enable and disable

this �ilter mechanism in Windows PowerShell by using the following line of code:

$ws.Range(‘A1’).Autofilter()

You can use the same method to perform the actual �iltering. The most common type of

�iltering requires you to pass two arguments to the method. The �irst argument indicates

the column number you would like to �ilter on. The second argument speci�ies what you

would like to �ilter for. For example, to �ilter the �irst column for all instances of the

number 30, you would do the following:

$ws.Range(‘A1’).Autofilter(1,’30’)

If you want to �ilter for all blank entries, use the equals sign (=) as the argument:

$ws.Range(‘A1’).Autofilter(1,’=’)

If you want to �ilter for all of the non-blank entries, you would use <>:

$ws.Range(‘A1’).Autofilter(1,’<>’)

To clear the �ilter, omit the second argument:

$ws.Range(‘A1’).Autofilter(1)

Generating Charts and Graphs
Generating charts and graphs from sets of data is an extremely useful automation task.

This can be a very powerful reporting engine for your scripts. To get access to the charts

and graphs in a worksheet, you must invoke the ChartObjects() method of the Worksheet.

You can then invoke the Add() method to create a new chart of a speci�ied dimension. After

the chart is created, you can adjust the type of chart it is and �inally set its data source to a

range in the worksheet. Here’s an example of how to create a simple line chart that uses the

data in the range between cells B2 and C6:

$x = 100
$y = 100
$width = 300
$height = 200

$chart = $ws.ChartObjects().add($x,$y,$width,$height).chart
$chart.ChartType = [Microsoft.Office.Interop.Excel.XlChartType]::xlLine

c04.indd 112c04.indd 112 02/09/11 10:39 AM02/09/11 10:39 AM

113

Chapter 4: Managing Microsoft Office 2010

$datarange = $ws.Range(‘B2’,’C6’)
$chart.SetSourceData($datarange)

Searching Spreadsheets
You can search a range of cells by invoking the Find() method on a Range object. For

example, if you wanted to make all instances where the cell value is 100 bold, you would

do the following:

$range = $ws.Range(‘A1’).CurrentRegion
foreach ($cell in ($range.Find(‘100’))) {
 $cell.font.bold = $true
}

Note
CurrentRegion is a handy property of a range object that you have not seen before. It returns a range of
cells surrounding the current range that expands until it finds blank cells. This can be a very useful shortcut
when you are unsure of how large the range needs to be. �

Navigating Microsoft Outlook
The Outlook object model is an entirely different beast from Word or Excel. It has an

application object like the others, but it introduces a whole array of new objects that

represent different parts of Outlook. Table 4-1 lists a few of the key objects.

TABLE 4-1

Important Outlook Objects

Object Description

Explorer Represents the window where folder contents are displayed

Inspector Represents a window where data such as an email or appointment is shown to
the user

Namespace Represents the root for a data source — primarily used to provide you access to
the root set of folders in MAPI

MAPIFolder A folder, such as the inbox or deleted items

MailItem An email

AppointmentItem A calendar entry

TaskItem A task

ContactItem A contact

c04.indd 113c04.indd 113 02/09/11 10:39 AM02/09/11 10:39 AM

114

Part II: Windows Desktop

A Word about Security
When people �irst think about everything they can automate with Outlook, their minds

usually turn to automated emails, contact management, manipulation of folders, and

anything else that might be tedious when it is done manually. Unfortunately, very early in the

life of the COM interface for Outlook, the object model was quickly exploited by people who

wrote malicious code to easily automate tasks like distributing your contact list or sending

email from your account without your knowledge. Because of this, Microsoft quickly plugged

the security hole. The object model is still accessible. However, if you try to access secure data

or perform a secure operation, a prompt is given to the user of the computer asking if they’d

like to grant permission to the application or script that is trying to access the sensitive

data or method. This security feature can only be disabled temporarily and it will return

over time.

Note
If you absolutely must perform Outlook tasks in an automated fashion without a security prompt, there
is a well-known way to do this. There is a DLL you can purchase called redemption.dll from Dr. Dimitry
Streblechenko, Outlook MVP, that will provide you with a set of objects that is extremely similar to the
Outlook object model provided by Microsoft. The DLL also provides some additional functionality that
cannot be performed with the COM objects. If this book inspires you to script heavily against Outlook, it
is definitely worth understanding what this DLL is capable of doing. It is a fairly safe DLL to use in small
instances, but if you are thinking of deploying it to your entire organization, you will want to understand
how you can protect your users from malicious code and attackers that know of its existence. �

Traversing Folders
All of the different types of items in Outlook are stored within folders. To access the data

within them, you will �irst need to retrieve the objects that represent the folders in Outlook.

Before that, here are the two lines of code discussed at the beginning of the chapter that

will provide you with an Application object for an already opened instance of Outlook:

$marshal = [System.Runtime.InteropServices.Marshal]
$app = $marshal::GetActiveObject(‘Outlook.Application’)

Working with the Major Folders
To get the MAPIFolderItem that represents one of the default folders in Outlook, you must

bind to the namespace for MAPI. You can do this two ways, neither of which is superior to

the other. The �irst involves calling the GetNamespace() method of the application object:

$ns = $app.GetNamespace(‘MAPI’)

The second involves getting the active Explorer object from the Application object. An

Explorer object has a Session property that is a Namespace object.

$ns = $app.ActiveExplorer().Session

c04.indd 114c04.indd 114 02/09/11 10:39 AM02/09/11 10:39 AM

115

Chapter 4: Managing Microsoft Office 2010

The Namespace object has methods that enable you to get the folder objects you are looking

for. If you are trying to work in one of the major folders, such as the Inbox, Deleted Items,

Calendar, and Contacts, you use the GetDefaultFolder() method. For example, to get the

MAPIFolder that represents the Inbox, you would do the following:

$ftype = [Microsoft.Office.Interop.Outlook.OlDefaultFolders]::olFolderInbox
$inbox = $ns.GetDefaultFolder($ftype)

Working with Subfolders
You can view the folders within a folder by using the Folders property of a MAPIFolder

object. For example, to list all of the folders within a folder, you can do this:

$inbox.Folders |Select name

Because the Namespace object acts as the root, there is also a Folders property there.

This enables you to get access to things such as PSTs, which live outside of the primary set

of folders.

$ns.Folders |Select name

If you want to return a speci�ic folder from the Folders collection, you can use the Item()

method to do so. For example, this returns a folder in the Inbox that is called psbible:

$subfolder = $inbox.Folders.Item(‘psbible’)

Creating Folders
You create folders by invoking the Add() method on the Folders property of a folder object:

$inbox.Folders.Add(‘PowerShell E-Mails’)

Creating a PST
PST �iles are created by invoking the AddStore() method of the namespace. You must

specify a full path to the PST. If the PST exists, it will mount it; otherwise, it will create the

PST �ile in the location speci�ied. Once it is mounted, it can be accessed via the Folders

property of the Namespace object. Here is an example of how you can create a PST and

rename it from Outlook Data File to something more useful:

$explorer = $app.ActiveExplorer()
$ns = $explorer.Session

$ns.AddStore(‘C:\psbible.pst’)
if ($explorer.Session.Folders.Item(‘Outlook Data File’)) {
 $pst = $explorer.Session.Folders.Item(‘Outlook Data File’)
 $pst.name = ‘PSbible Archive’
}

c04.indd 115c04.indd 115 02/09/11 10:39 AM02/09/11 10:39 AM

116

Part II: Windows Desktop

Working with Outlook Items
Items within folders are obtained by using the Items property of a MAPIFolder object.

For example, to see all of the subject lines for each item within your Inbox, you would do

the following:

$inbox.Items |Select TaskSubject

Every item and folder in Outlook has an associated ID string. Folders have a StoreID

property and items have an EntryID property. Because these are static, you can store this

information for later use or subsequent runs of a script. To retrieve the object using the ID,

you can invoke the GetFolderFromID() or GetItemFromID() methods. For example, if you

store an item’s StoreID to disk with something like this:

$item.StoreID |Out-File -FilePath c:\mail1.txt

you can then restore it during another session by performing this line of code:

$ns.GetItemFromID((Get-Content -Path c:\mail1.txt))

Moving Items
To move an item from one folder to another, you invoke the Move() method on the item. For

example, if you wanted to move all of the items in your Inbox to a subfolder in your Inbox

named psbible, you would do the following:

$target = $inbox.Folders.Item(‘psbible’)
foreach ($item in $inbox.Items) {
 $item.Move($target) |Out-Null
}

Deleting Items
You delete items by invoking the Delete() method of an item. For example, to delete all of

the mail in your Inbox (a dangerous proposition), you would do the following:

foreach ($item in $inbox.Items) {
 $item.Delete()
}

Working with an Outlook MailItem
The item objects are a series of layered objects that inherit base properties from their

parent, Item. These items all share certain methods like Move() and Delete(). However,

each item type will return a whole range of new properties and methods that are speci�ic

to that type. For example, if you are in your Inbox and are inspecting the Items property

of the Inbox, you will retrieve a collection of MailItems. A MailItem has properties like

Subject, Body, HTMLBody, Attachments, To, Sender, and Unread.

c04.indd 116c04.indd 116 02/09/11 10:39 AM02/09/11 10:39 AM

117

Chapter 4: Managing Microsoft Office 2010

Sending a MailItem
To send a MailItem , you must �irst create one using the CreateItem() method of the

Application object. Once you have added the appropriate properties to the MailItem , you

can invoke the Send() method on the item.

$itemtype = [Microsoft.Office.Interop.Outlook.OlItemType]::olMailItem
$mailitem = $app.CreateItem($itemtype)
$mailitem.Subject = ‘You should read this book!’
$mailitem.Body = ‘The PowerShell Bible Rocks!’
$mailitem.To = ‘yourbestfriend@wiley.com’
$mailitem.Send()

Note
If your only intention is to send email, there is a much simpler way to do this than using the Outlook
object model. Send-MailMessage is a cmdlet that comes with Windows PowerShell for the purpose of
sending email via Windows PowerShell scripts. �

Working with Attachments
To add attachments to an email you are about to send, invoke the Add() method on the

collection of attachments for the MailItem:

$mailitem.Attachments.Add(‘C:\psbible.zip’)

If you have a MailItem in a folder and you want to save its attachments to disk, you can

invoke the SaveAsFile() method on the Attachment object. Here is an example of how you

can save the attachments in a MailItem to disk:

$savefolder = ‘C:\attachments’
foreach ($attachment in $mailitem.Attachments) {
 $path = Join-Path $savefolder $attachment.FileName
 $attachment.SaveAsFile($path)
}

Working with an Outlook AppointmentItem
An AppointmentItem represents an item in your calendar. An AppointmentItem is created

using the same CreateItem() method used to create an email. However, the type of item

that is created is an olAppointmentItem.

$itemtype = [Microsoft.Office.Interop.Outlook.OlItemType]::olAppointmentItem
$appointment = $app.CreateItem($itemtype)

Once you have a new or existing AppointmentItem , you can modify its properties and then

invoke the Save() method of the item to apply it to your calendar:

$appointment.Start = (Get-Date).AddHours(4)
$appointment.End = (Get-Date).AddHours(5)

c04.indd 117c04.indd 117 02/09/11 10:39 AM02/09/11 10:39 AM

118

Part II: Windows Desktop

$appointment.Subject = “Dentist”
$appointment.Save()

Working with an Outlook ContactItem
A ContactItem represents an entry in your Contacts list.

Creating a New Contact
A ContactItem is created using the same method you’ve already seen for both email and

appointments. The major difference, of course, is that different properties exist for a contact

than for an email or an appointment.

$itemtype = [Microsoft.Office.Interop.Outlook.OlItemType]::olContactItem
$contact = $app.CreateItem($itemtype)
$contact.FirstName = ‘NYC PowerShell User Group’
$contact.Email1Address = ‘powershellnyc@gmail.com’
$contact.WebPage = ‘http://powershellgroup.org/nyc’
$contact.Save()

Finding a Contact
Searching is done by invoking the Find() method on a collection of items. The method requires

a �ilter that enables you to de�ine what you are looking for. The constructs for the �ilter can get a

little overwhelming. However, if you have a simple exact-match �ilter with no special characters,

a �ilter can be very easy to write. For example, this bit of code �inds the contact that was created

for the NYC PowerShell User Group and displays its contents in Outlook:

$ftype = [Microsoft.Office.Interop.Outlook.olDefaultFolders]::olFolderContacts
$folder = $ns.GetDefaultFolder($ftype)

$filter = “[FirstName]=’NYC PowerShell User Group’”
$items = $folder.Items
$item = $items.Find($filter)
$item.Display()

It is possible to have more than one item returned from a contact. If that is the case, you can

use the FindNext() method on the Items collection to continue searching for additional

items. A very common utility loop to handle this is as follows:

$item = $items.Find($filter)
while ($item) {
 # Do something with $item here
 $item = $items.FindNext()
}

Note
Searching for any type of item in Outlook is not as simple as it should be in the object model. The Find()
method allows you to filter using operators like greater than and less than, but it does not allow partial
matches. Partial matches require you to invoke the AdvancedSearch() method of the application object. �

c04.indd 118c04.indd 118 02/09/11 10:39 AM02/09/11 10:39 AM

119

Chapter 4: Managing Microsoft Office 2010

Note
You can find more information about the filters accepted by the Find() method and the AdvancedSearch()
method at the following links to Microsoft’s official documentation on the subjects:

� http://msdn.microsoft.com/en-us/library/bb147590(office.12).aspx

� http://msdn.microsoft.com/en-us/library/microsoft.office.interop.outlook._
application.advancedsearch.aspx �

Working with an Outlook TaskItem
The TaskItem follows suit with the rest of the item types. A task item is of the type

olTaskItem. Here is a sample of how to add a task to your to-do list in Outlook:

$itemtype = [Microsoft.Office.Interop.Outlook.OlItemType]::olTaskItem
$task = $app.CreateItem($itemtype)
$task.Subject = ‘Write some PowerShell’
$task.Save()

Additional Office COM Examples
Here are some additional examples of the COM objects in action on some of the other Of�ice

applications. Listing 4-8 provides an example of some Microsoft PowerPoint automation to

create a new presentation.

LISTING 4-8

Creating a PowerPoint Presentation

Create the application object
$app = New-Object -ComObject PowerPoint.Application
$app.Visible = [Microsoft.Office.Core.MsoTriState]::msoTrue
Create a new presentation
$presentation = $app.Presentations.Add()

Add a Title slide
$numberofslides = 1
$stype = [Microsoft.Office.Interop.PowerPoint.PpSlideLayout]::ppLayoutTitle
$slide = $presentation.Slides.Add($numberofslides,$stype)
$slide.Shapes.Item(1).TextFrame.TextRange.Text = ‘The PowerShell Bible’
$slide.Shapes.Item(2).TextFrame.TextRange.Text = ‘Rocks!’

Apply the Black Tie theme to the presentation
$theme = ‘C:\Program Files\Microsoft Office\Document Themes 14\Black Tie.thmx’
$presentation.ApplyTheme($theme)

#View the slide show in full screen
$presentation.SlideShowSettings.Run()

c04.indd 119c04.indd 119 02/09/11 10:39 AM02/09/11 10:39 AM

120

Part II: Windows Desktop

PowerPoint scripts have a very similar look and feel to Word and Excel. Unfortunately, not

all of the Of�ice applications follow the same set of rules. For example, the OneNote model

gives you interfaces to a lot of XML data that must be manipulated to produce the desired

effect. Listing 4-9 shows an example of how you can create a new OneNote page and add

some data to it.

LISTING 4-9

Creating a New OneNote Page and Adding Data to It

 # Get the application object
$app = New-Object -ComObject OneNote.Application

Get the structure of the notebooks in OneNote
$struct = [ref]””
$scope = [Microsoft.Office.Interop.OneNote.HierarchyScope]::hsPages
$app.GetHierarchy($null, $scope, $struct)
$struct = [xml]$struct.Value

Find the Personal notebook
$notebook = $struct.Notebooks.Notebook |where {
 $_.name -match “Personal”
}
Find the Unfiled Notes section
$OneSection = $notebook |select -ExpandProperty section |where {
 $_.name -match “Unfiled Notes”
}

Create a new OneNote Page
$id = [ref]””
$app.CreateNewPage($OneSection.id,$id)

Get the XML that represents the new page
$OnePage = [ref]””
$app.GetPageContent($id.value,$OnePage)
$OnePage = [xml]$OnePage.Value

Insert a new section into the page using XML
$frag = $OnePage.CreateDocumentFragment()
$frag.InnerXml = @’
<one:Outline xmlns:one=”http://schemas.microsoft.com/office/onenote i
/2010/onenote”>
 <one:OEChildren>
 <one:OE>
 <one:T>
 <![CDATA[{0}]]>
 </one:T>
 </one:OE>

c04.indd 120c04.indd 120 02/09/11 10:39 AM02/09/11 10:39 AM

121

Chapter 4: Managing Microsoft Office 2010

 </one:OEChildren>
</one:Outline>
‘@ -f “This is the text I would like to insert”
$OnePage.Page.AppendChild($frag)

Update the page with the new XML
$app.UpdatePageContent($OnePage.OuterXml)

Summary
The breadth of the Microsoft Of�ice COM model cannot be understated. The ability to

programmatically control all aspects of an Of�ice application comes with a large degree of

complexity. Some tasks are intuitive, whereas others will have you scratching your head

for an hour or so. The lack of documentation available to the Windows PowerShell scripter

can make an automation task against Of�ice a daunting one. Even with this labyrinth of

objects, methods, and properties, you can take the small usable snippets from this chapter

to accomplish many of the common requirements you will be given when you are asked to

automate some part of Word, Excel, or Outlook.

The next chapter leaves applications for a while and returns to some of the core desktop

functionality. Speci�ically, you will be looking at how Windows PowerShell can be used to

manage permissions, the �irewall, and other security-related tasks.

c04.indd 121c04.indd 121 02/09/11 10:39 AM02/09/11 10:39 AM

c04.indd 122c04.indd 122 02/09/11 10:39 AM02/09/11 10:39 AM

123

C H A P T E R

IN THIS CHAPTER
Using NTFS, file share, and

registry permissions

Working with the Windows
Firewall

Configuring Remote Desktop

Managing Security

You can manage permissions on �ile, folder, and registry

objects with the Get-Acl and Set-Acl cmdlets. As the names

imply, these cmdlets retrieve or modify the access control list

(ACL) for a �ile, folder, or registry key. The object returned by the

Get-Acl cmdlet is actually a security descriptor, which includes

the access control list. The Get-Acl cmdlet, when run on its own,

returns nearly useless data unless piped through to either the

Format-List cmdlet or one of the export cmdlets like Export-Csv.

All of the examples in this chapter that require you to view the ACL

use Format-List, whereas all of the examples that save the ACL to a

�ile use the Export-Csv cmdlet. If you are going to

modify the ACL, and then reapply it with the Set-Acl cmdlet, you

will not necessarily output the result of the Get-Acl cmdlet

to screen.

The �irst part of this chapter builds on the section “Setting Security on

Files and Folders” introduced in Chapter 3, “Managing Windows 7.”

Table 5-1 lists some of the inheritance and propagation �lags that can

be set on various objects. The Set-Acl cmdlet writes the security

descriptor to an object.

c05.indd 123c05.indd 123 03/09/11 10:48 AM03/09/11 10:48 AM

124

Part II: Windows Desktop

TABLE 5-1

Common Inheritance and Propagation Flags
for Use with the Set-Acl Cmdlet

Object InheritanceFlags PropagationFlags

Subfolders and Files only ContainerInherit,
ObjectInherit

InheritOnly

This Folder, Subfolders,
and Files

ContainerInherit,
ObjectInherit

None

This Folder, Subfolders,
and Files

ContainerInherit,
ObjectInherit

NoPropagateInherit

This Folder and Subfolders ContainerInherit None

Subfolders only ContainerInherit InheritOnly

This Folder and Files ObjectInherit None

This Folder and Files ObjectInherit NoPropagateInherit

Note
For more on propagation and inheritance flags, see the System.Security.AccessControl namespace
documentation on MSDN: http://msdn.microsoft.com/en-us/library/tbsb79h3.aspx. �

NTFS Permissions
NTFS permissions are applied to every �ile and folder. NTFS permissions affect local and

domain users when logged in on a speci�ic computer.

Retrieving Current NTFS Permissions
You retrieve NTFS permissions with the Get-Acl cmdlet, passing the parameter Path. This

cmdlet retrieves the current security descriptor for a �ile or folder. Later in the chapter, you

examine permissions as they apply to the registry. The Path parameter takes wildcards,

so you could retrieve the ACL for a group of �iles at once. The �irst line in the following

example retrieves the security descriptor for the folder C:\scripts, and the second

retrieves the security descriptor for all �iles in the folder C:\scripts:

Get-Acl -Path C:\scripts
Get-Acl -Path C:\scripts*

As mentioned at the beginning of the chapter, the output of the Get-Acl cmdlet is nearly

useless unless passed through the Format-List cmdlet. Figure 5-1 displays the difference

c05.indd 124c05.indd 124 03/09/11 10:48 AM03/09/11 10:48 AM

125

Chapter 5: Managing Security

between the default output of the Get-Acl cmdlet and the same output piped through the

Format-List cmdlet.

FIGURE 5-1

Output from the Get-Acl cmdlet compared to the Format-List cmdlet

Unfortunately, the Get-Acl cmdlet does not have a Recurse parameter, so if you want to

get the security descriptor for all the �iles in multiple subfolders, you will need to combine

the Get-ChildItem cmdlet with the Get-Acl cmdlet. If you have more than two or three

�iles, or a complex security descriptor, you would pass the output through the Export-Csv

cmdlet. To view the output onscreen, you would pass the output through the Out-Host

cmdlet, specifying the switch parameter Paging. The following example saves the security

descriptors for all �iles and folders under c:\docs to the �ile test.csv in your current path:

$ChildItem = @{
Path = “c:\docs*”
Recurse = $true
}
$Csv = @{
Path=test.csv = $true
NoTypeInformation = $true
}
Get-ChildItem @ChildItem | Get-Acl | Export-Csv @Csv

The following example displays the same information onscreen as the previous example,

pausing after each page:

Get-ChildItem -Path c:\docs* -Recurse | Get-Acl | Out-Host -Paging

Caution
The Paging parameter generates an error in the Integrated Scripting Environment. You should use this
parameter only in the Windows PowerShell console. �

c05.indd 125c05.indd 125 03/09/11 10:48 AM03/09/11 10:48 AM

126

Part II: Windows Desktop

Modifying NTFS Permissions
As mentioned previously, you can modify NTFS permissions with the Set-Acl cmdlet, passing

the required parameters Path and AclObject. You can create a completely new ACL object to

pass to the AclObject parameter, or modify an ACL object retrieved with the Get-Acl cmdlet.

The following example adds the user Contoso\johnb to the access control list for the folder

c:\Scripts\Test, and propagates those rights to all �iles in that folder. Subfolders in the

folder will not have their access control lists modi�ied unless they have inheritance turned on.

The inheritance �lags and propagation �lags were shown in Table 5-1 earlier in the chapter.

$User = “Contoso\johnb”
$Folder = “c:\Scripts\Test”
$Inheritance = [System.Security.AccessControl.InheritanceFlags]`
“ContainerInherit, ObjectInherit”
$Propagation = [System.Security.AccessControl.PropagationFlags]”None”
$acl = Get-Acl -Path $Folder
$Object = @{
TypeName = “System.Security.AccessControl.FileSystemAccessRule”
ArgumentList = $User,”Modify”, $Inheritance, $Propagation, “Allow”
}
$Rule = New-Object @Object
$acl.AddAccessRule($Rule)
Set-Acl -Path $Folder -AclObject $acl

You can modify permissions on �iles only by getting a list of �iles with the Get-ChildItem

cmdlet, �iltering out directories with the Where-Object cmdlet. Once you have the list of �iles,

you get the current ACL with the Get-Acl cmdlet, build and add a new rule to the ACL, and

�inally write the updated ACL to the �ile with the Set-Acl cmdlet. The following example allows

the user contoso\gmayes to access all �iles in the folder c:\scripts\test and its subfolders:

$User = “contoso\gmayes”
$Folder = “c:\Scripts\Test”
$Filter = @{
FilterScript = {!$_.PSIsContainer}
}
$FileRights = [System.Security.AccessControl.FileSystemRights]”Read”,”Write”
$Inheritance = [System.Security.AccessControl.InheritanceFlags]”None”
$Propagation = [System.Security.AccessControl.PropagationFlags]”InheritOnly”
$AceType =[System.Security.AccessControl.AccessControlType]”Allow”
$Files = Get-ChildItem $Folder -Recurse | Where-Object @Filter
foreach ($File in $Files)
{
$acl = Get-Acl -Path $File.FullName
$Object = @{
TypeName = “System.Security.AccessControl.FileSystemAccessRule”
ArgumentList = $User,$FileRights, $Inheritance, $Propagation, $AceType
}
$Rule = New-Object @Object

c05.indd 126c05.indd 126 03/09/11 10:48 AM03/09/11 10:48 AM

127

Chapter 5: Managing Security

$acl.AddAccessRule($Rule)
Set-Acl -Path $File.FullName -AclObject $acl
}

You can also remove or modify a user’s access to �iles or folders with the Get-Acl and Set-
Acl cmdlets. First, you get the ACL with the Get-Acl cmdlet, then get the speci�ic rule to

remove with the Where-Object cmdlet. Once you have the rule, you remove it from the ACL

object using the RemoveAccessRuleSpecific() method of the ACL object, and write the

ACL back to the �ile or folder with the Set-Acl cmdlet. The following example removes the

user contoso\bballard from the ACL for all �iles in the folder c:\Scripts\Test and its

subfolders, when those rights are not inherited:

$User = “contoso\bballard”
$Folder = “c:\Scripts\Test”
$Filter = @{
FilterScript = {!$_.PSIsContainer}
}
$RuleFilter = @{
FilterScript = {$_.IdentityReference -eq $user}
}
$Files = Get-ChildItem $Folder -Recurse | Where-Object @Filter
foreach ($File in $Files)
{
$acl = Get-Acl -Path $File.FullName
$Rule = $acl.Access | Where-Object @RuleFilter
$acl.RemoveAccessRuleSpecific($Rule)
Set-Acl -Path $File.FullName -AclObject $acl
}

Share Permissions
Share permissions are different from NTFS permissions. NTFS permissions de�ine accounts

that have access to �iles and folders on a local machine, whereas share permissions de�ine

who has access to shared folders and �iles on remote machines. Every �ile and folder on a

disk with the NTFS format is secured with NTFS permissions, whereas only �iles and folders

that are explicitly shared will have share permissions. If a shared folder is set to allow a

user full control and has NTFS permissions that allow that user only Read access, the NTFS

permissions take precedence. Additionally, share permissions can only be set on the root

of the share. Any subfolders under the shared folder will have the same permissions unless

they are overridden via NTFS permissions. Viewing and modifying share permissions can be

accomplished with Windows Management Instrumentation (WMI) calls.

Retrieving Current Share Permissions
You can retrieve share permissions with the Get-WmiObject cmdlet, passing the parameters

Class and ComputerName. The Class value used to retrieve share permissions is Win32_
LogicalShareSecuritySetting. The output from the Get-WmiObject cmdlet is a collection

c05.indd 127c05.indd 127 03/09/11 10:48 AM03/09/11 10:48 AM

128

Part II: Windows Desktop

of security objects and will be fairly useless without further processing. The next example

lists the share permissions for all shares on the server Server01. The permissions and the

AceType are numeric. The AceType is the Access Control Entry (ACE) type, which can be set

to Allow (0) or Deny (1).

$ShareObject = @{
Class = “Win32_LogicalShareSecuritySetting”
ComputerName = “Server01”
}
$SelectObject = @{
Property = “Share”,”Domain”,”ID”,”Permission”,”AceType”
}
$Security = Get-WmiObject @ShareObject
$RightsCollection = @()
ForEach ($ShareSecurity in ($Security))
{
 ForEach ($DACL in $ShareSecurity.GetSecurityDescriptor().Descriptor.DACL)
 {
 $DACLObject = “” | Select-Object @SelectObject
 $DACLObject.Share = $ShareSecurity.Name
 $DACLObject.Domain = $DACL.Trustee.Domain
 $DACLObject.ID = $DACL.Trustee.Name
 $DACLObject.Permission = $DACL.AccessMask
 $DACLObject.AceType = $DACL.AceType
 $RightsCollection += $DACLObject
 }
}
$RightsCollection | Format-Table -AutoSize

Note
For more on access control, see http://msdn.microsoft.com/en-us/library/aa374872(VS.85).aspx. �

Unless you have a listing of the possible permissions handy, the integer returned will be

fairly useless. The AceType is easier to translate because there are only two possibilities.

The possible permission access masks are de�ined in Table 5-2, and the ACE type is de�ined

in Table 5-3.

TABLE 5-2

Share Permissions Access Mask Definitions

Access Mask Definition

1179817 Read

1245631 Change

2032127 FullControl

c05.indd 128c05.indd 128 03/09/11 10:48 AM03/09/11 10:48 AM

129

Chapter 5: Managing Security

TABLE 5-3

Share Permissions ACE type Definition

ACE Type Definition

0 Allow

1 Deny

It would make sense to have Windows PowerShell convert the AccessMask and AceType

with a simple hashtable. The following snippet converts the AccessMask and AceType to

the more human-friendly versions:

$SharePermission = @{}
$SharePermission.Add(1179817, “Read”)
$SharePermission.Add(1245631, “Change”)
$SharePermission.Add(2032127, “FullControl”)
$AceType = @{}
$AceType.Add(0,”Allow”)
$AceType.Add(1,”Deny”)

The example in Listing 5-1 retrieves the share permissions for all shares on the server

Server01. Data output will be the share name, domain name for the group or user, the group

or user’s name, the permissions for that user or group, and whether the permissions allow

or deny access to the share. The AccessMask and AceType are shown in the human-friendly

format from the preceding snippet.

LISTING 5-1

Retrieve Share Permissions for All Shares on Server01

$ShareObject = @{
Class = “Win32_LogicalShareSecuritySetting”
ComputerName = “Server01”
}
$SharePermission = @{}
$SharePermission.Add(1179817, “Read”)
$SharePermission.Add(1245631, “Change”)
$SharePermission.Add(2032127, “FullControl”)
$AceType = @{}
$AceType.Add(0,”Allow”)
$AceType.Add(1,”Deny”)
$Security = Get-WmiObject @ShareObject
$RightsCollection = @()
$Select = @{
Property = “Share”,”Domain”,”ID”,”Permission”,”AceType”
}

continues

c05.indd 129c05.indd 129 03/09/11 10:48 AM03/09/11 10:48 AM

130

Part II: Windows Desktop

LISTING 5-1 (continued)

ForEach ($ShareSecurity in ($Security))
{
 $Descriptor = $ShareSecurity.GetSecurityDescriptor()
 ForEach ($DACL in $Descriptor.Descriptor.DACL)
 {
 $DACLObject = “” | Select-Object @Select
 $DACLObject.Share = $ShareSecurity.Name
 $DACLObject.Domain = $DACL.Trustee.Domain
 $DACLObject.ID = $DACL.Trustee.Name
 $DACLObject.Permission = $SharePermission[([INT]$DACL.AccessMask)]
 $DACLObject.AceType = $AceType[([int]$DACL.AceType)]
 $RightsCollection += $DACLObject
 }
}
$RightsCollection |Format-Table -AutoSize

You could replace the �inal line of the script in Listing 5-1 with a call to the Export-
Csv cmdlet to save a copy of current share permissions. An example of this would be

$RightsCollection | Export-Csv -Path SharePermission.csv -NoTypeInformation.

An alternative to the script in Listing 5-1 would be a function that allows you to specify the

computer and share to retrieve permissions from. The script in Listing 5-2 provides this

functionality. The Get-SharePermission function requires the parameters ComputerName

and ShareName, and returns the domain, ID, permission, and AceType for each account that

is allowed or denied access to the share.

LISTING 5-2

Get-SharePermission Function

function Get-SharePermission
{
 param(
 [Parameter(Mandatory = $true)]
 [string]$ComputerName,
 [Parameter(Mandatory = $true)]
 [string]$ShareName
)
 $ShareObject = @{
 Class = “Win32_LogicalShareSecuritySetting”
 ComputerName = $computername
 }

c05.indd 130c05.indd 130 03/09/11 10:48 AM03/09/11 10:48 AM

131

Chapter 5: Managing Security

 $WhereObject = @{
 FilterScript = {$_.Name -eq “$sharename”}
 }
 $SelectObject = @{
 Property = “Domain”,”ID”,”Permission”,”AceType”
 }
 $Security = Get-WmiObject @ShareObject | Where-Object @WhereObject
 $SharePermission = @{}
 $SharePermission.Add(1179817, “Read”)
 $SharePermission.Add(1245631, “Change”)
 $SharePermission.Add(2032127, “FullControl”)
 $AceType = @{}
 $AceType.Add(0,”Allow”)
 $AceType.Add(1,”Deny”)
 ForEach ($ShareSecurity in ($Security))
 {
 $Descriptor = $ShareSecurity.GetSecurityDescriptor()
 $RightsCollection = @()
 ForEach ($DACL in $Descriptor.Descriptor.DACL)
 {
 $RightsObject = “” | Select-Object @SelectObject
 $RightsObject.Domain = $DACL.Trustee.Domain
 $RightsObject.ID = $DACL.Trustee.Name
 $RightsObject.Permission = $SharePermission[([INT]$DACL.AccessMask)]
 $RightsObject.AceType = $AceType[([int]$DACL.AceType)]
 $RightsCollection += $RightsObject
 }
 }
 Return $RightsCollection
}

The following example displays the current share permissions for the share

AccountingFiles on the computer Server02:

Get-SharePermission -ComputerName Server02 -ShareName AccountingFiles

The next example saves the share permissions for the share UserFiles on the computer

Server03 to the �ile UserFiles.csv in the current path:

$SharePermission = @{
ComputerName = “Server03”
ShareName = “UserFiles”
}
$Csv = @{
Path = “UserFiles.csv”
NoTypeInformation = $true
}
Get-SharePermission @SharePermission | Export-Csv @Csv

c05.indd 131c05.indd 131 03/09/11 10:48 AM03/09/11 10:48 AM

132

Part II: Windows Desktop

Modifying Share Permissions
Modifying share permissions is considerably more dif�icult than retrieving them. First, you

need to de�ine a custom type using the Add-Type cmdlet. The Add-Type cmdlet allows you to

embed code from a .NET programing language directly into Windows PowerShell. This type

de�ines the security settings for the share. As with NTFS permissions, you will need to retrieve

the current permissions with the Get-WmiObject cmdlet, calling the Win32_Share class.

Once you get a pointer to the share with the Win32_Share class, you create a new object

using the New-Object cmdlet passing the custom type you created earlier as the TypeName

parameter. This custom object holds information about the share for use later. Now you

retrieve the current share permissions with the Get-WmiObject cmdlet, using the

Win32_LogicalShareSecuritySetting class. You then build a new access control list,

copying the current settings, and adding the new permissions. Finally, you need to save the new

access control list to the share using the SetShareInfo() method of the Win32_Share class.

This top-level overview only scratches the surface of the problem. The script in Listing 5-3

gives the complete program for setting permissions on a local or remote computer.

LISTING 5-3

Set-SharePermission.ps1 Script

param(
[Parameter(Mandatory = $true, Position = 0)]
[string]$User,
[Parameter(Mandatory = $true, Position = 1)]
[ValidateSet(“Allow”,”Deny”)]
[string]$AccessType,
[Parameter(Mandatory = $true, Position = 2)]
[ValidateSet(“FullControl”,”Change”,”Read”)]
[string]$Permission,
[Parameter(Mandatory = $true, Position = 3)]
[String]$ShareName,
[Parameter(Mandatory = $false, Position = 4)]
[String]$ComputerName = $env:COMPUTERNAME
)
#Inspired by Vadims Podans
#http://en-us.sysadmins.lv/Lists/Posts/Post.aspx?ID=28
Add-Type @’
namespace Utility
{
namespace SecurityDescriptor
{
public enum AccessType : int
{
Allow,
Deny
}

c05.indd 132c05.indd 132 03/09/11 10:48 AM03/09/11 10:48 AM

133

Chapter 5: Managing Security

public enum Right : int
{
Read,
Change,
FullControl
}
public struct SD
{
public string User;
public string SIDString;
public string Domain;
public AccessType AccessType;
public Right Permission;
public int AccessMask;
public int AceType;
public int AceFlags;
}
}
public class ShareInfo
{
public string ComputerName;
public string Name;
public string Path;
public string Description;
public bool AllowMaximum;
public int MaximumAllowed;
public SecurityDescriptor.SD[] SecurityDescriptor;
}
}
‘@
$AccessType = [Utility.Securitydescriptor.AccessType]$AccessType
$Permission = [Utility.Securitydescriptor.Right]$Permission
$WmiShareObject = @{
Class = “Win32_Share”
ComputerName = $ComputerName
Filter = “name LIKE ‘$($ShareName.Replace(“*”,”%”))’”
}
$Share = Get-WmiObject @WmiShareObject
if ($Share -eq $null -or $Share.Type -ne 0){
 Write-host “Share ‘$ShareName’ is not found on ‘$ComputerName’”
}
if ($Share){
 $ShareInfo = New-Object -TypeName Utility.ShareInfo
 $ShareInfo.ComputerName = $Share.__SERVER
 $ShareInfo.Name = $Share.Name
 $ShareInfo.Path = $Share.Path
 $ShareInfo.Description = $Share.Description
 $ShareInfo.AllowMaximum = $Share.AllowMaximum

continues

c05.indd 133c05.indd 133 03/09/11 10:48 AM03/09/11 10:48 AM

134

Part II: Windows Desktop

LISTING 5-3 (continued)

 $ShareInfo.MaximumAllowed = [int]$Share.MaximumAllowed
 $WmiShareSecurity = @{
 Class = “Win32_LogicalShareSecuritySetting”
 ComputerName = $ShareInfo.ComputerName
 Filter = “Name=’$($Share.name)’”
 }
 $ShareSec = Get-WmiObject @WmiShareSecurity
 if ($shareSec){
 $SD = $sharesec.GetSecurityDescriptor()
 $SD.Descriptor.DACL | ForEach-Object{
 $Descriptor = New-Object Utility.SecurityDescriptor.SD
 $Descriptor.User = $_.trustee.Name
 $Descriptor.SIDString = $_.trustee.SIDString
 $Descriptor.Domain = $_.trustee.Domain
 $Descriptor.AccessMask = $_.AccessMask
 $Descriptor.AceFlags = $_.AceFlags
 $Descriptor.AceType = $_.AceType
 $ShareInfo.SecurityDescriptor += $Descriptor
 }
 }
 else{
 Write-Error “You may not have rights to access the share.”
 }
}
else{
 Write-Error “No security information could be retrieved from the share.”
}
$Masks = @{}
$Masks.Add(“FullControl”,2032127)
$Masks.Add(“Change”,1245631)
$Masks.Add(“Read”,1179817)
$Types = @{}
$Types.Add(“Allow”,0)
$Types.Add(“Deny”,1)
$Object = @{
TypeName = “Security.Principal.NTAccount”
ArgumentList = $User
}
$OldSD = $ShareInfo.SecurityDescriptor
$Descriptor = New-Object Utility.SecurityDescriptor.SD
$Descriptor.SIDString = (New-Object @Object).Translate(
[Security.Principal.SecurityIdentifier]).Value
$Descriptor.Domain = $null
$Descriptor.User = $User
$Descriptor.AccessMask = $Masks[[string]$Permission]
$Descriptor.AceFlags = 0

c05.indd 134c05.indd 134 03/09/11 10:48 AM03/09/11 10:48 AM

135

Chapter 5: Managing Security

$Descriptor.AceType = $Types.$AccessType
$ShareInfo.SecurityDescriptor = @($Descriptor) + $OldSD
$SD = ([wmiclass]’Win32_SecurityDescriptor’).CreateInstance()
$ace = ([wmiclass]’Win32_Ace’).CreateInstance()
$Trustee = ([wmiclass]’Win32_Trustee’).CreateInstance()
$SD.DACL = @()
foreach ($Descriptor in $ShareInfo.SecurityDescriptor){
 $SID = New-Object Security.Principal.SecurityIdentifier($Descriptor.SIDString)
 [Byte[]]$SIDArray = ,0 * $SID.BinaryLength
 $SID.GetBinaryForm($SIDArray, 0)
 $Trustee.Name = $Descriptor.User
 $Trustee.SID = $SIDArray
 $ace.AccessMask = $Descriptor.AccessMask
 $ace.AceType = $Descriptor.AceType
 $ace.AceFlags = $Descriptor.AceFlags
 $ace.Trustee = $Trustee
 $SD.DACL += $ace.psobject.baseobject
 }
$Share.SetShareInfo(
$ShareInfo.MaximumAllowed, $ShareInfo.Description, $SD) | Out-Null

The Set-SharePermission script requires the parameters User, which is the user

that you are granting permissions to; AccessType, which can be set to either Allow

or Deny access to the share; Permission, which can be set to FullControl, Change, or

Read; and ShareName, which is the share to set permissions on. The optional parameter

ComputerName defaults to the local computer if omitted. You can specify a user with a

domain name or as just the username. If you do not specify the domain, the script will

attempt to �ind the user in the current domain.

The following example allows the user cmccarley to Read the share named UserFiles on

the server FileServer01:

$SharePermission = @{
User = “cmccarley”
AccessType = “Allow”
Permission = “Read”
ShareName = “UserFiles”
ComputerName = “FileServer01”
}
.\Set-SharePermission.ps1 @SharePermission

Registry Settings
You use the .NET classes to view or modify registry permissions on remote computers,

and the Get-Acl and Set-Acl cmdlets to view and modify local registry permissions. By

default, the Get-Acl and Set-Acl cmdlets work only on the HKEY_CURRENT_USER and

c05.indd 135c05.indd 135 03/09/11 10:48 AM03/09/11 10:48 AM

136

Part II: Windows Desktop

HKEY_LOCAL_MACHINE registry hives, because Windows PowerShell has built-in providers for

those hives. The code samples using .NET classes will work locally or remotely, but if you

are interested in the security in the previously mentioned hives on the local machine, the

Get-Acl and Set-Acl examples will be quicker to type from the command line.

As an alternative to using .NET classes locally, you could also create drives pointing to

the other registry hives with the New-PSDrive cmdlet, passing the required parameters

Name, PSProvider, and Root. The following example creates a new drive called HKCR, which

points to the HKEY_CLASSES_ROOT hive:

New-PSDrive -Name HKCR -PSProvider Registry -Root HKEY_CLASSES_ROOT | Out-Null

The previous example pipes the output of the New-PSDrive cmdlet to the Out-Null cmdlet.

This simply prevents the output of the New-PSDrive cmdlet from showing onscreen.

Retrieving Current Registry Permissions
As mentioned, you can retrieve the current permissions for a local registry key with

the Get-Acl cmdlet. For viewing onscreen, you pipe the output through the Format-
List cmdlet. The following example shows the current permission for the registry key

PowerShell in the path HKLM:\SOFTWARE\Microsoft on the local machine:

Get-Acl -Path HKLM:\SOFTWARE\Microsoft\PowerShell | Format-List

As with the Get-Acl examples in the NTFS section, you could pass the output of a Get-
ChildItem cmdlet to the Get-Acl cmdlet to gather the current security settings for an

entire hive or key. The following example exports the security permissions for the path

HKCU:\AppEvents to the .csv �ile C:\Logs\HKCU.csv:

$Item = @{
Path = “HKCU:\AppEvents”
Recurse = $true
}
$Acl = @{
ErrorAction = “SilentlyContinue”
}
$Object = @{
Property = “Path”,”Owner”,”Group”
ExpandProperty = “Access”
}
$Csv = @{
Path = “C:\Logs\HKCU.csv”
NoTypeInformation = $true
}
Get-ChildItem @Item | Get-Acl @Acl | Select-Object @Object | Export-Csv @Csv

You can retrieve registry permissions for remote machines with the .NET classes

Microsoft.Win32.RegistryKey and Microsoft.Win32.RegistryHive. You �irst assign

c05.indd 136c05.indd 136 03/09/11 10:48 AM03/09/11 10:48 AM

137

Chapter 5: Managing Security

the classes to variables, and instantiate them as needed. The following two script lines

assign the needed classes to variables:

$classKey = [Microsoft.Win32.RegistryKey]
$classHive = [Microsoft.Win32.RegistryHive]

Once the classes are assigned to variables, you can call the methods or properties of the

classes. The following example shows the current permission for the registry key PowerShell

in the path HKLM:\SOFTWARE\Microsoft on the �ile server named File-Server:

$Server = “File-Server”
$classKey = [Microsoft.Win32.RegistryKey]
$classHive = [Microsoft.Win32.RegistryHive]
$RemoteKey = $classKey::OpenRemoteBaseKey($classHive::LocalMachine, $server)
$regKey = $RemoteKey.OpenSubKey(“SOFTWARE\Microsoft\PowerShell”)
$regKey.GetAccessControl() | Format-List

Modifying Registry Permissions
As with other permissions in this chapter, you must �irst retrieve the current permissions

for a registry key before creating a new ACL, add the new ACL to the current ACL, and

�inally, write the new ACL to the registry key.

The following example grants the user contoso\sherrym full control of the registry key

PowerShell in the path HKLM:\SOFTWARE\Microsoft\PowerShell on the local machine.

The permission will be granted on only that key. The RegistryAccessRule class also enables

you to specify inheritance and propagation �lags, as shown in Table 5-4 and Table 5-5.

$RegistryAcl = Get-Acl “HKLM:\SOFTWARE\Microsoft\PowerShell”
$RuleObject = @{
TypeName = “System.Security.AccessControl.RegistryAccessRule”
ArgumentList = “contoso\sherrym”,”FullControl”,”Allow”
}
$RegistryRule = New-Object @RuleObject
$RegistryAcl.SetAccessRule($RegistryRule)
$RegistryAcl | Set-Acl -Path $RegistryAcl.Path

TABLE 5-4

Registry Inheritance Flags

Inheritance Flag Definition

None The ACE is not inherited by child objects.

ContainerInherit The ACE is inherited by child container objects.

ObjectInherit The ACE is inherited by child leaf objects.

c05.indd 137c05.indd 137 03/09/11 10:48 AM03/09/11 10:48 AM

138

Part II: Windows Desktop

TABLE 5-5

Registry Propagation Flags

Propagation Flag Definition

None Specifies that no inheritance flags are set.

NoPropagateInherit Specifies that the ACE is not propagated to child objects.

InheritOnly Specifies that the ACE is propagated only to child objects.

This includes both container and leaf child objects.

Now that you have the inheritance and propagation �lags, you can create a registry access

control list that allows the speci�ic permission you want. Suppose you wanted the user

contoso\gmitschke to have full permission to the key in the previous example and all

child objects. You would set the inheritance �lag to ContainerInherit and ObjectInherit,

and the propagation �lag to None. This is shown in the following example:

$RegistryAcl = Get-Acl “HKLM:\SOFTWARE\Microsoft\PowerShell”
$User = “contoso\gmitschke”
$Right = “FullControl”
$Inherit = “ContainerInherit,ObjectInherit”
$Propagation = “None”
$Access = “Allow”
$ArgumentList = @($User,$Right,$Inherit,$Propagation,$Access)
$RuleObject = @{
TypeName = “System.Security.AccessControl.RegistryAccessRule”
ArgumentList = $ArgumentList
}
$RegistryRule = New-Object @RuleObject
$RegistryAcl.SetAccessRule($RegistryRule)
$RegistryAcl | Set-Acl -Path $RegistryAcl.Path

You modify registry permissions for remote machines with the .NET classes Microsoft
.Win32.RegistryKey and Microsoft.Win32.RegistryHive. You �irst assign the classes to

variables, and instantiate them as needed. The following two script lines assign the needed

classes to variables:

$classKey = [Microsoft.Win32.RegistryKey]
$classHive = [Microsoft.Win32.RegistryHive]

Once the classes are assigned to variables, you can call the methods or properties of the

classes. The following example retrieves the current permission for the registry key

PowerShell in the path HKLM:\SOFTWARE\Microsoft on the �ile server named File-
Server. Once the permissions are retrieved and stored in the $Acl variable, you create a

new object of the System.Security.AccessControl.RegistryAccessRule class. You then

c05.indd 138c05.indd 138 03/09/11 10:48 AM03/09/11 10:48 AM

139

Chapter 5: Managing Security

add the new rule object to the existing permission list by calling the AddAccessRule()

method of the System.Security.AccessControl.RegistrySecurity class.

Finally, you need to remove protection on the access rules by calling the

SetAccessRuleProtection() method of the System.Security.AccessControl
.RegistrySecurity class. This method takes two Boolean values. The �irst determines

if inheritance is allowed to the permissions list, and the second determines if currently

inherited rules are preserved. When both values are set to true, inheritance will be

prevented, but the current inheritance will be preserved.

The following example grants the user contoso\gmitschke full control of the registry

key PowerShell in the path HKLM:\SOFTWARE\Microsoft\PowerShell on the server

File-Server, and all child objects:

$ComputerName = “File-Server”
$Key = [Microsoft.Win32.RegistryKey]
$Hive = [Microsoft.Win32.RegistryHive]
$RemoteKey = $Key::OpenRemoteBaseKey($Hive::LocalMachine, $ComputerName)
$regKey = $RemoteKey.OpenSubKey(“SOFTWARE\Microsoft\PowerShell”, $true)
$Acl = $regKey.GetAccessControl()
$User = “contoso\gmitschke”
$Right = “FullControl”
$Inherit = “ContainerInherit,ObjectInherit”
$Propagation = “None”
$Access = “Allow”
$ArgumentList = @($User,$Right,$Inherit,$Propagation,$Access)
$RuleObject = @{
TypeName = “System.Security.AccessControl.RegistryAccessRule”
ArgumentList = $ArgumentList
}
$RegistryRule = New-Object @RuleObject
$Acl.AddAccessRule($RegistryRule)
$Acl.SetAccessRuleProtection($true,$true)
$regKey.SetAccessControl($Acl)
$regKey.Close()

Managing the Windows Firewall
Using Windows PowerShell, you can verify that the Windows Firewall is enabled, you can

disable or enable the �irewall, and you can open and close ports. Additionally, you can allow or

disallow applications. In this section, you explore all of these tasks, and create a script that lists

all active rules.

Checking Firewall Status
Microsoft Windows XP has two �irewall pro�iles: the domain and private pro�ile. Microsoft

Windows Vista and newer versions have the previously mentioned pro�iles and a third

c05.indd 139c05.indd 139 03/09/11 10:48 AM03/09/11 10:48 AM

140

Part II: Windows Desktop

pro�ile, the public pro�ile. The public pro�ile is in effect when you connect a Windows

Vista or newer machine to a public network. The domain pro�ile is active when you are

connected to a work domain, and the private pro�ile is active when you are connected to a

home network or workgroup.

Locally
You can check that the �irewall is enabled in the private and domain pro�iles by loading a

COM object known as HNetCfg.FwMgr. The following example shows which �irewall types

are enabled on the local machine, and which �irewall pro�ile is active.

$Object = @{
ComObject = “HNetCfg.FwMgr”
}
$FirewallPolicy = (New-Object @Object).LocalPolicy
$CurrentFirewall = $FirewallPolicy.CurrentProfile.Type
$Domain = $FirewallPolicy.GetProfileByType(0).FirewallEnabled
$Private = $FirewallPolicy.GetProfileByType(1).FirewallEnabled
switch ($Domain)
{
 “False” {$Domain = “Disabled”}
 “True” {$Domain = “Enabled”}
}
switch ($Private)
{
 “False” {$Private = “Disabled”}
 “True” {$Private = “Enabled”}
}
switch ($CurrentFirewall)
{
 0 {$CurrentFirewall = “Domain”}
 1 {$CurrentFirewall = “Private”}
}
Write-Output “The local computer Domain firewall is $Domain.”
Write-Output “The local computer Private firewall is $Private.”
Write-Output “The $CurrentFirewall profile is active.”

Tip
The COM object HNetCfg.FwMgr only shows settings for the domain and private profile, so if you are running
Microsoft Vista or a newer operating system, you’d want to use the code in the section on checking the
firewall status “Remotely Via the Registry” to determine which firewall is active. The rest of the code in this
section works with Windows XP and newer. �

Using the same COM object, you can list the applications and services that are authorized

through the �irewall, as well as any globally open ports. Additionally, you can view the

Internet Control Message Protocol (ICMP) settings. The example in Listing 5-4 creates a

function to load the COM object and retrieves the values requested.

c05.indd 140c05.indd 140 03/09/11 10:48 AM03/09/11 10:48 AM

141

Chapter 5: Managing Security

LISTING 5-4

Get-FirewallSetting Function

function Get-FirewallSetting
{
param(
[Parameter(Mandatory = $true)]
[ValidateSet(“Status”,
“Applications”,
“Services”,
“Ports”,
“ICMP”)]
[String[]]$Value
)
$Object = @{
ComObject = “HNetCfg.FwMgr”
}
 $FirewallPolicy = (New-Object @Object).LocalPolicy
 foreach ($ValueName in $Value)
 {
 switch ($ValueName)
 {
 “Status”
 {
 $CurrentFirewall = $FirewallPolicy.CurrentProfile.Type
 switch ($CurrentFirewall)
 {
 0 {$Firewall = “Domain”}
 1 {$Firewall = “Private”}
 }
 $FirewallState = $FirewallPolicy.GetProfileByType($CurrentFirewall)
 switch ($FirewallState.FirewallEnabled)
 {
 “False” {$Current = “Disabled”}
 “True” {$Current = “Enabled”}
 }
 Write-Output “The current firewall is the $Firewall firewall.”
 Write-Output “The firewall is $Current.”
 }
 “Applications”
 {
 $Apps = $FirewallPolicy.CurrentProfile.AuthorizedApplications
 if ($Apps.Count -gt 0)
 {
 Write-Output “Authorized applications are:”
 $Apps | Select-Object -Property Name, Enabled
 }

continues

c05.indd 141c05.indd 141 03/09/11 10:48 AM03/09/11 10:48 AM

142

Part II: Windows Desktop

LISTING 5-4 (continued)

 else
 {
 Write-Output “There are no authorized applications.”
 }
 }
 “Services”
 {
 $Services = $FirewallPolicy.CurrentProfile.Services
 if ($Services.Count -gt 0)
 {
 Write-Output “Authorized services are:”
 $Services
 }
 else
 {
 Write-Output “There are no authorized services.”
 }
 }
 “Ports”
 {
 $Ports = $FirewallPolicy.CurrentProfile.GloballyOpenPorts
 if ($Ports.Count -gt 0)
 {
 Write-Output “Globally open ports are:”
 $Ports
 }
 else
 {
 Write-Output “There are no globally open ports.”
 }
 }
 “ICMP”
 {
 $Icmp = $FirewallPolicy.CurrentProfile.IcmpSettings
 Write-Output “ICMP settings are:”
 $Icmp
 }
 }
 $Domain = $FirewallPolicy.GetProfileByType(0).FirewallEnabled
 $Private = $FirewallPolicy.GetProfileByType(1).FirewallEnabled
 switch ($Domain)
 {
 “False” {$Domain = “Disabled”}
 “True” {$Domain = “Enabled”}
 }

c05.indd 142c05.indd 142 03/09/11 10:48 AM03/09/11 10:48 AM

143

Chapter 5: Managing Security

 switch ($Private)
 {
 “False” {$Private = “Disabled”}
 “True” {$Private = “Enabled”}
 }
 switch ($CurrentFirewall)
 {
 0 {$CurrentFirewall = “Domain”}
 1 {$CurrentFirewall = “Private”}
 }
 }
}

The Get-FirewallSetting function takes the required parameter Value. The Value

parameter takes a string or array of strings for the data. ValidateSet in the param()

block indicates that the Value parameter accepts only the strings Status, Applications,

Services, Ports, or ICMP.

The following example shows the �irewall setting for Applications:

Get-FirewallSetting -Value Applications

Remotely Via the Registry
You can check that the �irewall is enabled on a remote machine by reading three remote

registry keys. The keys are DomainProfile, PublicProfile, and StandardProfile in the

path System\ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\
DomainProfile, which is in the hive HKEY_LOCAL_MACHINE. Each of those keys has a dword

value named EnableFirewall, which is 1 if the �irewall is enabled for that pro�ile, and 0 if it

is not enabled. The following example shows the �irewall status for all three pro�iles for the

computer Server05, if you have permission on that server:

$Computer = “Server05”
$Hive = “LocalMachine”
$RegKey = $null
$Key = “System\ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy”
$DomainKey = “$Key\DomainProfile”
$StandardKey = “$Key\StandardProfile”
$Publickey = “$Key\PublicProfile”
$ValueName = “EnableFirewall”
$RegHive = [Microsoft.Win32.RegistryHive]$hive
$RegKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($RegHive,$Computer)
if ($RegKey)
{
 $Domain = ($RegKey.OpenSubKey($DomainKey)).GetValue(“EnableFirewall”)
 $Private = ($RegKey.OpenSubKey($StandardKey)).GetValue(“EnableFirewall”)
 $Public = ($RegKey.OpenSubKey($PublicKey)).GetValue(“EnableFirewall”)

c05.indd 143c05.indd 143 03/09/11 10:48 AM03/09/11 10:48 AM

144

Part II: Windows Desktop

 switch ($Domain)
 {
 0 {$Domain = “Disabled”}
 1 {$Domain = “Enabled”}
 }
 switch ($Private)
 {
 0 {$Private = “Disabled”}
 1 {$Private = “Enabled”}
 }
 switch ($Public)
 {
 0 {$Public = “Disabled”}
 1 {$Public = “Enabled”}
 }
 Write-Output “The computer $Computer Domain firewall is $Domain.”
 Write-Output “The computer $Computer Private firewall is $Private.”
 Write-Output “The computer $Computer Public firewall is $Public.”
}
Else
{
 Write-Output “Cannot read registry on $Computer.”

}

As mentioned at the beginning of the section, Windows Vista and newer operating systems

provide a private �irewall pro�ile. You cannot speci�ically determine if the private �irewall pro�ile

is enabled using the HNetCfg.FwMgr COM object. To do this on the local machine, you’d want to

check the registry as illustrated previously in the section on checking the �irewall status locally.

Conversely, you can gather more information with the HNetCfg.FwMgr COM object.

Opening and Closing Ports
You can open ports with the HNetCfg.FwMgr and HNetCfg.FwOpenPort objects. Before you

can create a new port, you need to get a pointer to the current ports collection, which is in

the current �irewall pro�ile. You then create the new port object, and �inally add the new

port object to the ports collection. Before opening a port, it would be a good idea to see

which ports are already open. The following example uses the HNetCfg.FwMgr object to

retrieve a list of currently open ports. The protocol will be displayed as an integer, where 6

represents TCP and 17 represents UDP.

$Firewall = (New-Object -ComObject HNetCfg.FwMgr).LocalPolicy.CurrentProfile
$Firewall.GloballyOpenPorts | Format-Table -AutoSize

Once you have seen that the port you need opened is not on the list of open ports, you can

add it by creating a collection of ports and using the Add() method of the ports collection.

Ports can be opened for the TCP protocol or the UDP protocol, or both. Additionally, a single

application could have multiple ports open for each protocol. The simple function in the

next example opens a single port for either the TCP or UDP protocol. You can open a port

c05.indd 144c05.indd 144 03/09/11 10:48 AM03/09/11 10:48 AM

145

Chapter 5: Managing Security

by calling the function and passing the required parameters PortName, PortNumber, and

Protocol. The function must be run from an elevated Windows PowerShell console.

function Open-FirewallPort
{
param(
[string]$PortName,
[int]$PortNumber,
[string]$Protocol
)
switch ($Protocol){
 “TCP” {$ProtocolNumber = 6}
 “UDP” {$ProtocolNumber = 17}
}
$Firewall = (New-Object -ComObject HNetCfg.FwMgr).LocalPolicy.CurrentProfile
$Ports = $Firewall.GloballyOpenPorts
$AddPort = New-Object -ComObject HNetCfg.FwOpenPort
$AddPort.Port = $PortNumber
$AddPort.Name = $PortName
$AddPort.Enabled = $true
$AddPort.Protocol = $ProtocolNumber
$Ports.Add($AddPort)
}

Open-FirewallPort -PortName “SCOMAction” -PortNumber 1270 -Protocol “TCP”

With this line of code, you would open the port named SCOMAction, allowing TCP traf�ic,

through port 1270. The port name is arbitrary, and can be whatever you choose.

You can close a �irewall port using the same basic function, but calling the Remove()

method of the ports collection. The following function, when run from an elevated Windows

PowerShell console, closes all ports for the speci�ied port name:

function Close-FirewallPort
{
param(
[string]$PortName
)
$Profile = (new-object -com HNetCfg.FwMgr).LocalPolicy.CurrentProfile
$openPorts = $Profile.GloballyOpenPorts
$Ports = @($openPorts | Where-Object -FilterScript {$_.Name -eq $PortName})
$Ports | ForEach-Object -Process {$openPorts.Remove($_.Port,$_.Protocol)}
}

The Windows Firewall can also allow a range of ports through for a speci�ic protocol. The

enhanced function shown in the following code opens a single or multiple ports for either

or both protocols. As with the previous example, you will need to run this function from an

elevated Windows PowerShell console. If you need to open a range of ports, the port numbers

c05.indd 145c05.indd 145 03/09/11 10:48 AM03/09/11 10:48 AM

146

Part II: Windows Desktop

will need to be enclosed in parentheses, with two dots between the numbers: for example,

(1200..1255).

function Open-FirewallPort
{
 param(
 [Parameter(Mandatory = $true)]
 [string]$PortName,
 [Parameter(Mandatory = $true)]
 [int[]]$PortNumber,
 [Parameter(Mandatory = $true)]
 [ValidateRange(“TCP”,”UDP”)]
 [string[]]$Protocol
)
 $ProtocolNumber = @()
 switch ($Protocol)
 {
 “TCP” {$ProtocolNumber += 6}
 “UDP” {$ProtocolNumber += 17}
 }
 $Firewall = (New-Object -ComObject HNetCfg.FwMgr).LocalPolicy.CurrentProfile
 $Ports = $Firewall.GloballyOpenPorts
 foreach ($ProtocolType in $ProtocolNumber)
 {
 foreach ($Port in $PortNumber)
 {
 $AddPort = New-Object -ComObject HNetCfg.FwOpenPort
 $AddPort.Port = $Port
 $AddPort.Name = $PortName
 $AddPort.Enabled = $true
 $AddPort.Protocol = $ProtocolType
 $Ports.Add($AddPort)
 }
 }
}

The following code would open the ports between 1270 and 1300, inclusive, and allow

traf�ic on UDP and TCP, for the port named SCOMAction.

$Port = @{
PortName = “SCOMAction”
Protocol = “UDP”,”TCP”
}
Open-FirewallPort @Port -PortNumber (1270..1300)

$Port = @{
PortName = “SCOMAction”
Protocol = “UDP”,”TCP”
}
Open-FirewallPort @Port -PortNumber 1270,1300

c05.indd 146c05.indd 146 03/09/11 10:48 AM03/09/11 10:48 AM

147

Chapter 5: Managing Security

Enabling Remote Desktop
You can enable Remote Desktop locally or remotely via the registry. Remote Desktop

settings are contained in two registry keys in the HKEY_LOCAL_MACHINE hive. The dword

value fDenyTSConnections is in the path \System\CurrentControlSet\Control\
Terminal Server, and the dword value UserAuthentication is in the path \System\
CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp.

If fDenyTSConnections is set to 1, Remote Desktop connections are denied. When

fDenyTSConnections is set to 0, Remote Desktop connections are allowed. You can choose

to allow connections from computers running any version of Remote Desktop by setting

UserAuthentication to 0, or only allow connections from computers running Remote

Desktop with network-level authentication by setting UserAuthentication to 1, which is

more secure.

The script in Listing 5-5 sets the Remote Desktop con�iguration as speci�ied on the local

computer or a remote computer. When run without parameters, the script sets the local

computer to allow Remote Desktop connections using network-level authentication. Optional

parameters allow you to choose the computer and authentication level, or disable Remote

Desktop connections. The script must be run in an elevated Windows PowerShell session.

LISTING 5-5

Set-RDPConnection Function

function Set-RDPConnection
{
param(
[string]$Computer = (Get-Childitem -path env:computername).Value,
[string]$Authentication = “High”,
[switch]$Disable
)
 $Kind = [Microsoft.Win32.RegistryValueKind]
 $Key = [Microsoft.Win32.RegistryKey]
 $Hive = “LocalMachine”
 $RootKey = “System\CurrentControlSet\Control\Terminal Server”
 $AuthKey = “$RootKey\WinStations\RDP-Tcp”
 $Value = “fDenyTSConnections”
 $AuthValue = “UserAuthentication”
 switch ($Authentication){
 “High” {$AuthCode = 1;break}
 “Low” {$AuthCode = 0;break}
 }
 $EnableCode = 0
 if($Disable){
 $EnableCode = 1
 }

continues

c05.indd 147c05.indd 147 03/09/11 10:48 AM03/09/11 10:48 AM

148

Part II: Windows Desktop

LISTING 5-5 (continued)

 $regKey = $Key::OpenRemoteBaseKey($Hive,$Computer)
 $Cnx = $regKey.OpenSubKey($RootKey,$true)
 $Cnx.SetValue($Value, $EnableCode,$Kind::DWord)
 $Auth = $regKey.OpenSubKey($AuthKey,$true)
 $Auth.SetValue($AuthValue, $AuthCode,$Kind::DWord)
}

The �irst example in the following code disables Remote Desktop connections on the computer

Exch2010, and the second example enables Remote Desktop connections to the computer

EntDc1, allowing only secure connections:

.\Set-RDPConnection -Computer Exch2010 -Disable

.\Set-RDPConnection -Computer EntDc1 -Authentication High

Checking the Status of Remote Desktop
You can check whether Remote Desktop is enabled by checking the same registry keys that are

used to enable Remote Desktop. The script in Listing 5-6 displays the status of Remote Desktop

for the local computer or a remote computer. Save the script as Get-RDPConfiguration.ps1.

If you call the script with no parameters, the script shows the con�iguration for the local

machine. If you call the script with the optional Computer parameter, the script retrieves data

for that computer.

The script uses the try / catch method of error handling introduced in the “Trapping

Run-Time Errors” section of Chapter 1. The try and catch blocks allow you to run the

section of code in the try block and handle any errors in the catch block. This is a good

method of preventing errors from displaying onscreen.

LISTING 5-6

Get-RDPConnection Function

function Get-RDPConnection
{
param(
$Computer = (Get-Childitem -path env:computername).Value
)
 $Key = [Microsoft.Win32.RegistryKey]
 $Hive = “LocalMachine”
 $ConnectionKey = “System\CurrentControlSet\Control\Terminal Server”
 $Value = “fDenyTSConnections”
 $RegHive = [Microsoft.Win32.RegistryHive]$hive

c05.indd 148c05.indd 148 03/09/11 10:48 AM03/09/11 10:48 AM

149

Chapter 5: Managing Security

 try
 {
 $RegKey = $Key::OpenRemoteBaseKey($RegHive,$Computer)
 $Connection = ($RegKey.OpenSubKey($ConnectionKey)).GetValue($Value)
 if ($Connection -eq 1){
 Write-Output “$Computer does not allow connections”
 }
 else{
 $AuthKey = “$ConnectionKey\WinStations\RDP-Tcp”
 $AuthValue = “UserAuthentication”
 $Authentication = ($RegKey.OpenSubKey($AuthKey)).GetValue($AuthValue)
 if ($Authentication -eq 1){
 Write-Output “Only Secure Connections are allowed to $Computer.”
 }
 else{
 Write-Output “All Connections are allowed to $Computer.”
 }
 }
 }
 catch{
 Write-Output “Could not connect to $Computer.”
 }
}

Summary
In this chapter, you learned how to con�igure permissions in NTFS �ilesystems, on �ile

shares, and on the registry locally and on remote computers. You also examined DCOM

permissions on the local and remote computers. You learned how to manage the Windows

Firewall, and how to con�igure Remote Desktop.

In the next chapter, you learn how to manage software, from listing the software that’s

already installed, to installing and uninstalling software.

c05.indd 149c05.indd 149 03/09/11 10:48 AM03/09/11 10:48 AM

c05.indd 150c05.indd 150 03/09/11 10:48 AM03/09/11 10:48 AM

151

C H A P T E R

IN THIS CHAPTER
Understanding WMI

Using WMI to list software

Using the Windows Registry to
list software

Getting software onto your
computer

Removing software from your
computer

Managing and
Installing Software

Microsoft has not added any cmdlets to Windows PowerShell

specifically intended for software management. However,

the language does provide several interfaces to the operating

system that allow for software management. This chapter covers three

aspects of software management:

� Taking inventory of installed software

� Installing new software on a system

� Removing software from a system

There is usually more than one method to accomplish each task, so this

chapter demonstrates the different methods. As each topic is covered,

I point out the strengths and weaknesses of each method.

Listing Software
The �irst software management task in your environment is to

determine what software you have installed. This chapter covers two

alternative methods for retrieving software installed on your systems:

Windows Management Instrumentation and the Windows Registry.

Windows Management Instrumentation (WMI) is Microsoft’s

implementation of the Web-Based Enterprise Management (WBEM)

and Common Information Model (CIM) standards for systems

management as de�ined by the Distributed Management Task Force

(DMTF, www.dmtf.org/standards/cim). The WMI environment is an

object-oriented environment in which entities are represented as classes

with properties and methods exposed, depending on the object being

represented. WMI also includes support for SQL-like statements called

the WMI Query Language (WQL) for interacting with the huge amount of

data available.

c06.indd 151c06.indd 151 03/09/11 10:54 AM03/09/11 10:54 AM

152

Part II: Windows Desktop

Using WMI
The WMI class that represents the software components of a system is the Win32_Product

class. However, Microsoft con�igured Win32_Product to manage only software that utilizes

the Windows Installer Technology. If you need to list installed software that was not installed

with a Windows Installer package (.msi), you will need to use the Windows Registry.

Note
The Windows Installer Provider is an optional component on Windows Server 2003 and is not installed by
default. It can be installed using the Control Panel. Installing it on your servers will make sure it is available
when you need it. On Windows Server 2008, it is available by default. �

Begin with obtaining the list of software installed on the local system. For this task, you

use the Get-WmiObject cmdlet. This cmdlet enables you to retrieve instances of a WMI

class. The simplest method for retrieving information from Get-WmiObject is to specify

the WMI Class. This will retrieve and present the default �ields for the objects in the class

speci�ied. The default WMI namespace for Get-WmiObject is the root\cimv2 namespace.

Get-WmiObject -Class Win32_Product

An alternative method for retrieving the same information is by using the WMI Query Language:

Get-WmiObject -Query “SELECT * FROM Win32_Product”

Both of these options give us the results shown in Figure 6-1, which is the default view for

the class that includes IdentifyingNumber, Name, Vendor, Version, and Caption.

FIGURE 6-1

Default Get-WmiObject output

c06.indd 152c06.indd 152 03/09/11 10:54 AM03/09/11 10:54 AM

153

Chapter 6: Managing and Installing Software

Typically, you are going to want more information than what is shown in the default view.

To get that additional detail, select the properties that you are interested in. In this case, you

select the name of the software (Name), the manufacturer of the product (Vendor), the version

of the software (Version), and the date the product was installed (InstallDate):

Get-WmiObject -Class Win32_Product |
Select-Object Name, Vendor, Version, InstallDate

If you want to retrieve all of the properties, you can replace the property names with an

asterisk (*).

Listing the software on remote systems couldn’t be any easier than with WMI. The

Get-WmiObject cmdlet has built-in support for remote operations that doesn’t rely on

Windows Remoting (WinRM), so you don’t have to already have Windows Remoting

enabled. Just add the ComputerName parameter to the previous statements to direct the

command to operate on a remote system:

Get-WmiObject -Class Win32_Product -ComputerName Capella

Caution
WMI operates on top of the Distributed Component Object Model (DCOM). DCOM is Microsoft’s
proprietary technology for communications between networked computers. It utilizes Remote Procedure
Call (RPC) to dynamically select a random port above 1024. This results in a tremendously large firewall
exception required. DCOM also stores the destination IP address inside of the network packets, so address
translation will break the communication because the final address doesn’t match what the client thought
was the destination IP Address. �

Caution
When you query the Win32_Product class, Windows actually performs a Windows Installer reconfiguration
on every .msi package installed on the system. You can verify this by looking at the Application Event
Log after you run a query. The issue with this is that it will perform a validation on the .msi package and
repair if it finds any inconsistencies between the package and original .msi file. For example, if you disable
a service or delete an icon, it will enable the service and/or restore the icon. It also makes this method
slower than the alternative method of using the Windows Registry because you are forced to wait until this
process completes. �

Using the Windows Registry
The second method to list the software installed is the Windows Registry. This method

is not as simple as the WMI method, particularly for remote machines, but it performs

much quicker than using WMI and without the noted side effect of recon�iguring the .msi

package. It also lists all software installed, even non–Windows Installer installed packages.

When software is installed on a system, basic information about the software is recorded

in a central location in the Windows Registry. This location, HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall, is where the Control Panel

retrieves its list of installed software.

c06.indd 153c06.indd 153 03/09/11 10:54 AM03/09/11 10:54 AM

154

Part II: Windows Desktop

Note
If you are working on a 64-bit Windows platform, to get complete information about software installed on
your machine, you will also need to include HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\
Windows\CurrentVersion\Uninstall. This is where Windows registers 32-bit software that is installed on
64-bit platforms. �

Each piece of software installed has its own key underneath the root Uninstall key. Each

of these keys has values that describe the software such as name, vendor, version, and

uninstall command. For this step, you are going to enumerate the child keys of the root

Uninstall key and retrieve the same corresponding properties as the last example you

completed. In the Windows Registry are keys that exist without a DisplayName. You are not

interested in those because they do not represent installed software, so exclude them from

your results. Listing 6-1 provides the code to retrieve the software list.

LISTING 6-1

Retrieving Installed Software

Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall |
Get-ItemProperty | Where-Object {$_.DisplayName} |
Select-Object DisplayName, Publisher, DisplayVersion, InstallDate

If you have a large number of software packages installed on your system, you will no doubt

have noticed a signi�icant increase in performance with this method over the WMI method.

If you need to retrieve the same information from a remote system, you generally have two

different methods for reading a remote Windows Registry. The �irst method, and probably

the easiest, works if you have Windows Remote Management enabled and con�igured. To

use Remoting, you simply pass the same code in Listing 6-1 to Invoke-Command with the

ComputerName parameter, as shown in Listing 6-2. The code is executed on the remote

system and the results are returned to the local system.

Cross-Reference
For more information on Windows Remote Management, refer to the “Remoting” section in Chapter 2,
“What’s New in Windows Powershell V2.” �

LISTING 6-2

Retrieving Installed Software with Remoting

Invoke-Command -ComputerName Capella -ScriptBlock {
 Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall |
 Get-ItemProperty | Where-Object {$_.DisplayName} |
 Select-Object DisplayName, Publisher, DisplayVersion, InstallDate }

c06.indd 154c06.indd 154 03/09/11 10:54 AM03/09/11 10:54 AM

155

Chapter 6: Managing and Installing Software

The other method for reading the remote Windows Registry is to use the .NET class,

Microsoft.Win32.RegistryKey. Listing 6-3 shows how to use the OpenRemoteBaseKey()

method to create a connection to the HKEY_LOCAL_MACHINE tree on the remote machine.

You then navigate to the Uninstall key and retrieve the child keys in a similar manner to

your native Windows PowerShell methods.

One item to note is that this method relies on the Remote Registry service of Windows. On

Windows 7, this service is set to manual, so you may have to start it in order to retrieve the

information.

LISTING 6-3

Retrieving Installed Software with .NET

$RegistryKey = “SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall”
$RootKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(i
 “LocalMachine”,”Capella”)
$UninstalKey = $RootKey.OpenSubKey($RegistryKey)
$UninstalKey.GetSubKeyNames() |
ForEach-Object {
 $SoftwareKey = $UninstalKey.OpenSubKey($_)
 $Software = @{
 “DisplayName” = $SoftwareKey.GetValue(“DisplayName”)
 “Publisher” = $SoftwareKey.GetValue(“Publisher”)
 “DisplayVersion” = $SoftwareKey.GetValue(“DisplayVersion”)
 “InstallDate” = $SoftwareKey.GetValue(“InstallDate”)
 }
 $Software | Where-Object {$_.DisplayName}
}

Creating Software Baselines
Now you know how to list the software installed on your system. But what if you want to

keep track of software that is added or removed from a system between two points in time?

Or what if you want to compare your systems to make sure that they all have the same

software installed? To accomplish this task, you create software baselines.

The �irst step you need to take is to create a baseline of all the software installed on the

machine. The function in Listing 6-4 creates a software baseline for the local system.

This function includes additional logic for detecting a 64-bit operating system and adds

the additional Windows Registry key to list the 32-bit software that is installed. The magic

of the function is in the Export-CliXml cmdlet. This powerful cmdlet takes any object or

collection of objects and generates an XML-based representation that is then saved to a �ile.

In this case, you create the name based on the machine on which it is run and the date at

which it is run.

c06.indd 155c06.indd 155 03/09/11 10:54 AM03/09/11 10:54 AM

156

Part II: Windows Desktop

LISTING 6-4

Creating a Software Baseline

function New-SoftwareBaseline
{

 $RegLoc = @()
 $SnapshotTime = Get-Date -uformat “%Y-%m%-%d_%H-%M”
 $RegLoc += “HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall”
 if ($env:PROCESSOR_ARCHITECTURE -eq ‘AMD64’)
 {
 $RegLoc +=
 “HKLM:\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall”
 }

 $Software = @()
 $Software += $RegLoc | Get-ChildItem | Get-ItemProperty |
 Where-Object { $_.DisplayName} |
 Select-Object DisplayName, Publisher, DisplayVersion, InstallDate

 $Software | Sort-Object DisplayName |
 Export-CliXml “$($Env:ComputerName)_$SnapshotTime.xml”

}

You now have your software baseline. The next step is to use the same script to obtain

another baseline on another computer and/or the same computer at another point in

time. Once you do that, you have two �iles that represent the software installed on two

different systems and/or two different periods of time. To compare the baselines in

an intelligible manner, you need to “rehydrate” the objects. For this, you use the

Import-CliXml cmdlet, which is the inverse of the Export-CliXml cmdlet. It takes the

XML-based representation and converts the XML-based representation into a Windows

PowerShell object.

$Baseline = Import-CliXml .\CAPELLA_2010-11-22_17-13.xml
$SnapShot = Import-CliXml .\CAPELLA_2010-11-22_19-43.xml

Now that they are objects again, you use the Compare-Object cmdlet to compare the

baselines. You want to use DisplayName as the property to compare.

Compare-Object $BaseLine $SnapShot -Property DisplayName

DisplayName SideIndicator
----------- -------------
Mozilla Firefox (3.6.12) =>
7-Zip 9.20 (x64 edition) <=

c06.indd 156c06.indd 156 03/09/11 10:54 AM03/09/11 10:54 AM

157

Chapter 6: Managing and Installing Software

In this example, you can see that Mozilla Firefox appears in the second baseline and not the

�irst, indicating that it was installed after the �irst baseline was taken. You can also see that

7-Zip was removed after the �irst baseline was taken.

Installing Software
This section covers the task of installing software. It introduces Restore Points and shows

how they can be used when installing software.

Using Restore Points
Starting with Windows Me and continuing to the latest Microsoft operating system,

Microsoft has included the System Restore component. Starting with Microsoft Vista,

System Restore utilizes Microsoft’s Shadow Copy technology where block-level changes are

monitored and backed up prior to triggered events, and can be rolled back in the event of

system malfunction or failure.

By default in Windows 7, System Restore snapshots are taken at system startup and

at midnight every day as triggered by a Task Scheduler job. Also, Windows will take

checkpoints when software is installed using Windows Installer, Windows Update installs

a new update, or a user installs a driver that is not digitally signed by Windows Hardware

Quality Labs. However, sometimes you might want to create your own System Restore

checkpoint.

Windows PowerShell V2 offers several cmdlets for managing System Restore in

Windows. The �irst one allows you to enable System Restore if it is not already enabled.

You just need to specify which drive to enable, starting with your system drive, of course:

Caution
All of these cmdlets require administrator credentials to function. �

Enable-ComputerRestore -Drive “C:\”

Now that you have System Restore enabled, you are ready to create your own checkpoint:

Checkpoint-Computer -Description “Custom Application Install”

Once you execute this, you will see a progress bar detailing the progress of the cmdlet.

When it is �inished, you will have a checkpoint with the description speci�ied.

Now you can list all of the system checkpoints by using the Get-ComputerRestorePoint

cmdlet.

c06.indd 157c06.indd 157 03/09/11 10:54 AM03/09/11 10:54 AM

158

Part II: Windows Desktop

If you need to fall back to a Restore Point, you need the sequence number of the Restore

Point, which you can pull using Get-ComputerRestorePoint and matching the description

of the Restore Point:

Restore-Computer -RestorePoint (Get-ComputerRestorePoint |
 Where-Object { $_.Description -eq “Custom Application Installation” } |
 Select-Object -ExpandProperty SequenceNumber)

After you execute this command, your system will immediately reboot to complete

the restore.

Using WMI
When you need to install software, you have several options, including WMI, of course. If

the software you want to install is a Windows Installer package, you can use the Win32_
Product WMI class introduced earlier in this chapter. To install software, you use the

Install method of the wmiclass class:

([wmiclass]”\\Capella\root\cimv2:Win32_Product”).Install(i
“C:\ProductInstall.msi”, “ ALLUSERS=YES”,$True)

Note
[wmiclass] is a Windows Powershell type accelerator, essentially a shortcut that allows more direct access to
the WMI class: System.Management.ManagementClass. �

A couple of limitations exist when using the Install method. First, you are limited to

Windows Installer packages. Second, you are not able to specify any Windows Installer

options. You can, however, specify transform properties like ALLUSERS=YES.

Not being able to specify Windows Installer options probably hinders you the most when

you want to change the way you log the software installation so that you can see why your

install fails or to gather more information during the installation. To work around the

limitation of not being able to specify the command-line options, you utilize another WMI

class, Win32_Process. The Win32_Process class includes a method, Create, for executing

programs:

Invoke-WmiMethod Win32_Process -Name Create `
 -ComputerName Capella ` -ArgumentList “msiexec /i C:\7z920-x64.msi /qn”

This example calls the msiexec.exe executable directly on the remote machine, passing

the install package as well as the .msi logging options. This example also demonstrates

another way to call WMI methods. The Invoke-WmiMethod cmdlet is a built-in cmdlet for

executing WMI methods. You could, in fact, use this method in the earlier example.

The �inal option for installing software remotely is Windows PowerShell Remoting. As

you remember from the Remoting example earlier in the chapter, you need to pass a script

block to Invoke-Command. If you have a complicated or changing command, you can always

place the script block in a �ile and utilize the filepath parameter.

c06.indd 158c06.indd 158 03/09/11 10:54 AM03/09/11 10:54 AM

159

Chapter 6: Managing and Installing Software

Invoke-Command -ComputerName Capella -ScriptBlock {
 msiexec /i C:\7z920-x64.msi /l*v C:\7zip.log }

As you can see from this example, you are installing the 7-zip software and logging the

installation to a log �ile. The �ile path in the command is the path of the remote system, so

you have to copy the �ile to the remote system before installing because you are unable to

access remote �iles due to the restriction of Windows Remoting.

Removing Software
This section demonstrates the methods for removing software from a system. WMI is

demonstrated �irst, followed by the Windows Registry method. Finally, a trick for working

with spaces in software install paths is introduced.

Removing Software Using WMI
If the software you want removed is a Windows Installer package and is able to

communicate with WMI, the Win32_Product class is what you want:

$Application = Get-WmiObject-Class Win32_Product -ComputerName “Capella” |
 Where-Object { $_.Name -match “My Application” }
$Application.Uninstall()

In this example, you retrieve the list of software from the remote computer and �ilter out

the application that matches your application name. You then call the Uninstall method

from the WMI class to uninstall the software.

Removing Software Using Windows Registry
The next series of actions is for removing software using the Windows Registry. To remove

software, you need to know the command for the software that you want to uninstall. The

easiest way to obtain the uninstall command is to pull it from the Windows Registry.

In the “Listing Software” section, you saw the method for using the Windows Registry to

list the software installed on your system. To uninstall it, you modify that code just a little

to get your desired outcome:

$Application = “My Application”
$UnInstall = Get-ChildItem i
 HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall |
Get-ItemProperty | Where-Object {$_.DisplayName -eq $Application } |
 Select-Object -ExpandProperty UninstallString
& $UnInstall

In this example, you supply the DisplayName matching the application you want to remove.

You could have used one of the other �ields present as well to �ilter the results. To get the

c06.indd 159c06.indd 159 03/09/11 10:54 AM03/09/11 10:54 AM

160

Part II: Windows Desktop

command needed to uninstall the software, you want the UninstallString Windows

Registry value. This is the command that the application registered with the system as its

uninstall command. The �inal step of the example executes that string, thereby removing

the software.

Dealing with Spaces
Depending on the location of the software you want to uninstall, you might have run into

a problem. For example, the typical uninstall command for Microsoft Security Essentials

is C:\Program Files\Microsoft Security Essentials\setup.exe /x. If you try the

preceding code with this example, Windows PowerShell will spit out the error shown in

Figure 6-2.

FIGURE 6-2

Windows PowerShell execution error

The problem lies in the fact that the path includes spaces, but the path is not enclosed in

parentheses. Windows PowerShell reads the string up to the �irst space and assumes that

segment is the path to the executable. To remedy this situation, you use a function called

Get-CommandLine, as shown in Listing 6-5. It takes a command-line string that includes

c06.indd 160c06.indd 160 03/09/11 10:54 AM03/09/11 10:54 AM

161

Chapter 6: Managing and Installing Software

paths and arguments and splits the string up into the corresponding components while

validating that the path to the executable exists. With this information, you are able to

place the strings around the executable, as shown in the last line, and execute the uninstall

program.

LISTING 6-5

Handling Spaces in the Uninstall Path

function Get-CommandLine
{
 param
 (
 [Parameter(Position=0,ValueFromPipeline=$True,Mandatory=$True)]
 [string]$Command
)
 $Arguments = $TempPath = $CommandPath = “”
 $Command -split “ “ |
 %{
 $TempPath += “ $_”
 $TempPath = $TempPath.Trim()
 if (Test-Path $TempPath -PathType Leaf) { $CommandPath = $TempPath }
 }
 if ($CommandPath)
 {
 $Arguments = ($Command.Substring($CommandPath.Length,
 $Command.Length - $CommandPath.Length)).Trim()
 return New-Object -Type PSOBject -Property @{
 Executable = $CommandPath
 Arguments = $Arguments
 }
 }
 else { Write-Error “Commandline Executable not Found!!!” }
}

With this function created, you can now use it to obtain the uninstall command and

arguments as shown.

$Application = “Microsoft Security Essentials”
$Uninstall = Get-CommandLine (
 Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall |
 Get-ItemProperty | where {$_.DisplayName -eq $Application } |
 Select -ExpandProperty UninstallString
)
& “$($Uninstall.Executable)” $Uninstall.Arguments

c06.indd 161c06.indd 161 03/09/11 10:54 AM03/09/11 10:54 AM

162

Part II: Windows Desktop

With this function in your toolbox, you can easily handle removing software from your

machine. In fact, this function would be a valuable addition to your pro�ile. It can be used

whenever you interact with �ile paths.

Cross-Reference
For a refresher on profiles, read the “Customizing Windows PowerShell with Profiles” section in Chapter 1,
“Introduction to Windows PowerShell.” �

Summary
In this chapter, you explored the management of software using Windows PowerShell.

You compared the process of adding, listing, and removing software using WMI and the

Windows Registry.

In Part III, you will learn how to use Windows PowerShell to manage your server

infrastructure, beginning with a look at Windows Server 2008 R2.

c06.indd 162c06.indd 162 03/09/11 10:54 AM03/09/11 10:54 AM

Server Management

Part III

IN THIS PART
Chapter 7
Managing Windows
Server 2008 R2

Chapter 8
Performing Basic Server
Management

Chapter 9
Performing Advanced Server
Management

Chapter 10
Managing Active Directory

Chapter 11
Managing Group Policy

c07.indd 163c07.indd 163 02/09/11 10:46 AM02/09/11 10:46 AM

c07.indd 164c07.indd 164 02/09/11 10:46 AM02/09/11 10:46 AM

165

C H A P T E R

IN THIS CHAPTER
Examining new features in

Server 2008 R2

Managing Features and Roles

Running best practice scans

Remoting

Using Windows Backup

Managing server migration

Using AppLocker

Managing Windows
Server 2008 R2

In this chapter, you read about managing Windows Server 2008 R2

with Windows PowerShell. All versions of Windows Server

2008 R2 include Windows PowerShell Version 2.

What’s New in Server 2008 R2
Server 2008 Release 2 (commonly known as R2) is much more than a

cosmetic upgrade to Server 2008. This chapter focuses on the Windows

PowerShell modules and snap-ins designed to manage Windows servers.

Cross-Reference
For an overview of the new features in Windows PowerShell Version 2, see
Chapter 2, “What’s New in Windows PowerShell V2.” �

Default Installation of Windows
PowerShell
Windows Server 2008 R2 includes Windows PowerShell Version 2,

which is installed by default. Windows PowerShell V2 became

available for other operating systems soon after Server 2008 R2 and

Windows 7 shipped. Although Windows PowerShell is installed by

default, if you want to use the Integrated Scripting Environment (ISE),

you will need to enable it via Server Manager. The “Managing Server

Features and Roles” section provides more information on this.

Windows Server 2008 R2 includes eight modules that automate common

system administration tasks. These modules, listed in Table 7-1, provide

hundreds of cmdlets for managing Windows Server 2008 R2.

c07.indd 165c07.indd 165 02/09/11 10:46 AM02/09/11 10:46 AM

166

Part III: Server Management

TABLE 7-1

Modules Included in Server 2008 R2

Module Name Cmdlet Count

ActiveDirectory 76

ADRMS 15

AppLocker 5

BestPractices 4

BitsTransfer 8

FailoverClusters 69

GroupPolicy 25

ServerManager 3

Additionally, Server 2008 R2 includes two snap-ins designed to manage Windows backup

and Server Migration: Windows.ServerBackup and Microsoft.Windows.ServerManager
.Migration. Some of these modules and snap-ins require that the corresponding role or

feature be installed before you can use them. For instance, the ActiveDirectory module will

not be available unless the server is a domain controller, or is running the Remote Server

Administration Tools (RSAT) feature or either the Active Directory Domain Services (AD DS)

or Active Directory Lightweight Directory Services (AD LDS) server roles.

Windows PowerShell Included in Server Core
Server 2008 R2 Core includes the .NET Framework and Windows PowerShell V2. This is a

signi�icant improvement over Server 2008 Core, which could not run Windows PowerShell

because the .NET Framework was not available. Server Core is Microsoft’s minimal

server installation, which provides a limited set of roles. Windows Server Core does not

have Windows PowerShell enabled as other versions of Windows Server 2008 R2 do.

Additionally, the prerequisite .NET Framework is not enabled by default. You can enable

.NET and Windows PowerShell with the Deployment Image Servicing and Management

tool (DISM), which is itself new in Server 2008 R2 Core. The following example enables

Windows PowerShell and adds the ServerManager and BestPractices modules that you

use later in this chapter:

DISM /Online /Enable-Feature /FeatureName:NetFx2-ServerCore
DISM /Online /Enable-Feature /FeatureName:MicrosoftWindowsPowerShell
DISM /Online /Enable-Feature /FeatureName:ServerManager-PSH-Cmdlets
DISM /Online /Enable-Feature /FeatureName:BestPractices-PSH-Cmdlets

c07.indd 166c07.indd 166 02/09/11 10:46 AM02/09/11 10:46 AM

167

Chapter 7: Managing Windows Server 2008 R2

Managing Server Features and Roles
Features, roles, and role services are software packages that provide functionality in

Server 2008 R2. Roles allow the server to perform a speci�ic function, such as the File

Server role. Role services allow installed roles to provide speci�ic services. Roles are

functional as soon as they are installed. Features can support or enhance roles, or act on

their own. Unlike roles, features are not functional as soon as they are installed. Server

features, roles, and role services can be managed with the ServerManager module.

This module is not loaded by default, so you need to import the module into the current

Windows PowerShell session. You do this with the Import-Module cmdlet, passing the

required parameter Name. The following example loads the ServerManager module:

Import-Module -Name ServerManager

Note
Although you can import the ServerManager module and list the Windows features that are installed or
available to be installed with the Get-WindowsFeature cmdlet in a normal Windows PowerShell console,
installing or removing features with the Add-WindowsFeature or Remove-WindowsFeature cmdlets requires
that you run an elevated Windows PowerShell console. �

The ServerManager module provides three cmdlets: Get-WindowsFeature, Add-
WindowsFeature, and Remove-WindowsFeature.

Note
Although the cmdlets’ noun is WindowsFeature, all three of the cmdlets target features, roles, and role
services. I will not differentiate between features, roles, and role services in my examples. The cmdlets
function the same in all cases. �

All three of these cmdlets provide a progress bar when they are running. Once the module

is loaded, you can list the currently installed features, roles, and role services with the

GetWindowsFeature cmdlet, �iltering the output through the Where-Object cmdlet. The

following example returns output with the currently installed features:

Get-WindowsFeature | Where-Object {$_.Installed -eq $True}

When you install a feature you need to know the name of the feature. The name is not the

same name that is shown in the Server Manager console. To list all the available features

and their installation status, you can pass the output of the Get-WindowsFeature cmdlet

to the Select-Object cmdlet, choosing to output the name and installed �ields. The

following example returns all features sorted by name, and displays only the name and

installation status:

$Sort = @{
Property = “Installed”
}
$Select = @{

c07.indd 167c07.indd 167 02/09/11 10:46 AM02/09/11 10:46 AM

168

Part III: Server Management

Property = “Name”,”Installed”
}
Get-WindowsFeature | Sort-Object @Sort | Select-Object @Select

Adding Windows features is accomplished with the aptly named Add-WindowsFeature

cmdlet, passing the required parameter Name. The following example installs the Windows

PowerShell Integrated Scripting Environment:

Add-WindowsFeature -Name PowerShell-ISE

An additional parameter that the Add-WindowsFeature cmdlet accepts is the

IncludeAllSubFeature switch parameter. Specifying this parameter installs the feature

and any subfeatures. Windows PowerShell and the ServerManager module enable you to

determine if a feature has subfeatures.

One of the properties returned by the Get-WindowsFeature cmdlet is the SubFeatures

property. This property shows any subfeatures that would be installed via the

IncludeAllSubFeature switch parameter. The following example shows that the Windows

feature RSAT-ADDS contains the optional subfeatures RSAT-ADDS-Tools, RSAT-ADDS-
AdminCenter, and RSAT-ADDS-SNIS:

Get-WindowsFeature -Name RSAT-ADDS | Select-Object -ExpandProperty SubFeatures
PS> Import-Module -Name ServerManager
PS> Get-WindowsFeature -Name RSAT-ADDS | Select-Object -Expand SubFeatures
RSAT-ADDS-Tools
RSAT-AD-AdminCenter
RSAT-SNIS

Running the Add-WindowsFeature cmdlet, specifying the name of the feature, and

including the optional switch parameter WhatIf shows which additional features, if

any, the feature depends on. Features that are already installed will not be shown. The

following example returns the information that the Backup-Tools feature depends on the

Windows Server Backup feature.

Add-WindowsFeature -Name Backup-Tools -WhatIf
PS> Add-WindowsFeature -Name Backup-Tools -WhatIf
What if: Checking if running in ‘WhatIf’ Mode.
What if: Performing operation “Add-WindowsFeature” on Target “[Windows
Server Backup Features] Command-line Tools”.
What if: Performing operation “Add-WindowsFeature” on Target “[Windows
Server Backup Features] Windows Server Backup”.
What if: This server may need to be restarted after the installation
completes.

Success Restart Needed Exit Code Feature Result
True Maybe Success {}

When you install a subfeature that depends on a feature that is not already installed, the

parent feature is also installed. Another optional switch parameter is the Restart parameter.

c07.indd 168c07.indd 168 02/09/11 10:46 AM02/09/11 10:46 AM

169

Chapter 7: Managing Windows Server 2008 R2

When this parameter is speci�ied, the Add-WindowsFeature cmdlet reboots the server if

necessary. The following example installs the Backup-Tools subfeature of the Backup

feature, while also installing the Backup feature. Finally, the server is rebooted if needed.

Add-WindowsFeature -Name Backup-Tools -Restart

Removing features is accomplished with the Remove-WindowsFeature cmdlet. The

cmdlet accepts the same parameters as the Add-WindowsFeature cmdlet, except

the IncludeAllSubFeature parameter. If you remove a feature that has dependent

subfeatures, the subfeatures are removed as well. The following example removes the

Migration feature:

Remove-WindowsFeature -Name Migration

Running Best Practice Analyzer Scans
Running Best Practice Analyzer scans requires that the BestPractices module be

imported into the current session. The BestPractices module provides four cmdlets:

Get-BpaModel, Get-BpaResult, Invoke-BpaModel, and Set-BpaResult. The Best Practice

Analyzer scans one or more server roles to ensure that the speci�ic role is con�igured to

Microsoft suggested settings. For instance, the server ports may be scanned to ensure that

only needed ports allow traf�ic.

The Get-BpaModel cmdlet shows which roles you can run a Best Practice Analyzer scan

against. The returned data shows the ID of the role and the last scan time. If the role has

not been scanned, the last scan time shows Never.

The Get-BpaResult cmdlet returns the results of a previously run scan. If the role has not

been scanned, the cmdlet returns an error.

The Invoke-BpaModel cmdlet actually runs the Best Practice Analyzer scan.

The Set-BpaResult cmdlet includes or excludes results of an existing Best Practice

Analyzer scan to display only the information you are interested in.

Running Scans Locally
After importing the BestPractices module, you can get a list of the available roles for the

Best Practice Analyzer with the Get-BpaModel cmdlet. When run without parameters,

this cmdlet returns all roles for which a scan can be performed as well as the last scan time,

if any. If you know the ID of the role you are interested in, you can pass that information

to the cmdlet using the BestPracticesModelId parameter. The �irst example in the

c07.indd 169c07.indd 169 02/09/11 10:46 AM02/09/11 10:46 AM

170

Part III: Server Management

following code returns all roles, and the second example returns only the Microsoft/
Windows/WebServer role:

Get-BpaModel
Get-BpaModel -BestPracticesModelId Microsoft/Windows/WebServer
PS> Get-BpaModel
Id LastScanTime
Microsoft/Windows/DirectoryServices Never
Microsoft/Windows/DNSServer 5/23/2011 9:27:28 PM
Microsoft/Windows/WebServer Never
PS>
PS> Get-BpaModel -BestPracticesModelId Microsoft/Windows/WebServer
Id LastScanTime
Microsoft/Windows/WebServer Never

Once you have the name of the role that you want to scan, you can start a new scan with

the Invoke-BpaModel cmdlet, passing the ID of the role to the BestPracticesModelId

parameter. The following example runs the Best Practice Analyzer for the Certi�icate

Services role:

Invoke-BpaModel -BestPracticesModelId Microsoft/Windows/CertificateServices

You could also run scans for all available roles by passing the output of the Get-BpaModel

cmdlet to the Invoke-BpaModel cmdlet:

Get-BpaModel | Invoke-BpaModel

After running a Best Practice Analyzer scan, you retrieve the results with the Get-BpaResult

cmdlet. You either pass the ID of the role to the BestPracticesModelId parameter or pass

the output of the Get-BpaModel cmdlet to the Get-BpaResult cmdlet to see the result of all

Best Practice Analyzer scans. A single Best Practice Analyzer scan may have many results,

corresponding to different sections of the role. The �irst example in the following code

returns the results of the web server Best Practice Analyzer scan, and the second example

shows the results for all Best Practice Analyzer scans:

Get-BpaResult -BestPracticesModelId Microsoft/Windows/WebServer

PS> Get-BpaResult -BestPracticesModelId Microsoft/Windows/WebServer

ResultNumber : 1
ModelId : Microsoft/Windows/WebServer
RuleId : 1
ResultId : 1122680488
Severity : Information
Category : Security
Title : Grant a handler execute/script or write permissions, but not both
Problem :
Impact :

c07.indd 170c07.indd 170 02/09/11 10:46 AM02/09/11 10:46 AM

171

Chapter 7: Managing Windows Server 2008 R2

Resolution :
Compliance : The IIS Best Practices Analyzer scan has determined that you are
in compliance with this best practice.
Help :
Excluded : False
...
Get-BpaModel | Get-BpaResult

The Set-BpaResult cmdlet excludes or includes scan results being displayed in the Best

Practices Analyzer GUI. Excluded results are displayed in the Excluded tab of the Best

Practices Analyzer GUI, while included results are displayed in either the Compliant or

Noncompliant tabs. All results, including excluded results, are displayed in the All tab and

when running the Get-BpaResult cmdlet.

The following example excludes the results of a previously run Best Practices Analyzer

scan for the BestPracticesModelId Microsoft/Windows/WebServer where the severity

of the result is listed as Information.

$BpaResult = @{
BestPracticesModelId = “Microsoft/Windows/WebServer”
}
$Exclude = @{
FilterScript = {$_.Severity -eq “Information”}
}
$Result = Get-BpaResult @BpaResult | Where-Object @Exclude
Set-BPAResult @BpaResult -Exclude $True -Results $Result

You can display only included results of a Best Practices Analyzer scan by passing the

output of the Get-BpaResult cmdlet through the Where-Object cmdlet. The following

example displays only the included results from a previously run Microsoft/Windows/
WebServer scan:

Get-BPAResult @BpaResult | Where-object {$_.Excluded -ne $True}
PS> Get-BPAResult @BpaResult | Where-object {$_.Excluded -ne $True}
ResultNumber : 6
ModelId : Microsoft/Windows/WebServer
RuleId : 7
ResultId : 2152644382
Severity : Error
Category : Security
Title : Use SSL when you use Basic authentication
Problem : Basic authentication is enabled for configuration path
 ‘MACHINE/WEBROOT/APPHOST’ but it lacks a required
 SSL binding.
Impact : If you use Basic authentication without SSL, credentials
 will be sent in clear text that might be intercepted
 by malicious code.

c07.indd 171c07.indd 171 02/09/11 10:46 AM02/09/11 10:46 AM

172

Part III: Server Management

Resolution : Use Basic authentication with an SSL binding, and make
 sure that the site or application is set to require SSL.
 Alternatively, use a different method of authentication.
Compliance :
Help : http://go.microsoft.com/fwlink/?LinkId=130717
Excluded : False

Running Scans Remotely
You can run Best Practice Analyzer scans on remote Server 2008 R2 machines that have

Windows PowerShell remoting enabled. The script in Listing 7-1 runs Best Practice Analyzer

scans against every model available on each server in the �ile c:\scripts\servers.txt. The

results are stored in comma-separated value (.csv) �iles in the path \\Workstation\c$\
BpaScanResults and are named with the run date and time, and the scan name.

LISTING 7-1

Example Best Practice Analyzer Scan Script

$OutputPath = “\\Workstation\c$\BpaScanResults”
foreach ($Server in Get-Content c:\scripts\servers.txt)
{
Write-Host “Working on $Server”
try
{
$Command = @{
Computer = $Server
ArgumentList = $Server,$OutputPath
ScriptBlock = {
param (
$server,
$OutputPath
)
Import-Module -Name ServerManager
Import-Module -Name BestPractices
foreach ($Model in Get-BpaModel)
{
$RunDate = Get-Date -Format “MM-dd-yyyy-hhmm”
#I set the date to show as the 2-digit month, 2-digit day, 4-digit year
#and 2-digit hour and minute with a dash for separators.
#You can format the date as you like.
$ScanName = $Model.Id.Replace(“Microsoft/Windows/”,””)
$FilePath = “$OutputPath\$Server-$ScanName$RunDate.csv”
Write-Host -Object “Running $ScanName scan on $Server”
Invoke-BpaModel -BestPracticesModelId $Model.Id | Out-Null
$BPAResults = Get-BpaResult -BestPracticesModelId $Model.Id
$BPAResults | Export-Csv -Path $FilePath -NoTypeInformation
}

c07.indd 172c07.indd 172 02/09/11 10:46 AM02/09/11 10:46 AM

173

Chapter 7: Managing Windows Server 2008 R2

}
}
Invoke-Command @Command
}
catch [PSRemotingTransportException]
{
#Catch the PSRemotingTransportException error to determine which servers
#experience trouble with remote PowerShell
$ErrorObject = @{
Object = “The following error occurred while attempting to connect to $Server:”
ForegroundColor = “red”
BackgroundColor = “black”
}
Write-Host @ErrorObject
$ErrorMessage = @{
Object = “($error[0]).ErrorDetails.Message”
ForegroundColor = “red”
BackgroundColor = “black”
}
Write-Host @ErrorMessage}
catch
{
#Catch all errors other than PSRemotingTransportException errors caught above
$ErrorObject = @{
Object = “The following error occurred when connecting to $Server:”
ForegroundColor = “red”
BackgroundColor = “black”
}
Write-Host @ErrorObject
$ErrorMessage = @{
Object = “($error[0]).ErrorDetails.Message”
ForegroundColor = “red”
BackgroundColor = “black”
}
Write-Host @ErrorMessage
}
}

Enabling Remoting
To enable remoting, run the Enable-PSRemoting cmdlet on the local host. You need to

run the cmdlet in an elevated Windows PowerShell console. This cmdlet allows remote

connections to the local host. You do not need to run it if you are only going to be accessing

other remote hosts. The cmdlet accepts the optional parameter Force, which will bypass

prompts. The following example enables remoting:

Enable-PSRemoting -Force

c07.indd 173c07.indd 173 02/09/11 10:46 AM02/09/11 10:46 AM

174

Part III: Server Management

You can disable remoting on the local host with the Disable-PSRemoting cmdlet. This

cmdlet does not stop the WinRM service, however. As with the Enable-PSRemoting cmdlet,

Disable-PSRemoting accepts the Force parameter.

To enable remoting on multiple machines at once, you can use a Group Policy object. See

http://powertoe.wordpress.com/2011/05/16/enable-winrm-with-group-policy-
but-use-powershell-to-create-the-policy/ for an example of creating the policy with

Windows PowerShell.

Managing Windows Backup
Windows Backup is a feature that can be installed using the Add-WindowsFeature cmdlet.

The feature name is Backup-Features. This feature allows you to perform backup and

recovery operations on the local server and on remote servers. To enable Windows Backup

to be scripted, you will need to add the Backup-Tools subfeature of the Windows Backup

feature. See the “Managing Server Features and Roles” section earlier in the chapter for a

refresher if needed.

The account used to run the cmdlets needs to be in either the local Backup Operators or

Administrators group, or have been delegated the right to perform backups on that server.

Additionally, you need to run an elevated Windows PowerShell console.

Installing the Cmdlets
Once the required Windows Backup Tools feature is installed, you can load the cmdlets by

adding the Windows.ServerBackup snap-in. The following example loads the cmdlets:

Add-PSSnapin -Name Windows.ServerBackup

Once the cmdlets are loaded, you can get a list of them using the Get-Command cmdlet with

the parameters Name and CommandType. The following example returns all the cmdlets in the

Windows.ServerBackup snap-in:

Get-Command -Name *wb* -CommandType Cmdlet

Configuring New Backup Jobs
Creating new backup jobs is a multistep process. This requires multiple cmdlets, with

their associated parameters. To cover this process, �irst I describe the cmdlets and

parameters. Once the cmdlets and parameters are described, I will show examples that pull

it all together. A backup job is called a policy. The �irst step is to create a new policy with the

New-WBPolicy cmdlet. You will need to assign the new policy to a variable. Once you have

the new policy object, you add a backup target (the path where the backups will be saved)

and �iles or volumes to be included in the backup set. As an option, you can also set �iles to

be excluded. In either instance, you have the option of setting a schedule for the backup.

c07.indd 174c07.indd 174 02/09/11 10:46 AM02/09/11 10:46 AM

175

Chapter 7: Managing Windows Server 2008 R2

Note
Windows Server Backup allows only one policy to be created at a time. This means that if you have multiple
drives for which you would like to schedule separate backups, you will need to manipulate the system. For
ideas, see the “Limitations in the Cmdlets” section later in this chapter. �

You can get a list of volumes on the local computer with the Get-WBVolume cmdlet. This

cmdlet requires one of the following parameters: AllVolumes, CriticalVolumes, Disk,

or VolumePath. The switch parameter AllVolumes is fairly self-explanatory. The switch

parameter CriticalVolumes includes volumes that contain operating system �iles. The

Disk parameter takes the output from the Get-WBDisk cmdlet. The VolumePath parameter

allows you to directly specify a volume by drive letter.

The �irst example returns all volumes on the current server, while the second example

returns only critical volumes on the local server:

Get-WBVolume -AllVolumes
Get-WBVolume -CriticalVolumes

The Get-WBDisk cmdlet returns the online disks that are attached to the local server. The

following example returns local disks whose Properties do not match ValidTarget.
Disks whose Properties match ValidTarget may be used as a backup target:

Get-WBDisk | Where-Object {$_.Properties -match ‘ValidTarget’}

The following example shows how you can combine the Get-WBDisk and Get-WBVolume

cmdlets to set the volume to be used for the backup target. Note that both cmdlets have

their output saved to variables. You will need these variables later on when you create the

backup policy.

$Disk = Get-WBDisk | Where-Object {$_.Properties -notmatch ‘ValidTarget’}
$Volume = Get-WBVolume -Disk $Disk

The New-WBFileSpec cmdlet allows you to specify �iles to include or exclude. The required

FileSpec parameter speci�ies which �iles to back up, and the optional Exclude parameter

speci�ies �iles to exclude. A further optional switch parameter, NonRecursive, speci�ies

that only �iles in the path speci�ied in the FileSpec parameter will be backed up.

The following example speci�ies that all .ps1 �iles in the path C:\Scripts should be backed

up. As the NonRecursive parameter was not speci�ied, all .ps1 �iles in any subdirectories

of C:\Scripts will also be included in the backup.

$filespec = New-WBFileSpec -FileSpec C:\Scripts*.ps1

The backup target is created with the New-WBBackupTarget cmdlet. This cmdlet requires

one of the following parameters: Disk, NetworkPath, Volume, or VolumePath. As with the

Get-WBVolume cmdlet, the Disk parameter takes the output from the Get-WBDisk cmdlet.

The NetworkPath parameter takes a Universal Naming Convention (UNC) path for the

c07.indd 175c07.indd 175 02/09/11 10:46 AM02/09/11 10:46 AM

176

Part III: Server Management

target. The Volume parameter takes the output of the Get-WBVolume cmdlet. Finally, the

VolumePath parameter takes a drive letter for the target.

The following example sets a backup target to a ValidTarget returned by the Get-WBDisk

cmdlet. The returned disk object is stored in the variable $Disk, which is then passed to

the New-WBBackupTarget cmdlet, which stores the returned backup target object in the

$BackupTarget variable for later use.

$Disk = Get-WBDisk | Where-Object {$_.Properties -match ‘ValidTarget’}
$BackupTarget = New-WBBackupTarget -Disk $Disk

Once you have the volumes or �ile speci�ication you need, you add them to the blank policy

you previously created with the Add-WBVolume or Add-WBFileSpec cmdlets. You add the

target to the policy with the Add-WBBackupTarget cmdlet. At this point, you can run the

backup or schedule it for later. Once the backup is scheduled, it will run on a daily basis.

The following example script creates a new backup policy, adds all critical volumes, sets

the target to \\BackupServer01\backup\ in a subfolder named for the local server, and

sets the backup to run daily at 7:00 p.m.:

$Credential = Get-Credential
$Policy = New-WBPolicy
$Volumes = Get-WBVolume -CriticalVolumes
$BackupDir = “\\BackupServer01\backup\$env:computername”
if (!(Test-Path -Path $BackupDir))
{
New-Item -Path $BackupDir -ItemType Directory | Out-Null
}
$WBBackupTarget = @{
NetworkPath = $BackupDir
Credential = $Credential
}
$BackupTarget = New-WBBackupTarget @WBBackupTarget
Add-WBVolume -Policy $Policy -Volume $Volumes
Add-WBBackupTarget -Policy $Policy -Target $BackupTarget
Set-WBSchedule -Policy $Policy -Schedule 19:00:00
Set-WBPolicy -Policy $Policy

Checking the Status of Backup Jobs
You can check the status of a local backup job with the Get-WBJob cmdlet. When run

without parameters, the cmdlet returns the status of a currently running backup job. If no

job is currently running, the cmdlet returns an empty object, as shown:

PS> Get-WBJob
JobType : None
StartTime :
EndTime :

c07.indd 176c07.indd 176 02/09/11 10:46 AM02/09/11 10:46 AM

177

Chapter 7: Managing Windows Server 2008 R2

JobState : Unknown
CurrentOperation :
HResult : 0
DetailedHResult : 0
ErrorDescription :
JobItems :
VersionId :
SuccessLogPath :
FailureLogPath :

You can view the status of a previous job or jobs by specifying the parameter Previous

along with the number of previous jobs to display. The following example returns the

status of the previous four backup jobs:

Get-WBJob -Previous 4

You can check the status of backups stored on a remote location with the Get-WBBackupSet

cmdlet. You can pass a backup target to the cmdlet with the BackupTarget parameter. The

backup target can be de�ined with the New-WBBackupTarget cmdlet. If there are backups

for multiple machines on the target location, you can limit the results to only one server

with the MachineName parameter. The following example outputs the backup information

for the server FileServer on the target \\Backup-Server\Backup:

$Machine = “FileServer”
$Target = “\\Backup-server\Backup\$Machine”
$Targetpath = New-WBBackupTarget -NetworkPath $Target
Get-WBBackupSet -BackupTarget $Targetpath -MachineName $Machine

Deleting Backup Jobs
Use the Remove-WBPolicy cmdlet to delete backup jobs. To use this cmdlet, you will need

to specify the speci�ic policy you want to delete in the Policy parameter, or specify the

parameter All to delete the backup job without specifying the policy name. The cmdlet will

prompt for con�irmation unless you specify the Force parameter.

The following example combines the Get-WBPolicy cmdlet with the Remove-WBPolicy

cmdlet to delete the current policy. Note that the policy retrieved by the Get-WBPolicy

cmdlet must be opened in editable mode with the Editable parameter, and that the

returned policy object is stored in the variable $Policy, which is passed to the Remove-
WBPolicy cmdlet:

$Policy = Get-WBPolicy -Editable
Remove-WBPolicy -Policy $Policy -Force

The next example removes the current policy:

Remove-WBPolicy -All -Force

c07.indd 177c07.indd 177 02/09/11 10:46 AM02/09/11 10:46 AM

178

Part III: Server Management

Starting and Stopping Backup Jobs
You can start an existing backup job, whether it is a scheduled or one-time job, using the Start-
WBBackup cmdlet and passing the required parameter Policy. You can retrieve the current

policy with the Get-WBPolicy cmdlet. The following example starts an existing backup job:

$Policy = Get-WBPolicy
Start-WBBackup -Policy $Policy

Unfortunately, the Windows.ServerBackup snap-in does not provide a method to stop a

currently running backup. To stop a currently running backup, you will need to use another

command-line utility known as wbadmin.exe. The following example stops the current

backup job:

wbadmin stop job

Scheduling Backup Jobs
You can schedule a job when you create it or schedule an existing job. In either case, you

create the schedule with the Set-WBSchedule cmdlet, and only one job can be scheduled.

Once the schedule is created, you add it to the policy with the Set-WBPolicy cmdlet. A

schedule can be set to run a backup at multiple times. The times must be entered in HH:MM

format using a 24-hour clock format, or HH:MM AM/PM to use the 12-hour format. Multiple

times would be separated with a comma.

The following example schedules the backup job retrieved by the Get-WBPolicy cmdlet.

As described in the “Deleting Backup Jobs” section, the policy must be opened in editable

mode with the Editable parameter, and that the returned policy object is stored in the

variable $Policy, which is passed to the Set-WBSchedule cmdlet.

$Policy = Get-WBPolicy -Editable
Set-WBSchedule -Policy $Policy -Schedule 19:00:00

For an example of creating a schedule for a new policy, see the “Con�iguring New Backup

Jobs” section earlier in the chapter.

Checking the Schedule
You can check the schedule for the current backup pro�ile using the Get-WBSchedule cmdlet.

This cmdlet requires the Policy parameter. You can retrieve the current pro�ile using the

Get-WBProfile cmdlet. The following example returns the schedule for the current backup

pro�ile:

$Policy = Get-WBPolicy
Get-WBSchedule -Policy $Policy
PS> $Policy = Get-WBPolicy
PS> Get-WBSchedule -Policy $Policy

Tuesday, July 12, 2011 7:00:00 PM

c07.indd 178c07.indd 178 02/09/11 10:46 AM02/09/11 10:46 AM

179

Chapter 7: Managing Windows Server 2008 R2

Modifying the Schedule
Before you can modify the schedule for an existing policy, you need to pass the policy

into a variable with the Get-WBProfile cmdlet. Because you will need to modify the

policy, you need to specify the Editable parameter. You then create a schedule with

the Set-WBSchedule cmdlet, and write it back to the current policy with the Set-WBPolicy

cmdlet. The following example modi�ies the existing policy to perform backups at noon

and 11:59 p.m.:

$Policy = Get-WBPolicy -Editable
Set-WBSchedule -Policy $Policy -Schedule 12:00, 23:59
Set-WBPolicy -Policy $Policy

You may need to pass credentials that have permission to access the backup target. If so,

you will need to retrieve the current backup target using the Get-WBBackupTarget cmdlet,

and then you can use the Get-Credential cmdlet, saving the credentials to a variable,

which you will pass to the New-WBBackupTarget cmdlet. A backup policy can have only one

target, so you will need to specify the switch parameter Force to the New-WBBackupTarget

cmdlet. The following example extends the previous example to specify the credentials

needed to access the backup target:

$Credential = Get-Credential
$Policy = Get-WBPolicy -Editable
$Target = Get-WBBackupTarget -Policy $Policy
$WBBackupTarget = @{
NetworkPath = $Target.Path
Credential = $Credential
}
$BackupTarget = New-WBBackupTarget @WBBackupTarget
Add-WBBackupTarget -Policy $Policy -Target $BackupTarget -Force
Set-WBSchedule -Policy $Policy -Schedule 12:00, 23:59
Set-WBPolicy -Policy $Policy

Limitations in the Cmdlets
For all the power of the Windows.ServerBackup cmdlets, they have some glaring omissions:

� You can set only one scheduled backup. This is a limitation of the backup program

itself.

� As mentioned, you cannot stop a currently running backup using the cmdlets.

The older command-line tool provides this functionality.

� You cannot back up to tape or any other form of removable storage. This is less of a

problem than it used to be, with the relative low cost of disk-based storage.

� If you set the backup target to a remote shared folder, subsequent backups will

overwrite previous backups. If there is an error during a backup, you will have no

backup.

� Finally, although you can schedule a backup, or create and run a backup, there is

no mechanism that allows you to restore an existing backup using the cmdlets.

c07.indd 179c07.indd 179 02/09/11 10:46 AM02/09/11 10:46 AM

180

Part III: Server Management

You can mitigate some of these limitations with some creative scripting. For instance, to

overcome the problem of having only one scheduled backup, you could create separate

scripts for each desired backup, and run them via scheduled tasks. You could also move the

previous backup via script before creating a new backup. The script in Listing 7-2 provides

a sample script that renames the target path with the date of the last backup. Once the path

is renamed, a new empty folder is created.

LISTING 7-2

Sample Script to Rename Backup Path

$Policy = Get-WBPolicy
$Path = $($Policy.BackupTargets).Path
if (Test-Path $Path)
{
$File = Get-ChildItem -Path $Path -Recurse -Include BackupSpecs.xml
$PathRenameDate = $File.LastWriteTime.Date.ToString(“yyyy-MM-dd”)
Rename-Item -Path $Path -NewName “$Path-$PathRenameDate”
}
New-Item -ItemType Directory -Path $Path | Out-Null

Managing Server Migration
Microsoft Windows Server 2008 R2 includes server migration functionality. Server

migration simpli�ies creation of new servers. This also allows you to upgrade your

infrastructure from previous versions of Windows Server to Windows Server 2008 R2.

Certain roles and features, along with local users and groups, network settings, and other

operating system features, can be migrated from servers running Server 2003 Service Pack

2, Server 2003 R2, full installations of Server 2008, and full or server core installations of

Server 2008 R2.

Installing the Cmdlets
Server migration is managed with the Microsoft.Windows.ServerManager.Migration

snap-in. This snap-in is part of the Migration feature, which can be installed with the

Add-WindowsFeature cmdlet. Once the feature is installed, you add the snap-in with the

Add-PSSnapin cmdlet, specifying the name of the snap-in. The following example adds the

required feature and loads the snap-in:

Add-WindowsFeature -Name Migration
Add-PSSnapin -Name Microsoft.Windows.ServerManager.Migration

For Server 2003 and 2008, you will need to ensure that Windows PowerShell is installed

on the source server. You then need to create a deployment folder on the target Server

c07.indd 180c07.indd 180 02/09/11 10:46 AM02/09/11 10:46 AM

181

Chapter 7: Managing Windows Server 2008 R2

2008 R2 server. The script in Listing 7-3 creates the migration folder for the operating

system and architecture in the path you specify. The script requires the Architecture,

OS, and Path parameters to be speci�ied. An optional parameter allows you to specify the

ComputerName to copy the deployment folder to. The source server is the server you will be

migrating from. This parameter can take an array of servers. The folder will be copied to

the root of the C: drive.

LISTING 7-3

Create-MigrationFolder.ps1

param(
 [Parameter(Mandatory = $True)]
[ValidateSet(“x86”,”amd64”)]
#ValidateSet allows ONLY the listed values to be passed to the script.
#other values will cause an error condition.

[string]$Architecture,
[Parameter(Mandatory = $True)]
[ValidateSet(“WS03”,”WS08”)]
[string]$OS,
[Parameter(Mandatory = $True)]
[string]$Path,
[Parameter(Mandatory = $False)]
[string[]]$Target
)
$Alias = @{
Name = “SetMigDeploy”
Value = “$env:windir\System32\ServerMigrationTools\SmigDeploy.exe”
}
$Command = @{
ScriptBlock = {
SetMigDeploy /Package /Architecture $Architecture /OS $OS /Path $Path
}
}
Set-Alias @Alias
Invoke-Command @Command
if ($Target)
{
foreach ($TargetServer in $Target)
{
$OutPath = “\\$TargetServer\C$\SMT_$OS”
$OutPath += “_$Architecture”
$InPath = “$Path\SMT_$OS”
$InPath += “_$Architecture”

continues

c07.indd 181c07.indd 181 02/09/11 10:46 AM02/09/11 10:46 AM

182

Part III: Server Management

LISTING 7-3 (continued)

robocopy $InPath $OutPath /E | Out-Null
#use robocopy as it is quicker than the Copy-Item cmdlet,
#and there are varying amounts of files and folders to copy.
#robocopy is Microsoft’s Robust File Copy utility, built into
#Windows Server.
}
}

The following example creates a migration folder for an x86 version of Server 2003 in the

folder C:\MigrationFolder:

.\Create-MigrationFolder.ps1 -Architecture x86 -OS ws03 -Path C:\MigrationFolder

Once the migration folders are created, you need to copy them to the source servers. You

can either do that when they are created with the script in Listing 7-1 or copy existing

migration folders to the source servers. Once the folders are copied to the source servers,

you will need to run the SmigDeploy.exe program within that folder on the source servers.

Server 2003 R2 and above require that the program be run from an elevated command

prompt or Windows PowerShell session.

The following example creates a migration folder for a 64-bit version of Server 2008 in the

folder C:\MigrationFolder. Once the migration folder is created, it will be copied to the

server DC02.

$Folder = @{
Architecture = “amd64”
OS = “ws08”
Path = “C:\MigrationFolder”
Target = “DC02”
}
.\Create-MigrationFolder.ps1 @Folder

Discover What Can Be Migrated
Once you have the required feature and snap-in installed, you can discover which features

can be migrated by running the Get-SmigServerFeature cmdlet. When run without

parameters, the cmdlet returns the list of exportable features on the local computer. The

optional Path parameter points the Get-SmigServerFeature cmdlet to a migration store

on a local or remote location. If the migration store is on a remote location, that path must

c07.indd 182c07.indd 182 02/09/11 10:46 AM02/09/11 10:46 AM

183

Chapter 7: Managing Windows Server 2008 R2

be con�igured with a drive letter on the local machine. The example shown here shows

which features can be migrated from the local machine:

Get-SmigServerFeature

When you specify the path of a migration store, you will need to provide the password for

that migration store. The following example returns which features in the migration store

on the path R: can be imported into the local server. The features that cannot be imported

will not be displayed.

$Prompt = @{
Prompt = “Enter the password:”
AsSecureString = $True
}
Get-SmigServerFeature -Path “R:” -Password (Read-Host @Prompt)

Exporting Features
Exporting features is accomplished with the Export-SmigServerSetting cmdlet. This

cmdlet exports features to a migration store or directly to another server. You can export

some or all features, depending on your needs. If you do not know which features can be

exported, you will need to discover them. See the “Discover What Can Be Migrated” section

for a refresher.

To a Migration Store
Once you know which features can be migrated from the local machine, you can export

them with the Export-SmigServerSetting cmdlet. You can export speci�ic features

by specifying the FeatureId parameter. This cmdlet also requires the Path parameter

and the Password parameter. The password will need to be passed as a secure string.

The following example exports the Hyper-V feature from the current server to the path

C:\MigrationStore. The password is created as a secure string previous to calling the

Export-SmigServerSetting cmdlet.

$Password = Read-Host -Prompt “Enter the password:” -AsSecureString
$SmigServerSetting = @{
FeatureId = “Hyper-V”
Path = “C:\MigrationStore”
Password = $Password
}
Export-SmigServerSetting @SmigServerSetting

As mentioned previously, you can also export local users and groups along with other

operating system settings. Local users are exported by specifying the User parameter

along with the quali�ier of All, Enabled, or Disabled. For the user accounts, only the name

and account status are exported. The password will need to be speci�ied on �irst login.

Likewise, groups are exported by specifying the Group parameter. Additionally, you can

c07.indd 183c07.indd 183 02/09/11 10:46 AM02/09/11 10:46 AM

184

Part III: Server Management

export the server’s IP con�iguration information with the IPConfig parameter, specifying

either All, NIC, or Global for the value, where NIC would export the IP con�iguration

settings for network interface cards that are enabled and connected to the network,

Global would export Windows IP con�iguration information, and All would export both.

To Another Server
You can export server information directly to another server with the Send-
SmigServerData cmdlet. The destination server needs to be in the same IP subnet as

the source server and must be running the Receive-SmigServerData cmdlet, which is

described in the next section. The data is sent via TCP over port 7000. The data sent can be

only �ile share information, including permissions, �iles and folders, and share properties.

Other features, roles, and user information cannot be migrated directly to another server.

The Send-SmigServerData cmdlet requires that the type of data be speci�ied with

the Include parameter, with a valid value of either All, Data, or Share. If the Include

parameter is set to either All or Data, this cmdlet also requires that the local source of the

data be speci�ied with the SourcePath parameter. The switch parameter Recurse, when

included, will cause the data or share permissions in subfolders of the SourcePath to be

migrated as well. Finally, you need to specify the DestinationPath and ComputerName

parameters, which specify the target server, and a Password to encrypt the data transfer.

The following example migrates all �iles, folders, and share properties from the local path

C:\UserFiles to the remote path C:\UserFiles on the server FileServer02, using the

password of P@ssW0rd to secure the transfer:

$String = @{
String = “P@ssW0rd”
AsPlainText = $True
Force = $True
}
$Password = ConvertTo-SecureString @String
$SmigServerData = @{
Include = “All”
ComputerName = “FileServer02”
SourcePath = “C:\UserFiles”
DestinationPath = “C:\UserFiles”
Recurse = $True
Password = $Password
}
Send-SmigServerData @SmigServerData

Importing Features
Importing features is accomplished with the Import-SmigServerSetting cmdlet. This

cmdlet imports features from a migration store, or directly from another server. You can

import some or all features, depending on your needs.

c07.indd 184c07.indd 184 02/09/11 10:46 AM02/09/11 10:46 AM

185

Chapter 7: Managing Windows Server 2008 R2

From a Migration Store
Only features that have been previously exported to the migration store and are valid features

for the target server can be imported. You can get a list of available features in the migration

store with the Get-SmigServerFeature cmdlet, specifying the Path to the migration store as

well as the Password for the migration store. The following example returns which features

are available in the migration store located on \\Server01\MigrationStore. Because no

password is speci�ied, you will be prompted for the password.

Get-SmigServerData -Path \\Server01\MigrationStore

Now that you have the list of features available on the migration store, you can choose

to import one or more. The following example imports the Hyper-V feature and IP

con�iguration from the migration store located on \\Server01\MigrationStore after

prompting for the password. The con�iguration for the network adaptor with the MAC

address of 00-1F-3B-93-05-73 will be migrated to the local network adaptor with the

MAC address of BC-AE-C5-33-6E-EB. The con�iguration for the network adaptor with

the MAC address of 00-15-5D-01-0A-02 will be migrated to the local network adaptor

with the MAC address of 00-15-5D-01-0A-01. You will be prompted for a password.

$MigrationSetting = @{
Feature = “Hyper-V”
IPConfig = “All”
SourcePhysicalAddress = “00-1F-3B-93-05-73”,”00-15-5D-01-0A-02”
TargetPhysicalAddress = “BC-AE-C5-33-6E-EB”,”00-15-5D-01-0A-01”
Path = “\\Server01\MigrationStore”
}
Import-SmigServerSetting @MigrationSetting

The next example imports all features on the migration store \\Server01\MigrationStore

that are applicable to the current server, after prompting for the password:

$Feature = @{
Path = “\\Server01\MigrationStore”
}
Get-SmigServerFeature @Feature | Import-SmigServerSetting @Feature

From Another Server
You can import �ile share data from another server with the Receive-SmigServerData cmdlet.

This cmdlet requires that the source server be running the Send-SmigServerData cmdlet at the

same time and that the source server be on the same subnet. The Receive-SmigServerData

cmdlet accepts only the required Password parameter. All con�iguration is accomplished via the

Send-SmigServerData cmdlet. The following example receives data that is currently being sent

from another server:

$String = @{
String = “P@ssW0rd”
AsPlainText = $True
Force = $True

c07.indd 185c07.indd 185 02/09/11 10:46 AM02/09/11 10:46 AM

186

Part III: Server Management

}
$Password = ConvertTo-SecureString @String
Receive-SmigServerData -Password $Password

Managing AppLocker
AppLocker is an application control feature available in Windows 7 ultimate and

Enterprise editions and Windows Server 2008 R2 in all versions except the Web Server

and Foundation editions that helps prevent the execution of unwanted and unknown

applications within an organization’s network. Windows 7 and Windows Server 2008

R2 ship with a module designed to manage AppLocker. The AppLocker cmdlets are

imported into the current session with the Import-Module cmdlet. Import-Module -Name
AppLocker imports the cmdlets.

The AppLocker module includes �ive cmdlets that work with the AppLocker policy in the

local or domain-based group policy objects. These cmdlets enable you to retrieve, create,

apply, or test an AppLocker policy. You will need to run the cmdlets in an elevated Windows

PowerShell console.

Creating an AppLocker policy is accomplished with the New-AppLockerPolicy cmdlet. This

cmdlet creates a policy for the speci�ied user or group, based on �ile publisher, hash, or path

information. You will gather �ile information with the Get-AppLockerFileInformation

cmdlet to pass to the New-AppLockerPolicy cmdlet.

The Get-AppLockerFileInformation cmdlet requires the FileType parameter, which can

be Script, Exe, WindowsInstaller, or Dll. You will also need to supply the Directory or

Path to the �iles from which �ile information is to be retrieved. If you specify a Directory,

you can also specify the optional Boolean parameter Recurse. The following example

retrieves information for all script �iles in the directory C:\scripts and subfolders:

$Files = @{
FileType = “Script”
Directory = “C:\Scripts”
Recurse = $True
}
Get-AppLockerFileInformation @Files

As mentioned, you will need to pass this information to the New-AppLockerPolicy cmdlet.

This cmdlet accepts the RuleType parameter, which speci�ies the type of rules to be

created. The rules can be Publisher, Hash, or Path rules. By default, Publisher and Hash

rules are created, which will apply hash rules when publisher information is not available.

You can also specify the User parameter, which speci�ies which user or groups the rules

will be applied to. The parameter RuleNamePrefix applies the speci�ied pre�ix to each rule.

The Optimize parameter groups similar rules, and the Xml parameter instructs the cmdlet

to provide the output as XML data.

c07.indd 186c07.indd 186 02/09/11 10:46 AM02/09/11 10:46 AM

187

Chapter 7: Managing Windows Server 2008 R2

The following example builds on the previous example, creating a new AppLocker policy

that creates Hash and Publisher rules for the group Everyone, and pre�ixes the rules

with the string Scripts. Rules will be grouped together, and the data will be output as a

.xml �ile.

$Policy = @{
RuleType = “Publisher,Hash”
User = “Everyone”
RuleNamePrefix = “Scripts”
Optimize = $True
Xml = $True
FileInformation = $Files
}
New-AppLockerPolicy @Policy | Out-File -FilePath C:\ScriptsPolicy.xml

Now that you have the new AppLocker policy saved in the �ile C:\ScriptsPolicy.xml, you

can test the policy with the Test-AppLockerPolicy cmdlet. Because you have the XML

data saved in a �ile, you specify the XmlPolicy parameter, passing the path of the �ile from

the previous example, along with the Path parameter, which speci�ies a �ile to test. The

following example tests the effect of the policy in C:\ScriptsPolicy.xml on the script �ile

C:\Scripts\Add-Firewallport.ps1:

$TestPolicy = @{
XmlPolicy = “C:\ScriptsPolicy.xml”
Path = “C:\Scripts\Add-Firewallport.ps1”
}
Test-AppLockerPolicy @TestPolicy

Once you are satis�ied with the AppLocker policy, you apply it with the Set-
AppLockerPolicy cmdlet. To complete the previous examples, you can pass the XML

�ile saved previously to the XmlPolicy parameter. The following example applies the

previously created policy:

Set-AppLockerPolicy -XmlPolicy C:\ScriptsPolicy.xml

The preceding examples create an AppLocker policy on the local machine. You can apply

the policy to a domain group policy object by specifying the LDAP parameter to the Set-
AppLockerPolicy cmdlet, passing the LDAP path of the group policy object.

Cross-Reference
See Chapter 11, “Managing Group Policy,” for information on retrieving the group policy object’s LDAP path. �

Summary
In this chapter, you learned what’s new in Server 2008 R2, with new cmdlets and

functionality. You learned to manage features and roles, including discovering which are

already installed and which are available to be installed.

c07.indd 187c07.indd 187 02/09/11 10:46 AM02/09/11 10:46 AM

188

Part III: Server Management

You learned how to run best-practice scans against the local server or a list of remote

servers, and examined how to enable remoting on the local server.

You examined the bene�its of managing Windows Backup with the supplied cmdlets, as

well as the limitations of the cmdlets, along with a few ways to mitigate the limitations. You

learned how to migrate features, roles, users and groups, and other server information to a

migration store, as well as how to migrate share information directly to another server.

Finally, you learned to manage AppLocker on local machines and on a domain group policy

object.

In the next chapter, you learn basic server management, which is fairly version-

independent. You discover how servers are con�igured, examine scheduling Windows

PowerShell scripts, and explore managing the task scheduler.

You explore how to examine hot�ix information locally and on remote servers, which will

include checking that speci�ic hot�ixes are installed. You also learn to gather data from

local and remote event logs, �iltering for the data you are interested in.

Finally, you learn to manipulate time information on servers.

c07.indd 188c07.indd 188 02/09/11 10:46 AM02/09/11 10:46 AM

189

C H A P T E R

In this chapter, you read about performing basic server

management with Windows PowerShell. This will be done by

using a combination of built-in cmdlets and the Get-WmiObject

cmdlet, which returns information from Windows Management

Instrumentation (WMI) classes inherent to the operating system.

Discovering Server Configuration
You can discover your server con�iguration with the built-in Windows

Management Instrumentation (WMI) interface. WMI is installed by

default on all server operating systems from Windows Server 2000

and newer. Although WMI has been preinstalled since Windows

Server 2000, Microsoft adds new classes and extends current classes

with every operating system release. An example of this is the

MfrAssignedRevisionLevel property of the Win32_CDROMDrive class,

which is not available in Windows Server 2003 or earlier.

Note
For a complete reference to the WMI classes, see http://msdn.microsoft
.com/en-us/library/aa394554(v=VS.85).aspx. �

By now, you’ve seen multiple examples of using the Get-WmiObject

cmdlet to gather data from various classes remotely and against the

local computer. Rather than rehashing how to use the Get-WmiObject

cmdlet, you learn how to discover which classes are available on a

particular server for whatever information you are looking for.

The Get-WmiObject cmdlet accepts the switch parameter List, which

lists available classes for a particular namespace. By default, the

Performing Basic
Server Management

C H A P T E R

IN THIS CHAPTER
Discovering how your server is

configured

Working with the task scheduler

Checking for hotfixes

Examining event logs

Managing system time

c08.indd 189c08.indd 189 02/09/11 10:47 AM02/09/11 10:47 AM

190

Part III: Server Management

List parameter displays all classes for the root\CIMV2 namespace. Using the Namespace

parameter enables you to retrieve other classes.

Suppose you want to gather power settings from the namespace root\CIMV2\power.

Knowing which classes the root\CIMV2\power namespace contains relating to power could

help design a script to gather information from the server. The following example returns

all classes whose name matches Win32_Power* in the root\CIMV2\power namespace on

the server Karl-Server:

$WmiObject = @{
Namespace = “root\CIMV2\power”
List = $true
ComputerName = “Karl-Server”
}
$Filter = @{
FilterScript = {$_.name -match “Win32_Power*”}
}
Get-WmiObject @WmiObject | Where-Object @Filter | Select-Object -Property Name
Name
Win32_PowerMeterEvent
Win32_PowerSettingElementSettingDataIndex
Win32_PowerSettingCapabilities
Win32_PowerSettingDataIndexInPlan
Win32_PowerSettingInSubgroup
Win32_PowerSettingDefineCapabilities
Win32_PowerSettingDefinitionPossibleValue
Win32_PowerPlan
Win32_PowerSettingDefinitionRangeData
Win32_PowerSettingDataIndex
Win32_PowerSettingSubgroup
Win32_PowerSetting
Win32_PowerMeter
Win32_PowerSupply
Win32_PowerSettingDefinition
Win32_PowerMeterConformsToProfile

The preceding example works �ine if you know which namespace you want to query, but

what if you don’t know which namespaces are installed on a speci�ic server? As it turns

out, the Get-WmiObject cmdlet can discover this for you as well. One of the parameters

to the Get-WmiObject cmdlet is the Query parameter. This parameter takes a WMI Query

Language (WQL) statement as its value. You can use the following example to display all

namespaces under the root namespace on the server Karl-Server:

$NamespaceObject = @{
Query = “select * from __namespace”
Namespace = “root”
ComputerName = “Karl-Server”
}
Get-WmiObject @NamespaceObject | Select-Object -Property Name

c08.indd 190c08.indd 190 02/09/11 10:47 AM02/09/11 10:47 AM

191

Chapter 8: Performing Basic Server Management

Now that you know which namespace and class you want to query, it’s easy to gather

information from WMI on any server. The following example returns which power plan is

active on the server Karl-Server:

$PowerObject = @{
Namespace = “root\CIMV2\power”
Class = “Win32_PowerPlan”
ComputerName = “Karl-Server”
}
$Filter = @{
FilterScript = {$_.IsActive -eq $true}
}
Get-WmiObject @PowerObject | Where-Object @Filter

For further examples, see the book’s website.

Managing Scheduled Tasks
You can retrieve a list of running tasks on local or remote servers using the COM object

Schedule.Service. After connecting to the scheduler service on the remote server using

the Connect() method, you can retrieve the tasks by calling the GetRunningTasks()

method. If the account used has local Administrator permission on the remote server,

GetRunningTasks() returns a collection of all running tasks. If the account is only a

member of the Users group on the remote server, GetRunningTasks() returns a collection

of tasks running under that security context.

The Connect() method accepts four optional parameters. The �irst optional parameter is

the name of the remote server. The next three parameters are the username, domain, and

password for a user who has permission on the remote server. If the account used to start

your Windows PowerShell session has permission on the remote server, you can either pass

$null for these last three parameters, or ignore them altogether.

The GetRunningTasks() method requires a �lag parameter that speci�ies which tasks

to retrieve. Passing a 0 displays currently running tasks that are not hidden. Passing a 1

displays all currently running tasks.

Running the following code displays all running tasks on the server Karl-Server that the

current user has permission to manage:

$TaskService = New-Object -ComObject Schedule.Service
$TaskService.Connect(“Karl-Server”)
$TaskService.GetRunningTasks(1)

When passing a password to a .NET method such as the Connect() method of the

Schedule.Service object, the password must be passed as plain text. This can be

accomplished by creating a credential object with the Get-Credential cmdlet and calling

the GetNetworkCredential() method of the credential object. This method returns the

c08.indd 191c08.indd 191 02/09/11 10:47 AM02/09/11 10:47 AM

192

Part III: Server Management

username, domain, and password for the credential object. The following example prompts

for the credentials for the user Contoso\sherrym and then uses those credentials to

connect to the server Karl-Server, displaying all running tasks that Contoso\sherrym has

permission to manage:

$Credential = Get-Credential -Credential “Contoso\sherrym”
$TaskService = New-Object -ComObject Schedule.Service
$User = $Credential.GetNetworkCredential().UserName
$Domain = $Credential.GetNetworkCredential().Domain
$Password = $Credential.GetNetworkCredential().Password
$TaskService.Connect(“Karl-Server”,$User,$Domain,$Password)
$TaskService.GetRunningTasks(1)

Scheduling a new task is accomplished with the NewTask() method of the

Schedule.Service object. This method requires a parameter specifying �lags for the method.

At this time, the parameter is reserved for future use and must be set to 0. Once you have

your $TaskService object, you create a new task by calling the method as $NewTask =
$TaskService.NewTask(0). You then de�ine the properties for the new task and register

the task.

Properties for the new task include the Actions, Data, Principal, RegistrationInfo,

Settings, Triggers, and XmlText. Of these properties, Data and XmlText are optional.

Note
The full description of these properties and their associated values is beyond the scope of this chapter. For a
full description, see http://msdn.microsoft.com/en-us/library/aa383614(v=VS.85).aspx. �

Once you have assigned the properties that de�ine the task you want to create, you create a

task folder reference by calling the GetFolder() method of the Schedule.Service object.

You then register the task with the RegisterTaskDefinition() method of the folder

object. The simple example shown next starts Windows PowerShell and runs the script in

the C:\Scripts\Get-SharePermission.ps1 directory on the Karl-Server server at

8:00 a.m. Daily for �ive years under the security context of the user who runs the script, if

that user is logged on to the server:

$TaskService = New-Object -ComObject Schedule.Service
$TaskService.Connect(“Karl-Server”)
$TriggerTypeDaily = 2
$ActionType = 0
$NewTask = $TaskService.NewTask(0)
$Registration = $NewTask.RegistrationInfo
$Registration.Description = “Start PowerShell on a daily basis”
$Registration.Author = “Karl Mitschke”
$principal = $NewTask.Principal
$principal.LogonType = 3
$settings = $NewTask.Settings
$settings.Enabled = $True

c08.indd 192c08.indd 192 02/09/11 10:47 AM02/09/11 10:47 AM

193

Chapter 8: Performing Basic Server Management

$settings.StartWhenAvailable = $True
$settings.Hidden = $False
$StartTime = [datetime]::now.Date.AddMinutes(5)
$EndTime = $StartTime.AddYears(5)
$triggers = $NewTask.Triggers
$trigger = $triggers.Create($TriggerTypeDaily)
$trigger.StartBoundary = $StartTime.ToString(“yyyy-MM-dd’T’HH:mm:ss”)
$trigger.EndBoundary = $EndTime.ToString(“yyyy-MM-dd’T’HH:mm:ss”)
$trigger.DaysInterval = 1
$trigger.Id = “Daily PowerShell Task”
$trigger.ExecutionTimeLimit = “PT5M”
$trigger.Enabled = $True
$Action = $NewTask.Actions.Create($ActionType)
$Action.Path = “C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe”
$Action.Arguments = “C:\Scripts\Get-SharePermission.ps1”
$Action.WorkingDirectory = “C:\Scripts”
$rootFolder = $TaskService.GetFolder(“\”)
$rootFolder.RegisterTaskDefinition(“PowerShell”, $NewTask, 6,””,””,3)| Out-Null

Stopping a currently running task is accomplished with the Stop() method of the task.

You �irst gather a collection of running tasks with the GetRunningTasks() method of the

Schedule.Service object. At this point, you loop through each task, examining it to

ensure that it is the one you want to stop, and �inally call the Stop() method on the

proper task. The following example stops the currently running task PowerShell on

the server Karl-Server:

$TaskService = New-Object -ComObject Schedule.Service
$TaskService.Connect(“Karl-Server”)
$Tasks = $TaskService.GetRunningTasks(1)
Foreach ($Task in $Tasks)
{
If ($Task.Name -eq “PowerShell”)
{
$Task.Stop()
}
}

You can delete a scheduled task by retrieving the collection of tasks within a folder with the

GetFolder() method of the Schedule.Service object. Once you have the list of scheduled

tasks, you can loop through each task until the current task is the one you want to remove.

You then call the DeleteTask() method of the folder object, passing the task name as

the �irst parameter, and a 0 for the second parameter, which is an unused parameter. The

following example results in deleting the scheduled task with the name PowerShell from

the root folder on the server Karl-Server:

$TaskService = New-Object -ComObject Schedule.Service
$TaskService.Connect(“Karl-Server”)
$Folder = $TaskService.GetFolder(“\”)

c08.indd 193c08.indd 193 02/09/11 10:47 AM02/09/11 10:47 AM

194

Part III: Server Management

$Tasks = $Folder.GetTasks(1)
Foreach ($Task in $Tasks)
{
If ($Task.Name -eq “PowerShell”)
{
$Folder.DeleteTask($Task.Name,0)
}
}

For more examples, including passing arguments to the scheduled program, and scheduling

tasks to run whether or not the user is logged in, see the book’s website.

Checking Hotfix Status
PowerShell Version 2 includes the new cmdlet Get-HotFix, which enables you to see which

hot�ixes have been installed on the local computer or remote computers. The data returned

is limited to hot�ixes installed via Component-Based Servicing. Component-Based Servicing

provides installer packages the ability to install, update, or uninstall operating system

components. This speci�ically excludes patches installed via the Windows update site and

patches installed by a .msi �ile. The Get-HotFix cmdlet is a wrapper for the WMI class

Win32_QuickFixEngineering.

Hot�ixes installed by Component-Based Servicing are designed to �ix speci�ic issues that

may not be applicable to all servers. For instance, an Exchange 2010 Client Access Server

running on Windows Server 2008 R2 requires four hot�ixes that would not necessarily be

required on a �ile server.

Running Get-HotFix without any parameters returns a list of all hot�ixes on the current

computer. Data returned is the source, which is the computer name; the description, which

shows the type of hot�ix; the hot�ix ID, which usually points to a Knowledge Base article;

who the hot�ix was installed by; and the date the hot�ix was installed.

Checking Hotfixes on Multiple Computers
One of the parameters the Get-HotFix cmdlet accepts is the ComputerName parameter.

This parameter takes a string or array of strings. By default, the cmdlet uses the

credentials of the current user. If you are running Windows PowerShell with an account

that does not have WMI privileges on the computers for which you wish to retrieve hot�ix

information, you can pass the Credential parameter. The following example retrieves all

hot�ixes installed on the four servers ExchCAS01, ExchCAS02, ExchCAS03, and ExchCAS04,

while running under the credentials of the current user:

Get-HotFix -ComputerName ExchCAS01,ExchCAS02,ExchCAS03,ExchCAS04

c08.indd 194c08.indd 194 02/09/11 10:47 AM02/09/11 10:47 AM

195

Chapter 8: Performing Basic Server Management

As previously mentioned, the �irst property returned is the computer name, so you can

easily see which hot�ix is installed on each server.

Checking for a Specific Hotfix
The Get-HotFix parameter accepts the Id parameter, which also accepts a string or array

of strings. When combined with the ComputerName parameter, this enables you to check

multiple servers for a list of hot�ixes.

In the previous section, I alluded to the fact that Exchange 2010 Client Access Servers

running on Server 2008 R2 require four hot�ixes. The Exchange installation program will

inform you of missing hot�ixes after copying a large number of �iles to your server. Luckily,

you can easily see which of the four required hot�ixes are missing with a quick call to the

Get-HotFix cmdlet. The following example returns which of the four required hot�ixes

are installed on each of the four servers — ExchCAS01, ExchCAS02, ExchCAS03, and

ExchCAS04 — running under the credentials of the user Contoso\karlm. If you were to

run this code, you would be prompted for a password.

$HotFix = @{
ComputerName = “ExchCAS01”,”ExchCAS02”,”ExchCAS03”,”ExchCAS04”
Id = “KB979099”,”KB979744”,”KB983440”,”KB977020”
Credential = “Contoso\karlm”
}
Get-HotFix @HotFix

Gathering Data from Event Logs
Almost every application run on Windows servers makes entries in one or more event logs.

These entries have differing levels of severity. Suppose you have run Windows Update on

a series of servers hosting user �iles and users are now unable to retrieve data. You can

discover which updates were installed on these servers with Windows PowerShell. This

example is shown later in this section.

PowerShell Version 2 includes two cmdlets for retrieving data from event logs: Get-
WinEvent and Get-EventLog. The Get-WinEvent cmdlet retrieves data from the new

event logs in Windows Server 2008 R2 and Windows 7, as well as the classic event logs on

Windows Server 2008 and Windows Vista, and from .etl, .evt, and .evtx �iles, which are

created by Tracelog (.etl), Windows 7 and Windows Server 2008 R2 Event Viewer (.evtx),

and previous event viewers or legacy application logs in Windows 7 and Windows Server

2008 R2 (.evt). Get-EventLog, on the other hand, can retrieve data only from classic

event logs. Both of these cmdlets accept the ComputerName parameter, enabling you to

retrieve data from remote servers with ease. The Get-WinEvent cmdlet enables you to pass

credentials via the Credential parameter, whereas the Get-EventLog cmdlet requires the

current user to have permission to read event logs on the current host and remote servers.

If you have examined the newer event logs with the Event Viewer GUI in Windows

Server 2008 or newer, you have seen that there is an abundance of log �iles. Luckily, the

c08.indd 195c08.indd 195 02/09/11 10:47 AM02/09/11 10:47 AM

196

Part III: Server Management

Get-WinEvent cmdlet provides a way to determine which log �iles would potentially

contain data you are interested in. For instance, a server hosting the Hyper-V role would

have different event logs than a server hosting the Web Server role. Using the ListLog

parameter enables you to determine which logs are available for a speci�ic role, feature, or

application. This parameter accepts the wildcard character *, so you can discover which

logs are created speci�ically for the Hyper-V role on a local or remote server with one quick

call to the Get-WinEvent cmdlet. The following example retrieves a list of the log �iles

speci�ic to the Hyper-V role on the server HyperSrv01:

$ListLog = @{
ListLog = “*Hyper*”
ComputerName = “HyperSrv01”
}
Get-WinEvent @ListLog | Select-Object -Property LogName

One of the most powerful parameters associated with the Get-WinEvent cmdlet is the

FilterHashTable parameter. This parameter enables you to pass a query in hashtable

format to the Get-WinEvent cmdlet. The hashtable consists of a series of key-value

pairs. This query is evaluated on the server before the data is returned to the Windows

PowerShell console. This parameter is the equivalent of the Filter parameter that is

available in many other cmdlets. Table 8-1 shows the key-value pairs and provides a

description for each.

TABLE 8-1

Key-Value Pairs for the FilterHashTable Parameter

Key Value Description

LogName String[] The name of a log or logs

ProviderName String[] The name of a provider or providers

Path String[] The path to .etl, .evt, and .evtx log files

Keywords Long[] The keyword or keywords to return

ID Int32[] The ID or IDs of events to return

Level Int32[] The severity of the event

StartTime DateTime The date and time of the oldest event to return

EndTime DateTime The date and time of the newest event to return

UserID SID A user’s SID or valid domain account

Data String[] Used for events in classic event logs

 * String[] A named event data field

c08.indd 196c08.indd 196 02/09/11 10:47 AM02/09/11 10:47 AM

197

Chapter 8: Performing Basic Server Management

The LogName and ProviderName keys accept wildcard input for the values. You can create

the hashtable in any manner you are accustomed to. The following example shows all

events in the local computer log �ile Windows PowerShell with a severity of 3, which are

warning events:

Get-WinEvent -FilterHashTable @{LogName=’Windows PowerShell’; Level=3}

Table 8-2 shows the log-level enumeration.

The following example returns all error events within the last seven days for the Windows

Update client on the server Exch2010:

$Failure = @{
FilterHashTable = @{ProviderName=’Microsoft-Windows-WindowsUpdateClient’;
Id = 20; StartTime = (Get-Date).AddDays(-7)}
ComputerName = “Exch2010”
}
$Format = @{Expression={$_.Message.Split(“:”)[1].Split()[-1]};Label=”Error”},
@{Expression={$_.Message.Split(“:”)[2]};Label=”Message”}
Get-WinEvent @Failure | Format-Table $Format -AutoSize

The following example returns all successful updates within the last seven days for the

Windows Update client on the server Exch2010:

$Events = @{
FilterHashTable = @{ProviderName=’Microsoft-Windows-WindowsUpdateClient’;
ID = 19; StartTime = (Get-Date).AddDays(-7)}
ComputerName = “Exch2010”
}
Get-WinEvent @Events | Format-List TimeCreated, Message

TABLE 8-2

Log-Level Enumeration

Numeric Name Description

0 LogAlways No filtering is done on the level during event publishing.

1 Critical A serious error that has caused a major failure.

2 Error Normal errors that signify a problem.

3 Warning A warning event.

4 Information An informational event.

5 Verbose Lengthy events or messages.

c08.indd 197c08.indd 197 02/09/11 10:47 AM02/09/11 10:47 AM

198

Part III: Server Management

The FilterHashTable parameter is valid only on Windows Server 2008 R2. For Windows

Server 2008 and previous, you will want to explore the FilterXml parameter. This

parameter takes an arcane XML statement for the value. A good method of discovering the

proper XML structure is to �irst create the query in the GUI application Event Viewer. Once

you have the query con�igured in Event Viewer, you can click the XML tab and copy the

resulting code to a here-string.

The next example is the equivalent to the previous FilterHashTable example, using the

FilterXml parameter:

$filterXml = @’
<QueryList>
<Query Id=”0” Path=”Microsoft-Windows-WindowsUpdateClient/Operational”>
<Select Path=”Microsoft-Windows-WindowsUpdateClient/Operational”>*
[System[Provider[@Name=’Microsoft-Windows-WindowsUpdateClient’]
and (EventID=20) and TimeCreated[timediff(@SystemTime) <= 604800000]]]
</Select>
<Select Path=”System”>*
[System[Provider[@Name=’Microsoft-Windows-WindowsUpdateClient’]
and (EventID=20) and TimeCreated[timediff(@SystemTime) <= 604800000]]]
</Select>
</Query>
</QueryList>
’@
Get-WinEvent –FilterXml $filterXml -ComputerName exch2010

Note
For more on the XML query schema, see http://msdn.microsoft.com/en-us/library/
aa385760(v=VS.85).aspx. �

Using System Time
Time within a domain is of critical importance. If the time on a member server or PC is off

by more than 5 minutes, the Kerberos network authentication protocol will not function

correctly, which could prevent logins on the Server. Also, Active Directory replication and

Windows Update rely on the time being correct. Although time is normally replicated

to domain-joined computers with the W32Time Time Service tool, on some occasions, a

system will have incorrect time. This section shows you how to display the system time for

a list of computers, as well as how to set the time on a list of servers.

Retrieving the Date and Time
Retrieving the time from multiple servers can be accomplished with the Get-WmiObject

cmdlet. The Win32_OperatingSystem class contains the LocalDateTime and the

CurrentTimeZone properties. The LocalDateTime property needs to be converted from

c08.indd 198c08.indd 198 02/09/11 10:47 AM02/09/11 10:47 AM

199

Chapter 8: Performing Basic Server Management

Universal Time Coordinate format into the local time format. To do so, use the [wmi] type

accelerator, calling the ConvertToDateTime() method. The following example retrieves

the current date, time, and time zone for each server in the �ile C:\Scripts\Servers.txt

after prompting for the credentials for a user who has permission to the remote servers:

$Credential = Get-Credential
foreach($Server in Get-Content -Path “C:\Scripts\Servers.txt”)
{
$TimeObject = @{
ComputerName = $Server
Class = “Win32_OperatingSystem”
Credential = $Credential
}
$OutTZ = $Null
$Computer = Get-WmiObject @TimeObject
$Time = $Computer.LocalDateTime
$Zone = $Computer.CurrentTimeZone
$ServerTime = ([wmi]’’).ConvertToDateTime($Time)
$TimeZone = [string][Math]::Floor($Zone /60)
([math]::DivRem($Zone,60,[ref]$OutTZ)) | Out-Null
$TimeZone += “:$($OutTZ.ToString(“00”))”
$Output = “$Server time is $ServerTime.”
$Output += “ Timezone is $Timezone.”
Write-Output -InputObject $Output
}

The preceding script will not show whether Daylight Saving Time is enabled or in effect.

Adding this information requires a call to the Win32_ComputerSystem class. The following

example builds on the previous example and adds the information on Daylight Saving Time:

$Credential = Get-Credential
foreach($Server in Get-Content -Path “C:\Scripts\Servers.txt”)
{
$TimeObject = @{
ComputerName = $Server
Class = “Win32_OperatingSystem”
Credential = $Credential
}
$TimeZoneObject = @{
ComputerName = $Server
Class = “Win32_ComputerSystem”
Credential = $Credential
}
$OutTZ = $Null
$DaylightEnabled = “ Daylight Saving Time is not enabled, and “
$DaylightInEffect = “is not in effect.”
$ComputerTime = Get-WmiObject @TimeObject
$ComputerTimeZone = Get-WmiObject @TimeZoneObject
$Time = $ComputerTime.LocalDateTime

c08.indd 199c08.indd 199 02/09/11 10:47 AM02/09/11 10:47 AM

200

Part III: Server Management

$Zone = $ComputerTime.CurrentTimeZone
$ServerTime = ([wmi]’’).ConvertToDateTime($Time)
$TimeZone = [string][Math]::Floor($Zone /60)
([math]::DivRem($Zone,60,[ref]$OutTZ)) | Out-Null
$TimeZone += “:$($OutTZ.ToString(“00”))”
if ($ComputerTimeZone.EnableDaylightSavingsTime)
{
$DaylightEnabled = “ Daylight Saving Time is enabled, and “
}
if ($ComputerTimeZone.DaylightInEffect)
{
$DaylightInEffect = “in effect.”
}
$Output = “$Server time is $ServerTime.”
$Output += “ Timezone is $Timezone.”
$Output += $DaylightEnabled
$Output += $DaylightInEffect
Write-Output -InputObject $Output
}

Setting the Date and Time
As with retrieving time for multiple servers, setting the date and time is accomplished

with the Get-WmiObject cmdlet. The time will need to be converted to the Universal Time

Coordinate format from the local time format. Once again, this is accomplished with the

[wmi] type accelerator, calling the ConvertFromDateTime() method. The time is set with

the SetDateTime() method of the Win32_OperatingSystem WMI class. The following

example sets the date and time for each server in the �ile C:\Scripts\Servers.txt after

prompting for the credentials for a user who has permission to the remote servers. The

date and time are set to the date and time of the local computer.

$Credential = Get-Credential
foreach ($Server in Get-Content -Path C:\Scripts\Servers.txt)
{
$TimeObject = @{
Class = “Win32_OperatingSystem”
ComputerName = $Server
Credential = $Credential
EnableAllPrivileges = $true
}
$CurrentTime = ([wmi]’’).ConvertFromDateTime($(Get-Date))
(Get-WmiObject @TimeObject).SetDateTime($CurrentTime)
}

Although this simple method sets the date and time on multiple servers at once, the servers

have the potential to be off by a second or two. If you need more accuracy than this, you

should have each server set to retrieve time either from an Internet time server, or from a

domain time server. As an alternative, the previous example could be modi�ied to retrieve

c08.indd 200c08.indd 200 02/09/11 10:47 AM02/09/11 10:47 AM

201

Chapter 8: Performing Basic Server Management

the time from a local domain controller instead of the local computer. The following snippet

retrieves the time from the domain controller DC-01. You can use this in place of the

$CurrentTime in the previous example.

$DCTimeObject = @{
ComputerName = “DC-01”
Class = “Win32_OperatingSystem”
Credential = $Credential
}
$CurrentTime = (Get-WmiObject @DCTimeObject).LocalDateTime

Summary
In this chapter, you learned how to leverage your knowledge of WMI and the Get-
WmiObject cmdlet to discover server con�iguration. You also learned how to work with

scheduled tasks locally and remotely. Additionally, you learned how to check for hot�ixes on

local and remote servers, searching for all or a subset of hot�ixes. You explored event logs

with the new cmdlet Get-WinEvent. Finally, you learned how to retrieve and set the time

and date on remote servers.

In the next chapter, you learn how to manage services and processes on multiple remote

servers and learn to manage the registry with Windows PowerShell. You will verify and

modify network con�igurations, retrieve data from performance counters, and modify

regional settings. You will manage local accounts and groups on remote servers. Finally,

you will con�igure remote DCOM.

c08.indd 201c08.indd 201 02/09/11 10:47 AM02/09/11 10:47 AM

c08.indd 202c08.indd 202 02/09/11 10:47 AM02/09/11 10:47 AM

203

C H A P T E R

IN THIS CHAPTER
Managing Windows services

Managing processes

Reading and modifying the
registry

Modifying network settings

Retrieving performance
counters

Setting regional settings

Maintaining local accounts

Configuring remote DCOM

Performing Advanced
Server Management

This chapter covers a lot of ground because advanced server

management is a complex subject. Microsoft has provided a

hodgepodge of cmdlets in Windows PowerShell that can help

with the various server management tasks. However, quite a few of

these cmdlets are not designed to work against remote computers.

In multiple cases, cmdlets within the same functional area will have

different behaviors. For instance, the Set-Service cmdlet accepts a

ComputerName parameter, whereas the rest of the *-Service cmdlets

that modify services do not.

This chapter covers two options for managing remote servers. You can

use remoting cmdlets such as the Invoke-Command cmdlet, or you

can use WMI with a combination of methods. This chapter focuses

on using WMI when a cmdlet does not accept the ComputerName

parameter.

Managing Command-Line
Services
You manage services with the Get-Service, Stop-Service, Start-
Service, Suspend-Service, Resume-Service, Restart-Service, and

Set-Service cmdlets. Of these, the Get-Service and Set-Service

cmdlets accept the ComputerName parameter. The remaining cmdlets

require the remote server to be con�igured for remoting. As an alternative

to remoting, you can manage services with the Get-WmiObject cmdlet.

c09.indd 203c09.indd 203 02/09/11 10:48 AM02/09/11 10:48 AM

204

Part III: Server Management

Listing Running Services on Multiple Servers
You can list services that are running on remote servers with the Get-Service cmdlet, passing

the optional parameter ComputerName. Comparing running services can help when you are

troubleshooting issues. The Get-Service cmdlet returns all services, so you need to provide

a �ilter to return only running services. You do this with the Where-Object cmdlet. Finally,

you will need to pass the output to the Select-Object cmdlet, one of the Format-* cmdlets,

or one of the Export-* cmdlets to view the computer name. The following example displays

all running services on the servers ExchCAS01, ExchCAS02, ExchCAS03, and ExchCAS04. The

output shows the server name, the service name, and the service display name.

$Computers = “ExchCAS01”,”ExchCAS02”,”ExchCAS03”,”ExchCAS04”
$Filter = @{
FilterScript = {$_.Status -eq “Running”}
}
$Select = @{
Property = “MachineName”,”Name”,”DisplayName”
}
foreach ($Computer in $Computers)
{
Get-Service -ComputerName $Computer |
Where-Object @Filter |
Select-Object @Select
}
MachineName Name DisplayName
----------- ---- -----------
ExchCAS01 AppHostSvc Application Host Helper Service
ExchCAS01 Appinfo Application Information
ExchCAS01 AudioEndpointBuilder Windows Audio Endpoint Builder
ExchCAS01 AudioSrv Windows Audio
ExchCAS01 BFE Base Filtering Engine
ExchCAS01 BITS Background Intelligent Transfer Service
ExchCAS01 CertPropSvc Certificate Propagation
...

Finding Servers Running a Specific Service
The Get-Service cmdlet accepts the optional parameter Name, which enables you to

retrieve only speci�ic services. This parameter accepts wildcard input as well as an array of

names. The following example returns a list of servers that have the Exchange Information

Store and Exchange System Attendant services running:

$Computers = “ExchCAS01”,”ExchCAS02”
$Service = “MSExchangeIS”,”MSExchangeSA”
$Filter = @{
FilterScript = {$_.Status -eq “Running”}
}
$Select = @{

c09.indd 204c09.indd 204 02/09/11 10:48 AM02/09/11 10:48 AM

205

Chapter 9: Performing Advanced Server Management

Property = “MachineName”,”Name”,”DisplayName”
}
$ServiceHash = @{
Name = $Service
ErrorAction = “SilentlyContinue”
}
foreach ($Computer in $Computers)
{
Get-Service @ServiceHash -ComputerName $Computer |
Where-Object @Filter | Select-Object @Select
}
MachineName Name DisplayName
----------- ---- -----------
ExchCAS01 MSExchangeIS Microsoft Exchange Information Store
ExchCAS01 MSExchangeSA Microsoft Exchange System Attendant
ExchCAS02 MSExchangeIS Microsoft Exchange Information Store
ExchCAS02 MSExchangeSA Microsoft Exchange System Attendant

Listing Stopped Services That Are Set to
Start Automatically
On many occasions, services may be set to start automatically, but fail to start.

Unfortunately, the Get-Service cmdlet does not return information on the service start

type. For this information, you need to use the Get-WmiObject cmdlet. The class you call is

the Win32_Service class.

This class returns the service State and StartMode, among other properties. Those

properties can be passed to the Filter parameter of the Get-WmiObject cmdlet to

limit results to just services that are set to start automatically and are not running. The

following example returns a list of services that are set to start automatically on the

FileServer01 and FileServer02 servers and are not running:

$Computers = “FileServer01”,”FileServer02”
$WmiObject = @{
Class = “Win32_Service”
Filter = “StartMode=’Auto’ and State!=’Running’”
}
foreach ($Computer in $Computers)
{
$Select = @{
Property = “SystemName”,”Name”
}
Get-WmiObject @WmiObject -ComputerName $Computer |
Select-Object @Select
}
SystemName Name
---------- ----
FileServer01 Ati External Event Utility

c09.indd 205c09.indd 205 02/09/11 10:48 AM02/09/11 10:48 AM

206

Part III: Server Management

FileServer01 clr_optimization_v4.0.30319_32
FileServer01 clr_optimization_v4.0.30319_64
FileServer02 NetTcpActivator
FileServer02 sppsvc

Starting Stopped Services
The previous example shows which non-running services are set to run automatically.

You can start services on remote servers with the StartService() method of the Win32_
Service class. The following example extends the previous example to attempt to start all

stopped services:

$Computers = “FileServer01”,”FileServer02”
$WmiObject = @{
Class = “Win32_Service”
Filter = “StartMode=’Auto’ and State!=’Running’”
}
foreach ($Computer in $Computers)
{
foreach ($Svc in Get-WmiObject @WmiObject -ComputerName $Computer)
{
Write-Host “Starting the” $Svc.DisplayName “service on $Computer”
$Svc.StartService() | Out-Null
}
}

Setting Services to Disabled
Another method of the Win32_Service class is the ChangeStartMode() method. This

method enables you to set a service to disabled, which will prevent it from starting.

Suppose that you previously discovered that the service Windows Audio was running on

one of your servers. Unneeded services provide a potential security problem, so you would

probably want to disable and stop the Windows Audio service on that server. The following

example accomplishes this task:

$ServiceObject = @{
Class = “Win32_Service”
Filter = “Name = ‘AudioSrv’”
ComputerName = “DC01”
}
$Service = Get-WmiObject @ServiceObject
$Service.ChangeStartMode(“Disabled”)
$Service.StopService()

For more examples, which include waiting for the service to start as well as reporting on

failures, see the book’s website.

c09.indd 206c09.indd 206 02/09/11 10:48 AM02/09/11 10:48 AM

207

Chapter 9: Performing Advanced Server Management

Managing Processes
Think of Windows processes as programs or speci�ic parts of an program. For instance,

an antivirus program might use several processes. Each processor on a server can run

one process at a time. As the process is running, every other process is waiting for

processor time.

A process that is not responding will, at best, stop a program from responding, and at

worst, stop the entire server from responding. In this section, you learn how to discover

and stop those processes.

Processes are managed with the Get-Process, Stop-Process, Wait-Process, Debug-
Process, and Start-Process cmdlets. With the exception of Get-Process, these cmdlets

manage processes on the local computer.

The Get-Process cmdlet supports the ComputerName parameter, so it does not require

that remoting be enabled on the remote server. The other process cmdlets require that

remoting is enabled on remote servers. As an alternative to enabling remoting, you can

stop processes on remote servers with WMI. Both methods are covered in the section

“Stopping Processes on Remote Servers.”

Listing All Processes on Multiple Servers
The Get-Process cmdlet, when run without parameters, lists all processes on

the local computer. To view processes on remote servers, you pass the server names to the

ComputerName parameter. The default view that the Get-Process cmdlet returns does

not include the computer name, so you will have to use the Select-Object cmdlets or one

of the Format-* cmdlets to view the machine name onscreen, or pass the output through

one of the Export-* cmdlets to save the data to disk. The following example returns all

processes on the servers FileServer01 and FileServer02:

$Process = @{
ComputerName = “FileServer01”,”FileServer02”
}
$Sort = @{
Property = “MachineName”,”ProcessName”
}
$Table = @{
Property = “MachineName”,”ProcessName”,”Id”,”NPM”,”PM”,”WS”,”VM”
AutoSize = $True
}
Get-Process @Process | Sort-Object @Sort | Format-Table @Table

Perhaps a more interesting exercise would be to list processes on remote servers that

are not responding. One of the properties that the Get-Process cmdlet returns is the

c09.indd 207c09.indd 207 02/09/11 10:48 AM02/09/11 10:48 AM

208

Part III: Server Management

Responding property. The following example returns which processes are not responding

on the server Server01:

$Computer = “Server01”
$Process = @{
ComputerName = $Computer
}
$Filter = @{
FilterScript = {$_.Responding -ne $True}
}
Get-Process @Process | Where-Object @Filter
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 965 13 2788 4940 45 496 csrss
 192 13 19264 13400 58 568 csrss
 404 34 20612 24344 342 1760 dfsrs
 164 15 4440 8060 39 2068 dfssvc
 5220 22171 314340 312252 349 1816 dns
 444 29 48252 50488 154 4948 Dropbox

Stopping Processes on Remote Servers
Suppose you wanted to stop the Dropbox process from the previous example. If the process

were running on the local computer, you could stop the process with the Stop-Process

cmdlet, passing the process ID to the Id parameter as Stop-Process -Id 4948.

The Stop-Process cmdlet does not accept the ComputerName parameter, so you will need

to use remoting to run the command on the remote server or use the Get-WmiObject

cmdlet, which does accept the ComputerName parameter.

The following example stops the Dropbox process on the server Server01 using the

Invoke-Command cmdlet. This will only succeed on servers that have remoting enabled.

Invoke-Command -ComputerName Server01 -ScriptBlock {Stop-Process -Id 4948}

The Get-WmiObject cmdlet will work on any computer on which you have permission to run

WMI queries. You call the InvokeMethod() method of the Win32_Process class to stop the

process. The following example is the functional equivalent of using the Invoke-Command

cmdlet in the previous example, rewritten to avoid the requirement for remoting:

$ProcessSplat = @{
Class = “Win32_Process”
Filter = “ProcessId = 4948”
ComputerName = “Server01”
}
(Get-WmiObject @ProcessSplat).InvokeMethod(“Terminate”, $null)

Certain processes will not allow you to stop them because they are required for Windows

to function. In those cases, you would need to restart the server.

c09.indd 208c09.indd 208 02/09/11 10:48 AM02/09/11 10:48 AM

209

Chapter 9: Performing Advanced Server Management

Note
You can also stop a process by name. I recommend using the process ID because each process has a unique
ID, whereas you could have several processes with the same name. The examples shown in this section would
fail if there were more than one process to stop. �

Reading the Registry
Windows PowerShell includes a provider that enables you to read and write to the two

most common registry hives on the local computer. With this provider, you can access the

HKEY_Local_Machine and HKEY_Current_User registry hives as if they were a �ile system.

Registry hives are a logical collection of keys, subkeys, and values within the registry.

You can also create your own provider to access the other registry hives. This is

accomplished with the New-PSDrive cmdlet, passing the parameters Name, PSProvider,

and Root. The following example creates the local provider named HKCR pointing to the

Registry provider in the root HKEY_CLASSES_ROOT:

New-PSDrive -Name HKCR -PSProvider Registry -Root HKEY_CLASSES_ROOT

You can access the registry on a remote computer with the .NET classes Microsoft.Win32
.RegistryHive and Microsoft.Win32.RegistryKey. If you manage remote registries on

an ongoing basis, you may want to create custom type accelerators for these classes. Type
accelerators are a shortcut to an underlying .NET type name. The type accelerator [string]

points to the .NET type System.String. Using a type accelerator allows you to reference

the underlying type without typing the type name, or even necessarily knowing the

name. The example in Listing 9-1 creates these type accelerators. You can either run

the code in Listing 9-1 each time you work with remote registry, or put the code in your

$Profile script so that it is available every time you load Windows PowerShell. The

examples in this chapter use these type accelerators.

LISTING 9-1

Creating Type Accelerators for Registry Access

$accelerators = [type]::gettype(“System.Management.Automation.TypeAccelerators”)
$acceleratorRegHive = [type]::gettype(“Microsoft.Win32.RegistryHive”)
$acceleratorRegKey = [type]::gettype(“Microsoft.Win32.RegistryKey”)
$accelerators::Add(“reghive”, $acceleratorRegHive)
$accelerators::Add(“regkey”, $acceleratorRegKey)

You could also read remote registry values using the Invoke-Command cmdlet, if the remote

servers have remoting enabled.

c09.indd 209c09.indd 209 02/09/11 10:48 AM02/09/11 10:48 AM

210

Part III: Server Management

Using the Registry Provider Locally
As mentioned, you can read a local registry key by accessing the registry provider directly.

The two included providers (HKLM and HKCU) can be accessed with the Set-Location cmdlet,

passing the parameter Path. Once you have set the location to the registry key of your choice,

you retrieve a value with the Get-ItemProperty cmdlet, passing the Path parameter.

The following example returns which version of Windows PowerShell is installed on the

local computer:

Set-Location -Path HKLM:\SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine
(Get-ItemProperty -Path .).PowerShellVersion

You could also gather the data without changing location to the registry path, by passing

that information to the Path parameter of the Get-ItemProperty cmdlet. The following

example shows this. The example uses the $Path variable to hold the name of the registry

key, and passes the key to the Path parameter of the Get-ItemProperty cmdlet:

$Path = “HKLM:\SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine”
(Get-ItemProperty -Path $Path).PowerShellVersion

Using Microsoft.Win32.RegistryHive Remotely
As previously mentioned, you read a registry value remotely with the .NET classes

Microsoft.Win32.RegistryHive and Microsoft.Win32.RegistryKey. To read the value

of a registry key, you �irst have to create a Microsoft.Win32.RegistryHive value pointing

to the hive you are interested in. This can be ClassesRoot, CurrentUser, LocalMachine,

Users, or PerformanceData.

Once you have your hive object, you open the remote hive with the OpenRemoteBaseKey()

method of the Microsoft.Win32.RegistryKey class. This method takes the hive and

computer name as parameters. Once you have the remote hive open, you open the subkey

and read the value with the OpenSubKey() and GetValue() methods of the Microsoft
.Win32.RegistryKey class, respectively.

The following example extends the previous example to show which version of Windows

PowerShell is installed on the servers FileServer01 and FileServer02. This example uses

the custom type accelerators created in Listing 9-1. If you have not loaded them, you will

need to do that before running the example.

foreach ($Server in “FileServer01”,”FileServer02”)
{
 $Version = $null
 $Message = $null
 $keyName = “SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine”
 $valueName = “PowerShellVersion”
 $regHive = [reghive]”LocalMachine”
 try

c09.indd 210c09.indd 210 02/09/11 10:48 AM02/09/11 10:48 AM

211

Chapter 9: Performing Advanced Server Management

 {
 $regKey = [regkey]::OpenRemoteBaseKey($regHive,$Server)
 }
 catch
 {
 $Message = “$Server cannot be contacted. Is it online?”
 }
 if ($Message -eq $null)
 {
 try
 {
 $Version = ($regKey.OpenSubKey($keyName)).GetValue($ValueName)
 $Message = “$Server has version $Version of Windows PowerShell”
 }
 catch
 {
 $Message = “$Server does not seem to have Windows PowerShell”
 }
 }
 Write-Output $Message
}
FileServer01 has version 2.0 of Windows PowerShell
FileServer02 does not seem to have Windows PowerShell

Setting Registry Values
Setting registry values is more complex than reading them, because you need to specify the

type of value you are setting. Possible value types are listed in Table 9-1.

TABLE 9-1

Registry Value Types

ItemType DataType Description

String REG_SZ A string

ExpandString REG_EXPAND_SZ A string with environment variables that are resolved
when invoked

Binary REG_BINARY Binary values

Dword REG_DWORD Numeric values

MultiString REG_MULTI_SZ Text of several lines

Qword REG_QWORD 64-bit numeric values

c09.indd 211c09.indd 211 02/09/11 10:48 AM02/09/11 10:48 AM

212

Part III: Server Management

Besides setting values for existing registry keys, Windows PowerShell provides methods to

create new registry keys.

Locally Using the Registry Provider
Creating a new key on the local computer can be accomplished with the New-Item cmdlet,

passing the Path and ItemType parameters. Registry keys are treated as directories by the

built-in registry providers. Thus, the item type value is Directory. The following example

creates the new key PowerShellBible in the Software key of the HKEY_Local_Machine hive:

New-Item -ItemType Directory -Path “HKLM:\Software\PowerShellBible”

Note
You may need to run Windows PowerShell in an elevated session to create a new registry key. �

The new key contains an empty default value. If you want to create a new key with

subkeys, you need to create it from the top level down. The following example creates

the registry keys as shown under the previously created PowerShellBible key. If you

attempted to create the second key �irst, the command would fail.

New-Item -ItemType Directory -Path “HKLM:\Software\PowerShellBible\First”
New-Item -ItemType Directory -Path “HKLM:\Software\PowerShellBible\First\Second”

Creating a registry value locally is accomplished with the Set-ItemProperty cmdlet,

passing the Path, Name, Type, and Value parameters. The following example creates the

new values as shown:

$Path = “HKLM:\Software\PowerShellBible”
Set-ItemProperty -Path $Path -Name “Example1” -Value 123 -Type Dword
Set-ItemProperty -Path $Path -Name “Example2” -Value “Test” -Type String

You modify an existing value in the same manner as creating a new value. Suppose you

realized that the Example1 value was supposed to be a string value. The following example

changes the Dword value 123 to a String value of q123:

$Path = “HKLM:\Software\PowerShellBible”
Set-ItemProperty -Path $Path -Name “Example1” -Value “q123” -Type String

Remotely Using Microsoft.Win32.RegistryHive
Creating a new key on a remote computer can be accomplished with the .NET classes

Microsoft.Win32.RegistryHive and Microsoft.Win32.RegistryKey. Examples shown

use the custom type accelerators shown in Listing 9-1.

Once again, if remoting is enabled on the remote computers, you can create registry keys

and values with the Invoke-Command cmdlet. The Invoke-Command cmdlet has the bene�it

of accepting credentials, which allows you to run Windows PowerShell as a nonprivileged

user and invoke commands as an administrator.

c09.indd 212c09.indd 212 02/09/11 10:48 AM02/09/11 10:48 AM

213

Chapter 9: Performing Advanced Server Management

The �irst step in creating a new key or value with the .NET classes is opening the parent key

in read-write mode. You do this with the OpenSubKey() method of the Microsoft.Win32
.RegistryKey class. This method has an overload that accepts a Boolean value as its

second parameter. When this value is set to $True, the key is opened in read-write mode.

Note
An overload allows a programmer to have multiple methods with the same name that accept varying
types or quantities of arguments. In this case, you can call the OpenSubKey() method with one, two,
or three parameters. The first parameter is a string, and the second can be a Boolean as we used, or a
RegistryKeyPermissionCheck object. The third parameter would be a RegistryRights object. �

Creating a new key is accomplished with the CreateSubKey() method of the Microsoft
.Win32.RegistryKey class, and creating a value is accomplished with the SetValue()

method of the Microsoft.Win32.RegistryKey class. If not speci�ied, the SetValue()

method attempts to infer the value type.

The following example creates the new key PowerShellBible in the Software key of the

HKEY_Local_Machine hive, and adds the values named Example1 and Example2 on both

servers listed:

foreach ($Server in “FileServer01”,”FileServer02”)
{
$keyName = “SOFTWARE”
$newKeyName = “PowerShellBible”
$value1Name = “Example1”
$value2Name = “Example2”
$value1 = 123
$value2 = “Test”
$value1Type = “Dword”
$value2Type = “String”
$regHive = [reghive]”LocalMachine”
$regKey = [regkey]::OpenRemoteBaseKey($regHive,$Server)
$key = $regKey.OpenSubKey($keyName,$True)
$key.CreateSubKey($newKeyName)
$key = $regKey.OpenSubKey(“$keyName\$newKeyName”,$True)
$key.SetValue($value1Name, $value1, $value1Type)
$key.SetValue($value2Name, $value2, $value2Type)
}

Validating Network Configuration
on Remote Servers
Network con�iguration on remote servers can be retrieved with the Win32_
NetworkAdapterConfiguration class of the Get-WmiObject cmdlet. By default, this class

returns information on all network adapters on the computer. You can �ilter the returned

c09.indd 213c09.indd 213 02/09/11 10:48 AM02/09/11 10:48 AM

214

Part III: Server Management

data to only include adapters where IP is enabled to cut down on the extra data. The

following example retrieves information on each enabled adapter on the server Exch2010:

$WmiObject = @{
Class = “Win32_NetworkAdapterConfiguration”
ComputerName = “Exch2010”
Filter = “IPEnabled = ‘true’”
#The filter acts on the string ‘true’, not the
#Boolean $True.
}
Get-WmiObject @WmiObject
DHCPEnabled : False
IPAddress : {192.168.1.10, fe80::acee:78b3:604e:5b}
DefaultIPGateway : {192.168.1.1}
DNSDomain :
ServiceName : VMSMP
Description : External
Index : 16

As you can see, the information returned in the default view is rather sparse. Piping the

output through the Format-List cmdlet, passing the Property parameter with the value of

* returns all properties of each network adapter. On the network adapter on my server, this

is 71 properties. Some of the properties, like the DNSDomain above, will be empty.

Retrieving the DNS Settings
DNS settings are stored in the properties of the Win32_NetworkAdapterConfiguration

class. The following example shows the DNS settings for the server Exch2010:

$WmiObject = @{
Class = “Win32_NetworkAdapterConfiguration”
ComputerName = “Exch2010”
Filter = “IPEnabled = ‘true’”
}
Get-WmiObject @WmiObject | Format-List -Property dns*

Validating That Servers Use the Same DNS Settings
You can build on the previous example to gather DNS settings for a group of servers in a

foreach loop. Because there may be multiple network adapters in each server, the network

adapters are also handled in a foreach loop. Finally, the DNSDomainSuffixSearchOrder and

DNSServerSearchOrder properties are arrays that may have multiple values, so you cast those

to a string type, and replace spaces with a semicolon and a space to make them more readable.

This also allows those properties to be exported to a .csv �ile. The following example returns a

list of the DNS settings for the servers Exch2010, fileServer01, and PrintServer23:

$Servers = “Exch2010”,”fileServer01”,”PrintServer23”
$ServerDNS = @()

c09.indd 214c09.indd 214 02/09/11 10:48 AM02/09/11 10:48 AM

215

Chapter 9: Performing Advanced Server Management

foreach ($Server in $Servers)
{
$WmiObject = @{
Class = “Win32_NetworkAdapterConfiguration”
ComputerName = $Server
Filter = “IPEnabled = ‘true’”
}
$DnsSettings = @(Get-WmiObject @WmiObject)
foreach ($DnsSetting in $DnsSettings)
{
$Dns = “” | Select-Object -Property DNSHostName, DNSDomain,
DNSDomainSuffixSearchOrder, DNSEnabledForWINSResolution,
DNSServerSearchOrder, DomainDNSRegistrationEnabled,
FullDNSRegistrationEnabled
$TempSuffixSearch = [string]$DnsSetting.DNSDomainSuffixSearchOrder
$TempServerSearch = [string]$DnsSetting.DNSServerSearchOrder
$Dns.DNSHostName = $DnsSetting.DNSHostName
$Dns.DNSDomain = $DnsSetting.DNSDomain
$Dns.DNSDomainSuffixSearchOrder = $TempSuffixSearch.Replace(“ “,”; “)
$Dns.DNSEnabledForWINSResolution = $DnsSetting.DNSEnabledForWINSResolution
$Dns.DNSServerSearchOrder = $TempServerSearch.Replace(“ “,”; “)
$Dns.DomainDNSRegistrationEnabled = $DnsSetting.DomainDNSRegistrationEnabled
$Dns.FullDNSRegistrationEnabled = $DnsSetting.FullDNSRegistrationEnabled
$ServerDNS += $Dns
}
}
$ServerDNS

This example could easily be extended to save the results to a �ile or to gather DNS settings

for more servers.

Changing the Network Configuration
Changing the network con�iguration on remote servers can be accomplished with a

combination of the Get-WmiObject and Invoke-WmiMethod cmdlets.

Caution
Care should be taken because you can easily cause a server to lose connection to the network by passing
incorrect parameters, and the server may momentarily drop the network connection while changes take
effect. �

Modifying the DNS Suffix Search Order
Modifying the DNS suf�ix search order is accomplished with the Invoke-WmiMethod cmdlet,

passing the ComputerName, Class, Name, and ArgumentList parameters. The class used is

the Win32_NetworkAdapterConfiguration class. The ArgumentList parameter requires

an array of objects for the �irst value, and a $null for the second value. The method invoked

is the SetDNSSuffixSearchOrder() method.

c09.indd 215c09.indd 215 02/09/11 10:48 AM02/09/11 10:48 AM

216

Part III: Server Management

Note
The methods of the Win32_NetworkAdapterConfiguration class are documented at http://msdn
.microsoft.com/en-us/library/aa394217(v=VS.85).aspx. �

The following example sets the DNS suf�ix search order to contoso.com, contoso.co.us,

and the previous DNS suf�ix search order, in that order:

$WmiObject = @{
ComputerName = “Exch2010”
Class = “Win32_NetworkAdapterConfiguration”
}
$Nics = @(Get-WmiObject @WmiObject -Filter “IPEnabled = ‘true’”)
foreach ($Nic in $Nics)
{
$OldSuffix = $Nic.DNSDomainSuffixSearchOrder
$Suffix = “contoso.com”, “contoso.co.us” + $OldSuffix
$InvokeObject = @{
Name = “SetDNSSuffixSearchOrder”
ArgumentList = @($Suffix), $null
}
Invoke-WmiMethod @WmiObject @InvokeObject
}

Modifying the Server’s IP Address
Modifying an IP address can be accomplished by creating an object reference to the

network interface card with the Win32_NetworkAdapterConfiguration class of the

Get-WmiObject cmdlet, and calling the EnableStatic() method of that object.

The following example modi�ies the third octet of each IPv4 address to a 0. The third

octet of each DNS server IP address will also be changed to a 0.

$WmiObject = @{
ComputerName = “Exch2010”
Class = “Win32_NetworkAdapterConfiguration”
}
$ThirdOctet = 0
$NewDns = @()
$Nics = @(Get-WmiObject @WmiObject -Filter “IPEnabled = ‘true’”)
foreach ($Nic in $Nics)
{
[ipaddress]$OldIP = $($Nic.IPAddress -match “^\d.\d.\d.\d”)
$NewIp = $OldIP.GetAddressBytes()[0..1] -join “.”
the -join operator concatenates strings in the order
in which they appear. The “.” causes them to be
delimited by a dot as an IP address would be.
$NewIp = $NewIp, $ThirdOctet,$OldIP.GetAddressBytes()[3] -join “.”
$Subnet = $Nic.IPSubnet[0].ToString()
$OldDNS = @($nic.DNSServerSearchOrder)
foreach ($Dns in $OldDNS)

c09.indd 216c09.indd 216 02/09/11 10:48 AM02/09/11 10:48 AM

217

Chapter 9: Performing Advanced Server Management

{
[ipaddress]$InDns = $Dns
$OutDns = $InDns.GetAddressBytes()[0..1] -join “.”
$OutDns = $OutDns, $ThirdOctet,$InDns.GetAddressBytes()[3] -join “.”
$NewDns += $OutDns
}
$Nic.SetDNSServerSearchOrder($NewDns)
$Nic.EnableStatic($NewIp,$Subnet)
}

Gathering Data from Performance
Counters
Microsoft Windows operating systems and applications provide performance counters

designed to provide information on the health or usage of the application or operating

system. Hundreds of performance counters are available on any given system. Windows

PowerShell includes the Get-Counter cmdlet, which is designed to retrieve performance

counter data from the local and remote computers. Because so many counters are available

on any given computer, the Get-Counter cmdlet includes the ListSet parameter, which

allows you to determine counters that may be of importance in a given situation. The

following example shows which counter sets that target the processor are available on

the local computer:

Get-Counter -ListSet “Processor*” | Select-Object -Property CounterSetName
CounterSetName

Processor Information
Processor
Processor Performance

Now that you know that the local computer includes the counter set Processor, you can see

which counters that set includes by once again calling the Get-Counter cmdlet. This time, you

target the speci�ic set you are interested in and pipe the output through the Select-Object

cmdlet to list just the counters.

Get-Counter -ListSet “Processor” | Select-Object -Expand Counter
\Processor(*)\% Processor Time
\Processor(*)\% User Time
\Processor(*)\% Privileged Time
\Processor(*)\Interrupts/sec
...

Finally, you can start gathering data from a counter. In this case, you will be gathering data

from the \Processor(*)\% User Time counter. Once again, this is accomplished with the

Get-Counter cmdlet, passing the Counter parameter. When run with just the Counter

c09.indd 217c09.indd 217 02/09/11 10:48 AM02/09/11 10:48 AM

218

Part III: Server Management

parameter, the Get-Counter cmdlet returns only one set of data. Further parameters

enable you to set the SampleInterval and MaxSamples or to specify that the

cmdlet gathers data continuously using the Continuous switch parameter. The following

example gathers data from the local computer’s \Processor(*)\% User Time counter

every 3 seconds for 10 samples:

$Counter = @{
Counter = “\Processor(*)\% User Time”
SampleInterval = 3
MaxSamples = 10
}
Get-Counter @Counter

The parameter ComputerName enables you to gather data from remote computers. The

following example modi�ies the previous example to retrieve the \Processor(*)\% User
Time counter every 3 seconds for 10 samples from the server Exch2010:

$Counter = @{
Counter = “\Processor(*)\% User Time”
SampleInterval = 3
MaxSamples = 10
ComputerName = “Exch2010”
}
Get-Counter @Counter

You can use the ListSet parameter along with the ComputerName parameter to see which

counters are available on a remote computer.

Modifying Regional Settings on
Multiple Computers
Regional settings affect how the server processes numbers, dates, currency, keyboard

input, and so on. Windows operating systems include prede�ined settings for most

countries. As you can imagine, regional settings can be very complex. The regional settings

are stored in the registry in the HKEY_Current_User hive, under the Control Panel key in

the International subkey. Perhaps the simplest method of modifying regional settings

on remote computers is copying valid settings from one computer to another. This can be

easily accomplished with WMI. The following example copies the regional settings from

WinDC01 to WinDC02 and WinDC03:

$hive =”CurrentUser”
$keyName = “Control Panel\International”
$Computers = “WinDC02”, “WinDC03”
$Source = “WinDC01”
$Hive = [Microsoft.Win32.RegistryHive]$hive

c09.indd 218c09.indd 218 02/09/11 10:48 AM02/09/11 10:48 AM

219

Chapter 9: Performing Advanced Server Management

$SourceKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($Hive,$Source)
$SourceSubkey = $SourceKey.OpenSubKey($keyName)
$valueNames = $SourceSubkey.GetValueNames()
Foreach ($Computer in $Computers)
{
$regHive = [Microsoft.Win32.RegistryHive]$hive
$regKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($regHive,$Computer)
$Subkey = $regKey.OpenSubKey($keyName,$True)
foreach ($valueName in $valueNames)
{
$SourceValue = $SourceSubkey.GetValue($valueName)
$Subkey.SetValue($valueName,$SourceValue)
}
}

Managing Local Accounts
Local accounts can be managed with the DirectoryEntry class of the System
.DirectoryServices namespace. Windows PowerShell includes the [adsi] type

accelerator for this class.

Modifying Local Users and Groups
Modifying local users and groups can be accomplished by creating an object pointing to

the user or group using the [adsi] type accelerator. Modi�ications to user accounts are

saved to the computer by calling the SetInfo() method of the user object. Modi�ications to

groups are written to the computer immediately.

Note
When you use a type accelerator, you enclose it in square brackets. �

Once you have created a group object, you add members to the group by calling the Add()

method of the object. Group members can be either a local or domain user. A user can be

removed from a local group with the Remove() method of the group object. The following

example adds the domain user Contoso\karlm to the Backup Operators group on the

server FileServer01:

$Computer = “FileServer01”
$Member = “karlm”
$Domain = “Contoso”
$GroupName = “Backup Operators”
([ADSI]”WinNT://$Computer/$GroupName,group”).Add(“WinNT://$Domain/$Member”)

c09.indd 219c09.indd 219 02/09/11 10:48 AM02/09/11 10:48 AM

220

Part III: Server Management

Modifying the �inal line to remove the domain reference adds a local user to the group. This

is shown in the following example:

$Computer = “FileServer01”
$Member = “Operator”
$GroupName = “Backup Operators”
([ADSI]”WinNT://$Computer/$GroupName,group”).Add(“WinNT://$Member”)

You can also add a domain group to a local group by replacing the user’s name with the

group name in the $Member variable.

Removing users from local groups requires exactly the same syntax as adding users. The

only difference is that the Remove() method is called. The following example removes the

user contoso\bartb from the local group Power Users on the server Exch2010:

$Computer = “Exch2010”
$Member = “bartb”
$Domain = “Contoso”
$GroupName = “Power Users”
([ADSI]”WinNT://$Computer/$GroupName,group”).Remove(“WinNT://$Domain/$Member”)

You modify a user account much the same as you modify a group. As a security precaution,

many organizations rename the built-in administrator account to attempt to prevent

unauthorized access. The following example renames the Administrator account

on the server FileServer01 to ServerAdmin, sets the description of the account to

Local Administrative User, and sets the password to never expire. This �inal step is

accomplished by modifying the UserFlags property of the user object. The UserFlags

property is modi�ied by using the inclusive bitwise OR operator –bor. Notice that the

Rename() method must be called before the other methods.

$Computer = “FileServer01”
$UserName = “Administrator”
$DONT_EXPIRE_PASSWD = 0x10000
#Use the symbolic constant “DONT_EXPIRE_PASSWD” as it is
#easier to see what we are doing than the hexadecimal version
$User = ([ADSI]”WinNT://$Computer/$UserName”)
$User.Rename(“ServerAdmin”)
$User.Description = “Local Administrative User”
$User.UserFlags = $User.UserFlags.Value -bor $DONT_EXPIRE_PASSWD
$User.SetInfo()

Note
For more information on the various user flags, see http://msdn.microsoft.com/en-us/library/
aa772300%28v=VS.85%29.aspx. �

Creating and Deleting Local Users and Groups
Creating and deleting local users and groups can be accomplished with the [adsi] type

accelerator in much the same manner as modifying existing accounts. The methods

c09.indd 220c09.indd 220 02/09/11 10:48 AM02/09/11 10:48 AM

221

Chapter 9: Performing Advanced Server Management

used are the Create() and Remove() methods. The Create() method requires that the

SetInfo() method be called directly afterward, because the Create() method creates the

object only in memory.

The following example creates the new group WMI Users on the computer Exch2010, and

sets the description to WMI Users for the server. Notice the seemingly redundant use of

the Setinfo() method. This is required because the object does not exist on the computer

until after the initial SetInfo() call.

$Computer = “Exch2010”
$Group = ([ADSI]”WinNT://$Computer”).Create(“Group”, “WMI Users”)
$Group.SetInfo()
$Group.Description = “WMI Users for the server”
$Group.SetInfo()

The following example creates the new user wmiaccount on the server Exch2010 and sets

the password, description, and full name as indicated:

$Computer = “Exch2010”
$User = ([ADSI]”WinNT://$Computer”).Create(“User”, “wmiaccount”)
$User.SetPassword(“P@ssw0rdZero”)
$User.SetInfo()
$User.Description = “WMI User for the server”
$User.FullName = “WMI User”
$User.SetInfo()

Local users and groups are considered children of the computer, so when removing these

accounts, you reference the Children property of the computer. Unlike the Create()

method, the Remove() method removes the object from the computer directly; there is

no need to call the SetInfo() method. The following two examples remove the local user

wmiaccount and group WMI Users from the computer Exch2010:

$Computer = “Exch2010”
$User = “wmiaccount”
([ADSI]”WinNT://$Computer,computer”).Children.Remove(“WinNT://$Computer/$User”)
$Computer = “Exch2010”
$Group = “Wmi Users”
([ADSI]”WinNT://$Computer,computer”).Children.Remove(“WinNT://$Computer/$Group”)

Configuring Remote DCOM
The Distributed Component Object Model (DCOM) allows communication between objects

on different computers on a LAN or WAN, or over the Internet. Accessing WMI on remote

computers requires that you have the proper permissions to use DCOM and WMI on the

remote computer.

c09.indd 221c09.indd 221 02/09/11 10:48 AM02/09/11 10:48 AM

222

Part III: Server Management

Viewing DCOM Permissions
You can view DCOM permissions on a local computer or on a remote computer by querying

a registry key. The key is in the HKEY_Local_Machine hive, in the path Software\
Microsoft\Ole, and is a binary value known as MachineLaunchRestriction. Because

the value is a binary value, you cannot merely read the value and make sense of it.

Locally, the cmdlet Get-ItemProperty retrieves the data; however, you will need to

convert it to a Win32 security descriptor using the BinarySDToWin32SD() method of

the Win32_SecurityDescriptorHelper class, which is part of the System.Management
.ManagementClass class. The following example returns the binary data in the

MachineLaunchRestriction value on the local machine. As you can see from the small

sample shown, the data returned is a seemingly meaningless bunch of numbers.

(Get-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\Ole\).MachineLaunchRestriction
1
0
4
128
120
...

Because viewing the DCOM permissions is accomplished by reading the registry, and

reading a registry remotely can be accomplished with the Get-WmiObject cmdlet, I will

use this method in the following examples, which will work locally or remotely. The

following simple example expands on the previous example, converting the binary value

in MachineLaunchRestriction to a Win32 security descriptor. This example returns only

which accounts have permission to access DCOM on the server Server01. It does not return

what speci�ic permissions those accounts have.

$strcomputer = “Server01”
$ConverterObject = @{
TypeName = “System.Management.ManagementClass”
ArgumentList = “Win32_SecurityDescriptorHelper”
}
$Reg = [WMIClass]”\\$strcomputer\root\default:StdRegProv”
$DCOM = $Reg.GetBinaryValue(2147483650,`
“software\microsoft\ole”,”MachineLaunchRestriction”).uValue
$Converter = New-Object @ConverterObject
$DCOMDescriptor = ($Converter.BinarySDToWin32SD($DCOM)).Descriptor
foreach ($DACL in $DCOMDescriptor.dacl)
{
$Permission = ($DACL.Trustee).Name
Write-Output “$Permission has DCOM permission on $strcomputer”
}

You can display the speci�ic DCOM access permissions each account has by parsing the

discretionary access control list (DACL) objects returned from the previous example.

These DACLs contain an access mask, which will need to be converted from the binary

c09.indd 222c09.indd 222 02/09/11 10:48 AM02/09/11 10:48 AM

223

Chapter 9: Performing Advanced Server Management

form to be readable. You can use a hashtable to hold the possible values, and use Windows

PowerShell’s bitwise and comparison operator to convert the Win32 security descriptor.

The hashtable looks like this:

$DCOMConversion = @{}
$DCOMConversion.Add(0x2,”Local Launch”)
$DCOMConversion.Add(0x4,”Remote Launch”)
$DCOMConversion.Add(0x8,”Local Activation”)
$DCOMConversion.Add(0x10,”Remote Activation”)

An individual DACL access mask may be 19. Using the bitwise and operator would show

that the account has Remote Activation and Local Launch permissions to DCOM. The

typical DCOM security descriptor will have multiple DACLs listed. As you can see in the

previous example, you use a loop to gather information on each DACL.

Note
If you need a refresher on the bitwise and comparison operator, see the help topic Get-Help
about_Comparison_Operators. �

The script in Listing 9-2 returns the accounts that have DCOM and WMI permission and the

speci�ic permission granted on a computer of your choosing. The script, when run without

parameters, returns data for the local computer. When run with the optional Computer

parameter, the script returns DCOM permissions for the remote computer speci�ied.

LISTING 9-2

Get-DCOMPermission.ps1

Param (
[string] $Computer = “.”,
[System.Management.Automation.PSCredential] $Credential = $null
)
$DCOMConversion = @{}
$DCOMConversion.Add(0x2,”Local Launch”)
$DCOMConversion.Add(0x4,”Remote Launch”)
$DCOMConversion.Add(0x8,”Local Activation”)
$DCOMConversion.Add(0x10,”Remote Activation”)
$WMIConversion = @{}
$WMIConversion.Add(0x1,”Enable”)
$WMIConversion.Add(0x4,”Full Write”)
$WMIConversion.Add(0x2,”Method Execute”)
$WMIConversion.Add(0x8,”Partial Write Rep”)
$WMIConversion.Add(0x20,”Remote Enable”)
$WMIConversion.Add(0x10,”Write Provider”)
$WMIConversion.Add(0x20000,”Read Control”)
$WMIConversion.Add(0x40000,”Write Dac”)

continues

c09.indd 223c09.indd 223 02/09/11 10:48 AM02/09/11 10:48 AM

224

Part III: Server Management

LISTING 9-2 (continued)

$ConverterObject = @{
TypeName = “System.Management.ManagementClass”
ArgumentList = “Win32_SecurityDescriptorHelper”
}
$ACLObject = @{
Property = “Computer”,”Name”,”Type”,”Permission”
}
$WmiObject = @{
ComputerName = “$Computer”
Namespace = “root/cimv2”
Class = “__SystemSecurity”
}
if ($Credential)
{
$Object = @{
List = $True
Namespace = “root\default”
ComputerName = $Computer
Credential = $Credential
}
$Filter = @{
FilterScript = {$_.name -eq “StdRegProv”}
}
$Reg = Get-WmiObject @Object | Where-Object @Filter
$Security = Get-WmiObject @WmiObject -Credential $Credential
}
else
{
$Reg = [WMIClass]”\\$Computer\root\default:StdRegProv”
$Security = Get-WmiObject @WmiObject
}
$DCOM = $Reg.GetBinaryValue(
2147483650,”software\microsoft\ole”,
“MachineLaunchRestriction”).uValue
$Converter = New-Object @ConverterObject
$binarySD = @($null)
$result = $Security.PsBase.InvokeMethod(“GetSD”,$binarySD)
$DCOMDescriptor = ($Converter.BinarySDToWin32SD($DCOM)).Descriptor
$WMIDescriptor = ($converter.BinarySDToWin32SD($binarySD[0])).Descriptor
$RightsCollection = @()
foreach ($DCOMDACL in $DCOMDescriptor.dacl)
{
if ($DCOMDACL.AceType -eq 0)
{
$Perms = @()

c09.indd 224c09.indd 224 02/09/11 10:48 AM02/09/11 10:48 AM

225

Chapter 9: Performing Advanced Server Management

foreach ($key in $DCOMConversion.keys)
{
if ($DCOMDACL.AccessMask -band $key)
{
$Perms += $DCOMConversion[$key]
}
}
$Perm = ($Perms | ForEach-Object -Process {$_.ToString()}) -join “,”
$Permission = ($DCOMDACL.Trustee).Name
$PermsObject = “” | Select-Object @ACLObject
$PermsObject.Computer = $Computer
$PermsObject.Name = ($DCOMDACL.Trustee).Name
$PermsObject.Type = “DCOM”
$PermsObject.Permission = $Perm
$RightsCollection += $PermsObject
}
}
foreach ($DACL in $WMIDescriptor.dacl)
{
if ($DACL.AceFlags -eq 0)
{
$Perms = @()
foreach ($key in $WmiConversion.keys)
{
if ($DACL.AccessMask -band $key)
{
$Perms += $WMIConversion[$key]
}
}
$Perm = ($Perms | ForEach-Object -Process {$_.ToString()}) -join “,”
$PermsObject.Computer = $Computer
$PermsObject.Name = ($DACL.Trustee).Name
$PermsObject.Type = “WMI”
$PermsObject.Permission = $Perm
$RightsCollection += $PermsObject
}
}
Return $RightsCollection

If you need to pass credentials to the remote computer, you can use the optional

Credential parameter. The following example retrieves the DCOM permissions from the

computer Server01 using the credentials of the user contoso\johnb:

Get-Credential -Credential contoso\johnb
.\Get-DCOMPermission.ps1 -Computer “Server01” -Credential $cred

c09.indd 225c09.indd 225 02/09/11 10:48 AM02/09/11 10:48 AM

226

Part III: Server Management

The following example retrieves the DCOM permissions from the computer Mailbox01

using the credentials of the current user:

.\Get-DCOMPermission.ps1 -Computer “Mailbox01”

Granting a Domain User Remote DCOM Access
By default, DCOM is enabled for members of the local administrators group. Running scripts

with this level of permission could provide a huge security risk. Granting a domain user

account remote DCOM access allows data gathering without exposing the servers to this

security risk.

The script in Listing 9-3 con�igures DCOM and WMI permissions on the server Exch2010 to

allow the domain user contoso\burtb to run WMI queries in the root\cimv2 namespace and

perform other tasks via remote DCOM. This example could easily be modi�ied to provide WMI

access to other namespaces and to operate on multiple computers. This example requires that

the type accelerators from Listing 9-1 be loaded prior to running the example.

LISTING 9-3

Set-DCOMPermission Script

function Get-Sid
{
Param (
$DSIdentity
)
$ID = New-Object -TypeName System.Security.Principal.NTAccount($DSIdentity)
return $ID.Translate([System.Security.Principal.SecurityIdentifier]).toString()
}
$Server = “Exch2010”
$regHive = [reghive]”LocalMachine”
$sid = Get-Sid “contoso\burtb”
$keyName = “software\microsoft\ole”
$ValueName = “MachineLaunchRestriction”
$SDDL = “A;;CCWP;;;$sid”
$DCOMSDDL = “A;;CCDCRP;;;$sid”
$regKey = [regkey]::OpenRemoteBaseKey($regHive,$Server)
$DCOMKey = $regKey.OpenSubKey($keyName,$True)
$DCOM = $DCOMKey.GetValue($ValueName)
$SecurityObject = @{
ComputerName = $Server
Namespace = “root/cimv2”
Class = “__SystemSecurity”
}
$Security = Get-WmiObject @SecurityObject
$ConverterObject = @{

c09.indd 226c09.indd 226 02/09/11 10:48 AM02/09/11 10:48 AM

227

Chapter 9: Performing Advanced Server Management

TypeName = “System.Management.ManagementClass”
ArgumentList = “Win32_SecurityDescriptorHelper”
}
$Converter = New-Object @ConverterObject
$binarySD = @($null)
$result = $security.PsBase.InvokeMethod(“GetSD”,$binarySD)
$outsddl = $converter.BinarySDToSDDL($binarySD[0])
$outDCOMSDDL = $converter.BinarySDToSDDL($DCOM)
$newSDDL = $outsddl.SDDL += “(“ + $SDDL + “)”
$newDCOMSDDL = $outDCOMSDDL.SDDL += “(“ + $DCOMSDDL + “)”
$WMIbinarySD = $converter.SDDLToBinarySD($newSDDL)
$WMIconvertedPermissions = ,$WMIbinarySD.BinarySD
$DCOMbinarySD = $converter.SDDLToBinarySD($newDCOMSDDL)
$DCOMconvertedPermissions = ,$DCOMbinarySD.BinarySD
$result = $security.PsBase.InvokeMethod(“SetSD”,$WMIconvertedPermissions)
$DCOMKey.SetValue($ValueName, $DCOMbinarySD.binarySD)

Summary
In this chapter, you learned to manage Windows services and processes locally and

remotely. You examined how to read and write to the registry on the local computer as

well as remote computers. You examined and modi�ied network settings, discovered and

retrieved performance counters, and extended your knowledge of the registry to allow you

to modify regional settings on remote computers. You learned to manage local groups and

users on remote computers. Finally, you also examined DCOM permissions on the local

and remote computers.

In the next chapter, you work with Active Directory. You learn the prerequisites for

installing the module. Once your computer meets the requirements, you load the module

and learn to query Active Directory objects. You administer users and groups, and manage

service accounts and organizational units. You also examine password policies.

c09.indd 227c09.indd 227 02/09/11 10:48 AM02/09/11 10:48 AM

c09.indd 228c09.indd 228 02/09/11 10:48 AM02/09/11 10:48 AM

229

C H A P T E R

IN THIS CHAPTER
Installing Remote Server

Administration Tools and
cmdlets

Finding objects in Active
Directory

Managing users and groups

Manipulating objects and
organizational units

Scripting password policies

Using the ActiveRoles
Management Shell

Managing Active
Directory

When Active Directory was released with Windows Server

2000, it was immediately obvious that the GUI would not

be enough for administrators. A series of command-line

tools, resource kits, and even a COM scripting interface were released

over the years to help people automate their tasks. Activities such as

cleaning up stale objects, moving objects that meet specific criteria

between containers, bulk importing new users from other feeds,

or exporting data for reporting purposes are just a few of the many

types of tasks that make great candidates for automation. Although

the command-line tools have existed for years, it is no surprise that

administrators who deal with Active Directory day to day were some

of the earliest adopters of Windows PowerShell.

Windows PowerShell 1.0 was released with a type accelerator for

the COM interface known as the Active Directory Scripting Interface

(ADSI) in order to provide immediate scripting support for Active

Directory within Windows PowerShell. Though ADSI and the

underlying .NET classes that manage Active Directory provide a

workable solution, it is far from being Windows PowerShell-centric.

The interface does not have easy-to-use cmdlet names that follow the

verb-noun syntax, it does not offer a Windows PowerShell provider,

it does not have any native pipeline support, and it requires you to

understand the syntax and inner workings of ADSI. It was obvious that

these �laws created a gap in the Windows PowerShell-Active Directory

story. Fortunately for the Windows PowerShell community, this gap

was �illed by the ActiveRoles Management Shell from Quest software,

which could not only manage Active Directory, but could interface with

Quest’s ActiveRoles Server to provide additional functionality. This

shell, also known affectionately by administrators as the “Quest tools,”

has become the standard snap-in for managing Active Directory with

Windows PowerShell.

c10.indd 229c10.indd 229 03/09/11 10:55 AM03/09/11 10:55 AM

230

Part III: Server Management

With the release of Windows Server 2008 R2, Microsoft has �inally provided its own set of

cmdlets and a provider that enables you to manage Active Directory. This chapter focuses

on using these newer cmdlets with only a small section dedicated to the ActiveRoles

Management Shell.

Note
All three of the methods of managing Active Directory with Windows PowerShell are worth learning. Each
has advantages and disadvantages. Unfortunately, covering all three methods would require a complete book.
In order to provide focus for this chapter, we only look at one of the three methods in detail. Because Active
Directory is a Microsoft product, it makes sense to use the Microsoft module as the method of choice. As you
will soon see, strict requirements make these cmdlets unusable in certain Active Directory environments;
it’s at least important to know that the ActiveRoles Management Shell exists for this reason. The end of this
chapter provides a brief glance at how it is used. �

Installing and Using the Cmdlets
The Active Directory cmdlets come within a module. The method for installing it differs

depending on whether you are using a client or server version of Microsoft Windows.

Before doing anything, however, it’s important to understand the prerequisites for the

computer on which the module is getting installed and for Active Directory.

Prerequisites
The ActiveDirectory module can be installed on:

� Windows Server 2008 R2 Standard

� Windows Server 2008 R2 Enterprise

� Windows Server 2008 R2 Datacenter

� Windows 7 Professional

� Windows 7 Ultimate

Caution
You cannot install the module on Windows Server if you are installing it on the command line–only version of
Windows Server 2008 R2, Server Core. �

To install the module on your computer, you must have Windows PowerShell and the .NET

3.5.1 Framework installed on your computer.

To use the module in a Windows Server 2008 R2 domain, you must have the Active Directory

Web Service (ADWS) running on a domain controller in your environment. If you want to use

the module against a Windows Server 2008 or a Windows Server 2003 domain, you will need to

download and install the Active Directory Management Gateway Service on one of your servers.

To use the module on a Windows 7 computer, you must have at least one Windows Server

2008 R2 domain controller in your domain.

c10.indd 230c10.indd 230 03/09/11 10:55 AM03/09/11 10:55 AM

231

Chapter 10: Managing Active Directory

Note
These requirements are what cause many administrators to continue to use the ActiveRoles Management
Shell from Quest. The Quest tools are much more flexible with their operating system and domain
requirements, and they do not require any special web services on a server in your domain. �

A Word About Remoting
Because the ActiveDirectory module can be installed only on certain versions of Windows 7

and Windows Server 2008 R2, remoting is essential if you want to use the module on

any other Windows operating system. It is also necessary if you want to use the module

on Windows 7 to manage a domain that does not have a 2008 R2 domain controller. The

ActiveDirectory module is a great candidate to be used with implicit remoting so that you

can create a local proxy module that will connect through a remoting session via WinRM

to run the module on a remote server whenever you load the module on your computer.

This technique was discussed in Chapter 2. This will give you a way to load the module on

any computer that has Windows PowerShell 2.0 even if that computer does not meet the

requirements for installation.

Cross-Reference
For more information on the WinRM technique, review Chapter 2, “What’s New in Windows PowerShell V2.” �

Installation
The ActiveDirectory module is a part of the Remote Server Administration Tools (RSAT),

which is provided by Microsoft. These tools are available as a feature without requiring

installation on Windows Server 2008 R2, but need to be manually installed on Windows 7.

In addition, the technique required to enable the module differs slightly depending upon

which operating system you are using.

Enabling the Module on Windows Server
The installation of the ActiveDirectory module can be performed three ways on any of

the supported versions of Windows Server:

 1. It is installed by default whenever you install the AD DS or AD LDS server roles.

 2. It is installed automatically whenever you use dcpromo.exe to create a domain

controller.

 3. It can be installed manually with the Remote Server Administration Tools (RSAT)

feature on Windows Server 2008 R2.

Cross-Reference
You can perform the manual installation of the RSAT feature with the Add-WindowsFeature cmdlet that
comes with the ServerManager module discussed in Chapter 8, “Performing Basic Server Management”:

Add-WindowsFeature RSAT-AD-PowerShell �

c10.indd 231c10.indd 231 03/09/11 10:55 AM03/09/11 10:55 AM

232

Part III: Server Management

Installing the Module on Windows 7
To install the module on Windows 7, you’ll need to download and install RSAT for Windows 7

from the Microsoft website. After RSAT is installed, you will need to enable the feature by

performing the following steps:

 1. Click Start � Control Panel to open the Control Panel window.

 2. Click Programs to switch to the Programs section of the Control Panel.

 3. Underneath Programs and Features, click Turn Windows Features On or Off.
The Windows Features dialog box opens.

 4. Expand Remote Server Administration Tools � Role Administration Tools �
AD DS and AD LDS Tools.

 5. Select Active Directory Module for Windows PowerShell.

 6. Click OK.

Loading the Module
After the module is installed, you can load it into your Windows PowerShell session with:

Import-Module ActiveDirectory

Using the Active Directory Provider
After you import the ActiveDirectory module into your Windows PowerShell

session, a PSDrive named AD:\ is automatically created for you that binds to your

authenticated domain. If you would like to connect to another domain, an ADAM instance,

or an Active Directory Lightweight Directory Services (AD LDS) instance, you can use

New-PSDrive to do so. For example, the following will create a new drive called PSBibleAD

that uses the domain controller named DC1. It makes use of the splatting technique to pass

parameters to a cmdlet that was discussed in Chapter 2.

$Arguments = @{
 Name = ‘PSBibleAD’
 PSProvider = ‘ActiveDirectory’
 Root = ‘//RootDSE/’
 Server = ‘DC1’
}
New-PSDrive @Arguments

Browsing the drive is as simple as browsing the �ilesystem. You can use Set-Location or cd as

well as Get-ChildItem or dir. You can even use Move-Item or move to move objects between

containers, and you can use md or mkdir to assist in creating containers or organizational

units. Here’s an example of how you might interact with the provider using the default

AD:\ drive that is created when you load the module.

c10.indd 232c10.indd 232 03/09/11 10:55 AM03/09/11 10:55 AM

233

Chapter 10: Managing Active Directory

cd ad:
dir

Name ObjectClass DistinguishedName
---- ----------- -----------------
home domainDNS DC=home,DC=psbible,DC=com
Configuration configuration CN=Configuration,DC=home,DC=psbibl...
Schema dMD CN=Schema,CN=Configuration,DC=home...
DomainDnsZones domainDNS DC=DomainDnsZones,DC=home,DC=psbib...
ForestDnsZones domainDNS DC=ForestDnsZones,DC=home,DC=psbib...

cd ‘.\DC=home,DC=psbible,DC=com’
dir

Name ObjectClass DistinguishedName
---- ----------- -----------------
Builtin builtinDomain CN=Builtin,DC=home,DC=psbible,DC=com
Computers container CN=Computers,DC=home,DC=psbible,DC...
Domain Controllers organizationalUnit OU=Domain Controllers,DC=home,DC=p...
ForeignSecurityPr... container CN=ForeignSecurityPrincipals,DC=ho...
Infrastructure infrastructureUpdate CN=Infrastructure,DC=home,DC=psbib...
LostAndFound lostAndFound CN=LostAndFound,DC=home,DC=psbible...
Managed Service A... container CN=Managed Service Accounts,DC=hom...
NTDS Quotas msDS-QuotaContainer CN=NTDS Quotas,DC=home,DC=psbible,...
Program Data container CN=Program Data,DC=home,DC=psbible...
System container CN=System,DC=home,DC=psbible,DC=com
Users container CN=Users,DC=home,DC=psbible,DC=com

md ‘OU=SQLServers’

Name ObjectClass DistinguishedName
---- ----------- -----------------
SQLServers organizationalUnit OU=SQLServers,DC=home,DC=psbible,D...

cd ‘.\CN=Computers’
dir

Name ObjectClass DistinguishedName
---- ----------- -----------------
SERVER1 computer CN=SERVER1,CN=Computers,DC=home,DC...
SHAREPOINT1 computer CN=SHAREPOINT1,CN=Computers,DC=hom...
SQL1 computer CN=SQL1,CN=Computers,DC=home,DC=ps...

move ‘.\CN=SQL1’ ‘..\OU=SQLServers’

c10.indd 233c10.indd 233 03/09/11 10:55 AM03/09/11 10:55 AM

234

Part III: Server Management

Note
You may have noticed that moving between the containers and organizational units (OUs) is not quite as
straightforward as you might expect. You need to specify CN= or OU= along with the name of object you
would like to browse to when using cd or Set-Location. Because you need to use the equal sign in these
container names, you must enclose everything in quotes. This makes tab completion essential when moving
between containers in the directory. For example, ‘cd CN=[tab]’ cycles through all of the containers in
your current directory.

As essential as this is, it is also impossible to use tab completion for any container outside of ones in the
current directory because the nature of an AD path is to have the subfolders first in the string. Take the
following path as an example: AD:\OU=SQLServers,DC=home,DC=psbible,DC=com. It would be impossible
to type cd AD:\OU=[tab] to cycle through anything but OUs underneath the root of AD:\ because at the
time you hit Tab, the only information you have given the parser about the location of potential OUs is the
AD:\ that begins the path. �

Querying Active Directory
Though the Active Directory provider is nice for browsing the directory, it falls short

in much of the functionality administrators require when scripting against Active

Directory. Fortunately, the ActiveDirectory cmdlets pick up where the provider

leaves off.

Users, Groups, and Computers
The primary purpose of many Active Directory scripts is to interact with users,

groups, or computers. Many tasks require you to interact with more than just one. The

ActiveDirectory module provides a series of Get cmdlets to help you work with all of the

objects in Active Directory.

The Get-AD Cmdlets
Three speci�ic cmdlets enable you to query users, groups, and computers: Get-AdUser,

Get-ADGroup, and Get-ADComputer. Each of these cmdlets has an identical set of

parameters. At their simplest, you may use only the Identity parameter to �ind a single

object if you know its exact name:

Get-ADUser -Identity ‘Administrator’

The Identity parameter is a positional parameter. This means that if you omit the parameter

name, you are implying that the argument passed should be supplied to the Identity

parameter. For example, you can retrieve the Domain Admins group by running the following

line of code:

Get-ADGroup ‘Domain Admins’

The versatility of this parameter is impressive. Besides the sAMAccountName, you can pass

a dn, the objectSid, or the objectGUID of the object you would like to retrieve.

c10.indd 234c10.indd 234 03/09/11 10:55 AM03/09/11 10:55 AM

235

Chapter 10: Managing Active Directory

Get-ADComputer ‘CN=DC1,OU=Domain Controllers,DC=home,DC=psbible,DC=com’
Get-ADUser ‘S-1-5-21-3032037283-1324540821-3147598018-1114’
Get-ADUser ‘7df539b8-589b-4e8f-a9eb-78b6b0c9be0b’

Searching with Filters
Whether you need to query the directory for a single object or multiple objects, the Filter

parameter provides you with an ef�icient way to search for objects in Active Directory.

When you use the Filter parameter, the processing of the search occurs on the server. This

is a much better technique to �ind what you are looking for than returning all of the objects

to your Windows PowerShell session and then piping them to Where-Object for Windows

PowerShell to do the processing.

A �ilter can be enclosed in either quotes or brackets, and it must consist of a speci�ic syntax.

Fortunately, the syntax is very similar to something you would �ind if Where-Object

was used. The following is an example of a simple �ilter that �inds all computers that are

running a server version of Windows:

Get-ADComputer -filter { OperatingSystem -like ‘Windows Server*’}

The Filter parameter can also take a single asterisk to mean include everything. For

example, the following line returns all groups in AD:

Get-ADGroup -Filter *

Filters can be enclosed in parentheses, and their logic can be joined together with either -and

or -or:

Get-ADUser -Filter {(sn -eq ‘Snover’) -or (title -like ‘C*O’)}

The parentheses and operators in a �ilter may consist of multiple lines. For example, the

following bit of code shows how you can format a complex �ilter to make it look a little bit

nicer. The �ilter in the example will retrieve all user accounts that have been created in the

last �ive days in the state of New York that have an of�ice phone number that starts with

212 or 718.

$date = (Get-Date).AddDays(-5)
Get-ADUser -Filter {
 (whenCreated -gt $date) -and (
 (state -eq ‘NY’) -and (
 (OfficePhone -like ‘212-*’) -or
 (OfficePhone -like ‘718-*’)
)
)
}

Table 10-1 shows some of the different operators that are supported within a �ilter.

c10.indd 235c10.indd 235 03/09/11 10:55 AM03/09/11 10:55 AM

236

Part III: Server Management

TABLE 10-1

Filter Operators

Operator Description

-eq Equal to

-ne Not equal to

-lt Less than

-gt Greater than

-le Less than or equal to

-ge Greater than or equal to

-like The same as -eq, but supports asterisks as wildcards

-notlike The same as -ne, but supports asterisks as wildcards

-bor Bitwise or

-band Bitwise and

-not Not (exclamations do not work in filters)

To view all of the information available about �iltering in Active Directory with the cmdlets,

you should read through the contents of Get-Help about_ActiveDirectory_Filter.

Note
Filtering could take up an entire chapter in this book. The module’s implementation of filtering is what makes
these cmdlets stand out, so it is important to read through this particular bit of help documentation. One
thing that becomes obvious very quickly is that filtering is much more intuitive and easier to learn with the
ActiveDirectory module’s syntax than the traditional syntax found in LDAP queries. Many of the examples
shown in Get-Help about_ActiveDirectory_Filter are there to show you just how much easier it is. �

If you need to use an LDAP �ilter for any reason, you can still do so with the cmdlets by

using the LDAPFilter parameter:

Get-ADUser -LDAPFilter ‘(&(name=A*)(lastLogon>=128812906535515110))’

Controlling the Scope of a Search
The ActiveDirectory provider works very nicely with the Get cmdlets. If you are working in

a container or organizational unit, the cmdlets search all sublevels underneath your current

level. For example, the following retrieves all users found in the Of�ices OU and any sub-OUs:

cd ‘ad:\OU=Offices,DC=home,DC=psbible,DC=com’
Get-ADUser -Filter *

c10.indd 236c10.indd 236 03/09/11 10:55 AM03/09/11 10:55 AM

237

Chapter 10: Managing Active Directory

If you want to specify another starting point for your search without changing location

within the provider, you can do so by using the SearchBase parameter. For example, the

following retrieves exactly the same information as the above code.

Get-ADUser -Filter * -SearchBase ‘OU=Offices,DC=home,DC=psbible,DC=com’

In addition, you can limit the scope of how deep the searching should go with the

SearchScope parameter. The following example restricts the search to only the Of�ices OU.

If a user exists in this OU, the user will be returned. Any locations underneath this OU, for

example a NewYork or California OU, will not be searched.

Get-ADUser -Filter * -SearchScope OneLevel

Working with Properties
Each of the Get cmdlets has a Properties parameter that enables you to specify the

properties you are interested in retrieving about the object from AD. By default, each of

the cmdlets in the preceding section gets a subset of all of the properties that are available

for each object it retrieves. You can force the cmdlets to return all of the properties for an

object or set of objects by using an asterisk in the Properties parameter:

Get-ADGroup -Identity PSBible -Properties *

Though this is useful for exploring objects in the shell, it is inef�icient to do this for multiple

objects if you do not actually need all of the properties. By specifying the exact properties

you care about, you can greatly increase the speed of your scripts. The following line shows

how you can get the name and title for all users in your Active Directory:

Get-ADUser -Filter * -Properties name,title

Note
A few properties are retrieved regardless of what is passed to the Properties parameter:
DistinguishedName, Enabled, GivenName, Name, ObjectClass, ObjectGUID, SamAccountName, SID,
Surname, and UserPrincipalName. It is not necessary to specify these properties when using the Properties
parameter; however, it will not return an error so it is safe to specify them for the purpose of consistency
within your scripts. If you truly only wanted specific properties, you would need to pipe your command into a
Select-Object to ensure that only the properties you specified are returned in your script. �

Get-ADObject
On some occasions, you may be searching for objects that cross the boundaries of the object

classes. For this reason, there is also a generic Get-ADObject you can use to return more

than one type of object. For example, the following section of code returns all of the users

and groups that have names that start with the letter a:

Get-ADObject -Filter {
 (
 (ObjectClass -eq ‘group’) -or

c10.indd 237c10.indd 237 03/09/11 10:55 AM03/09/11 10:55 AM

238

Part III: Server Management

 (ObjectClass -eq ‘user’)
) -and (
 (Name -like ‘a*’)
)
}

You can also use the Get-ADObject cmdlet to return things that aren’t users, groups, or

computers. In other words, it acts as a generic tool to retrieve objects regardless of their

object class.

Querying Group Membership
When scripting against Active Directory, two group membership tasks are very common.

The �irst is the ability to �ind the groups that an object belongs to, and the second is the

ability to �ind all of the users that belong to a speci�ic group.

Getting the Groups an Object is a Member of
You can get the groups that an Active Directory object belongs to in two ways. First, you

can ask for the MemberOf property when you use one of the Get cmdlets:

Get-ADUser jsnover -Properties MemberOf

This returns all groups that are in the MemberOf attribute in LDAP, but it has two drawbacks.

First, you will only receive the distinguished name (DN) for the groups. Second, it will miss

at least one key group, Domain Users.

The alternative to using LDAP is to use Get-ADPrincipalGroupMembership. This cmdlet

not only gets you the missing group, but also retrieves the actual object you would

normally get from Get-ADGroup. This allows you to use the return objects further down

in a Windows PowerShell pipeline. It also allows you to pipe users, computers, service

accounts, or other groups to it in order to �ind out what groups they belong to. Here’s an

example of how the cmdlet may be used. Both lines do exactly the same thing.

Get-ADPrincipalGroupMembership -Identity JohnW

Get-ADUser JohnW |Get-ADPrincipalGroupMembership

You can also pipe the groups into Get-ADGroup to get additional properties for the groups,

as shown in following example. It returns the name of each group along with the date the

group was created.

Get-ADUser JohnW |
 Get-ADPrincipalGroupMembership |
 Get-ADGroup -Properties whenCreated |
 Select name,whencreated

Although you can pipe a whole set of objects to Get-ADPrincipalGroupMembership, it is

more common to be able to process multiple objects in a foreach loop in order to maintain

c10.indd 238c10.indd 238 03/09/11 10:55 AM03/09/11 10:55 AM

239

Chapter 10: Managing Active Directory

a reference to the original object. The following example shows this technique. It will get all

users in the domain and create a CSV �ile that lists a user with every group that they are a

member of.

$report = @()
foreach ($user in (Get-ADUser -filter *)) {
 $groups = $user |Get-ADPrincipalGroupMembership
 foreach ($group in $groups) {
 $report += New-Object psobject -Property @{
 User = $user.name
 Group = $group.name
 }
 }
}
$report |export-csv d:\report.csv -Encoding ASCII -NoTypeInformation

If you need to �ind out what groups a user belongs to in another domain, you can use the

ResourceContextServer parameter to specify a server in that domain.

Get-ADUser johnW |
 Get-ADPrincipalGroupMembership -ResourceContextServer dc1.domain2.com

Getting Members of a Group
There is an LDAP property called Member that you can retrieve from a query to retrieve all

of the members of a group. Just like the results of the MemberOf property, it returns a list of

all distinguished names. If the DN is the only bit of information you care about, it’s a very

easy way to get the immediate members of a group:

Get-ADGroup NYC -Properties Member

The ActiveDirectory module also provides a cmdlet called Get-ADGroupMember that you

can use to retrieve the object version of the members of a group. For example, the following

code retrieves the name and object type for all members of the group named NY.

Get-ADGroupMember -Identity NY |select name,objectClass

You can pipe group objects to Get-ADGroupMember. For instance, the following line does the

same thing as the last example:

Get-ADGroup NY |Get-ADGroupMember |select name,objectClass

The most important switch is the Recursive. It is used to get all of the nested members

within a group. For example, in the following line, if there is a group within the NY group

called NYC that has user objects in it, it will return all of the users in NYC as well as any

users who are directly in the NY group:

Get-ADGroup NY |Get-ADGroupMember -Recursive

c10.indd 239c10.indd 239 03/09/11 10:55 AM03/09/11 10:55 AM

240

Part III: Server Management

Caution
When you use the Recursive switch, the cmdlet goes through every group that the object is a member of,
and then every group those groups are members of, all the way through the hierarchy. One small caveat to be
careful of is that when Get-ADGroupMember is used with the Recursive switch, it will return an actual group
object only if there are no members within that particular group. If there are members within the group, it
returns the direct member within them, and then recursively goes through any additional groups. In nearly all
scenarios, this is actually what you want, but if you need to retrieve all of the group names, even if they have
members, you will need to write a bit of custom code to do that. �

User and Group Administration
Finding users, groups, and group membership is useful for reporting, but it doesn’t do much

in terms of automation. In this section, you look at how you can create, modify, and delete

user and group objects in Active Directory with the ActiveDirectory module.

Creating Users and Groups
New users are created with New-ADUser. At the very minimum, a user can be created and

enabled with a valid password by running the following bit of code:

$pass = ConvertTo-SecureString ‘P@ssw0rd1’ -AsPlainText -Force
New-ADUser jack -AccountPassword $pass -Enabled $true

You may use additional parameters to specify AD attribute information during the creation

of the user:

New-ADUser kate -AccountPassword $pass -Enabled $true -PostalCode 11211

The splatting technique will help you maintain scripts that use this cmdlet with a long list

of parameters:

$Arguments = @{
 Name = ‘hurley’
 AccountPassword = $pass
 Enabled = $true
 PostalCode = ‘10016’
 Office = ‘NYC’
 Department = ‘Windows Engineering’
}
New-ADUser @Arguments

If you want to use an existing user as a template, you may do so by piping a user object

returned from Get-ADUser into New-ADUser:

$user = Get-ADUser hurley -Properties PostalCode,Office,Department
$user |New-ADUser -Name ben -SamAccountName ben -AccountPassword $pass

c10.indd 240c10.indd 240 03/09/11 10:55 AM03/09/11 10:55 AM

241

Chapter 10: Managing Active Directory

It is not possible for Get-ADUser to have a parameter for every possible property you would

like to set. If you need to set an attribute during the creation of a user and a parameter

does not exist for that attribute, you may use the OtherAttributes parameter. This is

useful for custom and uncommon attributes. In the following example, you can see how the

OtherAttributes parameter works. You should note that the title attribute actually has

a parameter. Even though this is the case, you can still specify the attribute name in the

OtherAttributes parameter. This makes the OtherAttributes parameter �lexible enough

to handle all of the attributes for an object.

$atts = @{
 msTsAllowLogon = $true
 title = ‘CEO’
}
New-ADUser sawyer -AccountPassword $pass -Enabled $true -OtherAttributes $atts

As you have seen with many of the other cmdlets, the New-ADUser cmdlet is sensitive to

the context of the provider. You can browse to the location in AD where you would like

to create the user prior to using New-ADUser to have that user created in the location you

have browsed to:

cd ‘AD:\OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
New-ADUser jacob -AccountPassword $pass -Enabled $true

You can also specify the path where the user should be created by using the Path parameter:

$path = ‘OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
New-ADUser MrEcho -AccountPassword $pass -Enabled $true -Path $path

Groups are similarly created with New-ADGroup. This cmdlet may be called minimally with

the Name and GroupScope parameter. The Name parameter is positional and does not need

to be speci�ied.

New-ADGroup Dharma1 -GroupScope Universal

The following example shows the most common set of parameters used with New-ADGroup:

$arguments = @{
 Name = ‘Dharma2’
 DisplayName = ‘The Swan’
 Description = ‘Where the button is pushed’
 GroupScope = ‘Global’
 GroupCategory = ‘Security’
 Path = ‘OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
}
New-ADGroup @arguments

Both the New-ADUser and the New-ADGroup cmdlets support a PassThru parameter. This

parameter returns the object you have just created. It is useful if there is more you need

c10.indd 241c10.indd 241 03/09/11 10:55 AM03/09/11 10:55 AM

242

Part III: Server Management

to do with the user or group after you have created it. For example, you could display

the information to the screen so that the operator of the script can verify that what was

created is what was expected.

$group = New-ADGroup Dharma3 -GroupScope ‘DomainLocal’ -PassThru
“Group Created: {0}” -f $group.name
“Group Scope: {0}” -f $group.GroupScope
“Group Category: {0}” -f $group.GroupCategory

Modifying Properties
The database of information stored within Active Directory is often heavily relied on by

multiple systems within a company. Because of this, it’s very important that organizations

keep their Active Directory attributes up to date. This can be a tedious task without the

help of scripting. The ActiveDirectory module gives you a very �lexible way of scripting

logic into changes that you may need to make.

User properties are modi�ied, created, or deleted with Set-ADUser, and group properties

are managed by Set-ADGroup. Both cmdlets are similar in how they work. The main

difference is that each cmdlet has its own set of properties to help you work with the

common properties you will �ind for the object. For example, to convert a group into a

global group, you would run the following.

Set-ADGroup Dharma1 -GroupScope ‘Global’

Here’s an example that uses Set-ADUser. It sets the Office attribute to NY for all users that

are found underneath the NY OU.

cd ‘AD:\OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
$users = Get-ADUser -Filter *
foreach ($user in $users) {
 $user |Set-ADUser -Office ‘NY’
}

The Instance parameter is used to modify a changed object that was returned from Get-
ADUser or Get-ADGroup.

$group = Get-ADGroup Dharma2 -Properties DisplayName,Description
$group.DisplayName = ‘The Orchid’
$group.Description = ‘Turn the wheel and come home’
Set-ADGroup -Instance $group

For attributes that do not have parameters, you can pass a hash table to the Replace

parameter. You can also use the Clear parameter to specify that an attribute should be set

to nothing.

Set-ADUser sawyer -Clear title -Replace @{msTsAllowLogon = $false}

c10.indd 242c10.indd 242 03/09/11 10:55 AM03/09/11 10:55 AM

243

Chapter 10: Managing Active Directory

The Add and Remove parameter can be used for attributes that take multiple values.

Set-ADUser sawyer -Add @{otherTelephone = ‘555-1212’,’555-1234’}
Set-ADUser sawyer -Remove @{otherTelephone = ‘555-1234’}

Note
Even though this section focuses on users and groups, it should be noted that computer objects have identical
cmdlets to help you manage them. Just as there is a Get-ADComputer, there is also a New-ADComputer and
Set-ADComputer. �

Working with Group Membership
You can modify group memberships within the administrative tool entitled Active Directory

Users and Computers in two different ways. You can either double-click a group and add or

remove users to that group, or double-click a user and add or remove groups from that user’s

membership. The ActiveDirectory module provides cmdlets that let you use both of these

approaches in Windows PowerShell.

Adding and Removing Members of a Group
The cmdlets provided to enable you to add or remove users from a given group are

Add-ADGroupMember and Remove-ADGroupMember. The following two lines of code show

how this cmdlet can be used on its own or through the pipeline:

Add-ADGroupMember Dharma1 -Members jack
Get-ADGroup Dharma1 |Add-ADGroupMember -members kate,hurley

The following example shows how you can use Remove-ADGroupmember. When this cmdlet

is used, it will normally prompt you for con�irmation that you want to perform the task.

You may override this prompt by specifying the Confirm parameter with the value $false.

The exact syntax for this is -Confirm:$false.

Remove-ADGroupMember Dharma1 -Members jack -Confirm:$false

This �inal example shows a solution to a real-world problem. It removes all of the members

of a group and then adds those users to another group.

$group = Get-ADGroup Dharma1
$members = $group |Get-ADGroupMember
$group |Remove-ADGroupMember -Members $members -Confirm:$false

Add-ADGroupMember Dharma2 -Members $members

Adding and Removing Groups from a User
The cmdlets provided to enable you to add or remove groups from a user or set of users are

Add-ADPrincipalGroupMembership and Remove-ADPrincipalGroupMembership. For

example, the following uses Add-ADPrincipalGroupMembership to add a user to two groups.

c10.indd 243c10.indd 243 03/09/11 10:55 AM03/09/11 10:55 AM

244

Part III: Server Management

Add-ADPrincipalGroupMembership sawyer -MemberOf Dharma1,Dharma2

The following example shows how Remove-ADPrincipalGroupMembership may be used. It

speci�ically removes a user from all groups except the Domain Users group.

$user = Get-ADUser sawyer
$groups = $user |Get-ADPrincipalGroupMembership |where {
 $_.name -ne ‘Domain Users’
}
$user |Remove-ADPrincipalGroupMembership -MemberOf $groups -Confirm:$false

Common Tasks
When dealing with users and groups in Active Directory, you may choose to add some

automation for a few common tasks.

Enabling and Disabling Accounts
You already know that you can set any AD attribute, including the Enable attribute,

using the Set cmdlets. There is, however, an easier way to go about enabling or disabling

an account. The ActiveDirectory module comes with an Enable-ADAccount cmdlet

you can use to enable any AD account in your domain with the exception of an Active

Directory snapshot or a read-only domain controller. The syntax for this cmdlet is very

straightforward. It can be used with the Identity parameter or you can pipe an object

retrieved with one of the Get commands to it:

Enable-ADAccount -Identity TheKraken
Get-ADUser TheKraken |Enable-ADAccount

Conversely, you can disable accounts using Disable-ADAccount with identical syntax:

Disable-ADAccount -Identity TheKraken
Get-ADUser TheKraken |Disable-ADAccount

Unlocking Users
Unlocking an account is as simple as enabling or disabling an account. You use the Unlock-
ADAccount cmdlet to do this:

Unlock-ADAccount -Identity TheKraken
Get-ADUser TheKraken |Unlock-ADAccount

Resetting Passwords
Earlier in this chapter, you saw how you can create a new user and pass that user a

default password. Though you could use this technique with the Set-ADUser cmdlet, the

ActiveDirectory module gives you an easy way to do this with the Set-ADAccountPassword

cmdlet. This cmdlet can be used by an end user to change his own password.

c10.indd 244c10.indd 244 03/09/11 10:55 AM03/09/11 10:55 AM

245

Chapter 10: Managing Active Directory

$oldpass = Read-Host -Prompt “Enter Old Password” -AsSecureString
$newpass = Read-Host -Prompt “Enter New Password” -AsSecureString
Set-ADAccountPassword $env:username -OldPassword $oldpass -NewPassword $newpass

 Set-ADAccountPassword can also be used by an administrator to reset a password:

$pass = ConvertTo-SecureString ‘P@ssw0rd1’ -AsPlainText -Force
Set-ADAccountPassword JohnW -NewPassword $pass -Reset

Here is a real-world example that shows how an administrator can change a password for

all the users in an OU:

$pass = Read-Host -Prompt “Enter Password” -AsSecureString
cd ‘AD:\OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
Get-ADUser -Filter * |Set-ADAccountPassword -NewPassword $pass -Reset

Creating Reports with Search-ADAccount
A few queries are so common to an Active Directory administrator that the ActiveDirectory

module has provided a single cmdlet to perform them all. Table 10-2 shows a list of

parameters you can use to have the Search-ADAccount perform a speci�ic query. It also

shows any required supporting parameters.

TABLE 10-2

Possible Queries Using Search-ADAccount

Parameter Query

AccountDisabled Finds all disabled accounts

AccountExpired Finds accounts where the account’s expiration date has passed

AccountExpiring Finds accounts that are expiring in a given timeframe or a specific date

AccountInactive Finds accounts that have not logged in within a given timeframe or a
specific date

LockedOut Finds all accounts that are locked out

PasswordExpired Finds all accounts that have expired passwords

PasswordNeverExpires Finds all accounts that have a password that is not configured to expire

Here are some examples of how you can use Search-ADAccount. The �irst one retrieves a

list of all computer accounts that are locked out.

Search-ADAccount -LockedOut -ComputersOnly

c10.indd 245c10.indd 245 03/09/11 10:55 AM03/09/11 10:55 AM

246

Part III: Server Management

The following example retrieves a list of all of the disabled accounts and then pipes them into

Enable-ADAccount. The effect is that it enables all the disabled accounts in Active Directory.

It should be obvious, but this one is probably not one you want to run in production.

Search-ADAccount -AccountDisabled |Enable-ADAccount

AccountExpiring and AccountInactive require the use of either the DateTime parameter

or TimeSpan. In addition, any query can be limited to computers or users only by using

the appropriate ComputersOnly or UsersOnly switch. The following two lines show all

the users that have not logged in since January 1, 2011, and list all the accounts that are

expiring after 10 days:

Search-ADAccount -AccountInactive -DateTime ‘1/1/2011’ -UsersOnly

Search-ADAccount -AccountExpiring -TimeSpan 10

Managed Service Accounts
Many companies have policies in place that ensure that all service accounts have their

passwords reset at regular intervals. This can be an administrative nightmare because

in most organizations, every service requires its own password. In addition, there is the

potential that the act of changing a service account’s password may accidentally bring

down production systems if a password is not set in the appropriate place for the service.

Microsoft’s solution to this problem is a new feature included with Windows Server

2008 R2: managed service accounts. These accounts are special user accounts in Active

Directory that perform automated password resets while updating the appropriate

location within a server to ensure that the passwords are never out of synch with the

services that are con�igured to use them. Currently, the ActiveDirectory module with

Windows PowerShell is the only way you can install one of these accounts on a computer;

there is no GUI available.

Creating Service Accounts
The �irst step in using a service account is to create one within your Active Directory. You

do this with the New-ADServiceAccount cmdlet:

New-ADServiceAccount ‘Sqlserv1’

Installing Service Accounts on a Computer
Once the account is created, it can be installed on the computer that will use the service

account with the Install-ADComputerServiceAccount cmdlet. This cmdlet must be run

on the computer that will use the account. If the following were run on Server1, it would

install the Sqlserv1 account on that computer so that it can be used to run services:

Install-ADServiceAccount Sqlserv1

c10.indd 246c10.indd 246 03/09/11 10:55 AM03/09/11 10:55 AM

247

Chapter 10: Managing Active Directory

Using a Managed Service Account
After a service account is installed, it can be used to start any service running on a computer.

Within the properties of a service in services.msc, the service account is simply speci�ied in the

Log On tab with the syntax domain\username$ with a blank password, as shown in Figure 10-1.

FIGURE 10-1

Configuring a service to use a managed service account

Even though the password and the coordination of the password changes on the computer that

is using it will forever be managed by Active Directory, there may be occasions when you want

to force a password to be changed. If so, you can run Reset-ADServiceAccountPassword on

the computer that has the service account installed to force a password change.

Managing Organizational Units
Organizational units (OUs) make up the structure of the directory within Active Directory.

They can be used to set policies on objects, to create logical groupings of objects, or to set

layers of security on the objects that they contain. This section looks at how you can create

these structures and maneuver the objects within them.

Moving Active Directory Objects
Earlier in the chapter, you saw a quick example of how to move a computer object using the

ActiveDirectory provider. Here is a sample as a refresher:

cd ‘ad:\OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
move .\CN=jack .\OU=NYC

c10.indd 247c10.indd 247 03/09/11 10:55 AM03/09/11 10:55 AM

248

Part III: Server Management

The ActiveDirectory module also provides a Move-ADObject cmdlet to facilitate moving

objects around the directory.

Move-ADObject jack -TargetPath ‘OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’

You can also use Move-ADObject in the pipeline after a Get-ADUser command.

$target = ‘OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
Get-ADUser jack |
 Move-ADObject -TargetPath $target

The pipeline support also works nicely for a large set of users. For example, the following

moves all users in the NY OU into the NYC OU:

cd ‘ad:\OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
Get-ADUser -Filter * -SearchScope OneLevel |
 Move-ADObject -TargetPath $target

You can use the Server parameter when you want to transfer the object to another domain.

$arguments = @{
 Identity = ‘jack’
 Server = ‘server2.psbible2.com’;
 TargetPath = ‘CN=User,DC=home,DC=psbible2,DC=com’
}
Move-ADObject @arguments

Creating Organizational Units
Earlier in this chapter, you brie�ly saw how to create an OU using the provider:

cd ‘ad:\OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
md ‘OU=Brooklyn’

In addition, the New-ADOrganizationalUnit cmdlet can also be used:

cd ‘ad:\OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
New-ADOrganizationalUnit Bronx

If you would rather not use the provider, you can specify the target location with the Path

parameter:

$location = ‘OU=Brooklyn,OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
New-ADOrganizationalUnit Greenpoint -Path $location

The following example shows some of the additional parameters you can specify when

using New-ADOrganizationalUnit:

$arguments = @{
 Name = ‘Williamsburg’;

c10.indd 248c10.indd 248 03/09/11 10:55 AM03/09/11 10:55 AM

249

Chapter 10: Managing Active Directory

 Path = $location;
 City = ‘Williamsburg’
 Country = ‘USA’
 PostalCode = ‘11211’
 State=’NY’
 ManagedBy = ‘jack’
}
New-ADOrganizationalUnit @arguments

New-ADOrganizationalUnit also support the Instance parameter. This allows you to use

another OU as a template.

$ou = Get-ADOrganizationalUnit -Filter {
 Name -eq ‘Williamsburg’
} -Properties ManagedBy,Country,State

New-ADOrganizationalUnit Bushwick -Path $location -Instance $ou

Removing Active Directory Objects
Removing objects is very straightforward with the Active Directory cmdlets. For every

cmdlet you have seen that uses the verb New, there is a corresponding Remove cmdlet that

can remove the object:

� Remove-ADUser

� Remove-ADComputer

� Remove-ADGroup

� Remove-ADObject

� Remove-ADOrganizationalUnit

Caution
The only concern you may have when removing an object with one of these cmdlets is that the object may be
configured to prevent accidental deletion. If that is the case, you will need to use Set-ADObject to replace
the ProtectedFromAccidentalDeletion attribute to $false before you use the Remove cmdlet. �

Password Policies
Password policies are security features within Active Directory that enable you to control

the usage and characteristics of passwords within an organization. This includes things

like the length of the password as well as how long it takes before a password expires. With

Windows Server 2008 domains, you can now specify �ine-grained policies that affect only

speci�ic users or groups of users. The creation and management of these policies can be

a bit convoluted because they require you to create objects with speci�ic properties that

have names like msDS-LockoutObservationWindow. Without Windows PowerShell, this is

traditionally done through the LDAP editing tool provided by Microsoft called ADSI edit.

c10.indd 249c10.indd 249 03/09/11 10:55 AM03/09/11 10:55 AM

250

Part III: Server Management

Microsoft has compensated for the lack of tools to manage password policies with the

ActiveDirectory module by providing a series of cmdlets that enable you to work with

both default and �ine-grained password policies.

Viewing Password Policies
If you would like to retrieve a password policy, you can use

Get-ADDefaultDomainPasswordPolicy and Get-ADFineGrainedPasswordPolicy.

Here is a sample of what these look like when they are run:

Get-ADDefaultDomainPasswordPolicy

ComplexityEnabled : True
DistinguishedName : DC=home,DC=psbible,DC=com
LockoutDuration : 00:30:00
LockoutObservationWindow : 00:30:00
LockoutThreshold : 0
MaxPasswordAge : 42.00:00:00
MinPasswordAge : 1.00:00:00
MinPasswordLength : 7
objectClass : {domainDNS}
objectGuid : cffdf13d-3888-4902-9442-db8a84eeca4c
PasswordHistoryCount : 24
ReversibleEncryptionEnabled : False

Get-ADFineGrainedPasswordPolicy passpol1

AppliesTo :
{CN=jack,OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com}
ComplexityEnabled : False
DistinguishedName : CN=passpol2,CN=Password Settings
Container,CN=Syst
em,DC=home, DC=psbible,DC=com
LockoutDuration : 00:30:00
LockoutObservationWindow : 00:30:00
LockoutThreshold : 0
MaxPasswordAge : 42.00:00:00
MinPasswordAge : 1.00:00:00
MinPasswordLength : 4
Name : passpol2
ObjectClass : msDS-PasswordSettings
ObjectGUID : e6708d2e-4861-47ea-8ece-df3dca4e9d9f
PasswordHistoryCount : 12
Precedence : 20
ReversibleEncryptionEnabled : True

If you would like to retrieve the password policy that a particular user is using, you can use

the following line to retrieve the resultant policy for the user:

Get-ADUserResultantPasswordPolicy jack

c10.indd 250c10.indd 250 03/09/11 10:55 AM03/09/11 10:55 AM

251

Chapter 10: Managing Active Directory

Note
Alternatively, if you want to view what users or groups are using a particular policy, you can see their DNs
underneath AppliesTo in the policy that is returned by Get-ADFineGrainedPasswordPolicy. If you would
like to easily see more information about those users and groups, you can pipe the policy into Get-
ADFineGrainedPasswordPolicySubject. �

Creating a Fine-Grained Policy
Fine-grained policies are created with New-ADFineGrainedPasswordPolicy. At the

minimum, you must specify a name for the policy and the precedence for the policy.

Policy preferences are used to determine which policy overrides another. Precedence

is generally entered in increments of 10 with the lowest number receiving the highest

priority.

New-ADFineGrainedPasswordPolicy passpol1 -Precedence 10

If you want to apply the policy to a user or a group, you can use the Add-
FineGrainedPasswordPolicySubject cmdlet to do so. The following example adds the

passpol1 policy to a group named group1 and all of the users underneath the NYC OU:

Add-ADFineGrainedPasswordPolicySubject passpol1 -Subjects group1

cd ‘AD:\OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
Get-ADUser -Filter * |Add-ADFineGrainedPasswordPolicySubject passpol1

Modifying Password Policies
Password policies can be changed by piping a policy into the appropriate

cmdlet for the policy type you are changing. Default domain-based policies are changed

with Set-ADDefaultDomainPasswordPolicy and �ine-grained policies are set with

Set-ADFineGrainedPasswordPolicy. Here are two examples that show how you can

change a password policy with these cmdlets:

Get-ADDefaultDomainPasswordPolicy |
 Set-ADDefaultDomainPasswordPolicy -PasswordHistoryCount 10

Get-ADFineGrainedPasswordPolicy caspol1 |
 Set-ADDefaultDomainPasswordPolicy -MaxPasswordAge 40

Set-ADFineGrainedPasswordPolicy also accepts an Instance parameter to allow you to

modify an existing policy that is retrieved with Get-ADFineGrainedPasswordPolicy.

$policy = Get-ADFineGrainedPasswordPolicy caspol1
$policy.LockoutThreshold = 5
$policy.LockoutObservationWindow = (New-TimeSpan -Minutes 15)
Set-ADFineGrainedPasswordPolicy -Instance caspol1

c10.indd 251c10.indd 251 03/09/11 10:55 AM03/09/11 10:55 AM

252

Part III: Server Management

If you need to add or remove users or groups from a �ine-grained policy, you can use Add-
FineGrainedPasswordPolicySubject and Remove-FineGrainedPasswordPolicySubject.

If you need to remove a �ine-grained policy altogether, you can use Remove-
ADFineGrainedPasswordPolicy.

Managing the Rest of Active Directory
I have discussed the foundation for what an administrator needs to query and manage

Active Directory objects. For the most part, Active Directory is managed by �inding an

appropriate object and modifying the relevant properties for that object. For example, if

you wanted enable the Global Cache, you could do the following:

cd ‘ad:\CN=Configuration,DC=home,DC=psbible,DC=com’
Get-ADObject -Filter {Name -eq ‘NTDS Settings’} |
 Set-ADObject -Replace @{options=’1’}

Many tasks can be accomplished by �inding an attribute and setting it to the appropriate

value even if there is also an ActiveDirectory cmdlet that performs a speci�ic task. For

example, the Enable-ADAccount enables an Active Directory object. This could also be

achieved by setting the Enabled property of an object to $true. A few additional cmdlets

not discussed in this chapter perform some speci�ic tasks that are worth mentioning. In

addition, two Move cmdlets are available to help you manage domain controllers. Table 10-3

lists these additional cmdlets and their descriptions.

TABLE 10-3

Additional Active Directory cmdlets

Cmdlet Description

Clear-ADAccountExpiration Clears the expiration date for an Active Directory account

Enable-ADOptionalFeature Enables an Active Directory optional feature: for example,
Recycle Bin

Disable-ADOptionalFeature Disables an Active Directory optional feature

Get-ADOptionalFeature Gets one or more Active Directory optional features

Get-ADAccountAuthorizationGroup Gets the accounts token group information

Get-ADForest Gets an Active Directory forest

Get-ADRootDSE Gets the root of a directory server information tree

Move-ADDirectoryServer Moves a directory server in Active Directory to a new site

Move-ADDirectoryServerOperation
MasterRole

Moves operation master roles to an Active Directory
directory server

c10.indd 252c10.indd 252 03/09/11 10:55 AM03/09/11 10:55 AM

253

Chapter 10: Managing Active Directory

In addition to the cmdlets listed in the table, an additional set of cmdlets is available to

control the replication of passwords to read-only domain controllers:

� Add-ADDomainControllerPasswordReplicationPolicy

� Get-ADDomainControllerPasswordReplicationPolicy

� Get-ADDomainControllerPasswordReplicationPolicyUsage

� Remove-ADDomainControllerPasswordReplicationPolicy

Managing Active Directory with the
ActiveRoles Management Shell
ADSI and Quest’s ActiveRoles Management Shell were mentioned during the introduction

to this chapter. Though you can easily brush aside ADSI for the purpose of this book,

there is no way to talk about Windows PowerShell and Active Directory without showing

a few examples of the ActiveRoles Management Shell. In environments where the Active

Directory Web Service (ADWS) is not yet running on a server in your domain, it is likely

that you will want to use the ActiveRoles Management Shell from Quest to perform many of

the tasks discussed in this chapter.

Installing the Cmdlets
The snap-in can be downloaded for free from Quest’s website at www.quest.com/
powershell/activeroles-server.aspx.

After it is installed, it can be loaded with:

Add-PSSnapin Quest.ActiveRoles.ADManagement

Caution
At the time of writing, this was the snap-in name. Always read through the documentation of a third-party
module or snap-in because it is possible for the names or installation instructions to change. �

Using the Cmdlets
The ActiveRoles Management Shell has a set of cmdlets similar to those in the

ActiveDirectory module. Get-QAD commands look and act nearly identical to their Get-AD

counterparts. One thing that is different is that the Quest tools do not come with a provider.

Another difference is with their implementation of �iltering. Most of the Get commands in

the ActiveRoles Management Shell have a parameter for common attributes like Department,

LastName, or City. These parameters accept wildcards within them. So even though you lose

the robust �iltering that mimics Windows PowerShell that you get with the ActiveDirectory

module, you can still do -like �ilters by using wildcards within your parameters with the

Quest tools. If you need to perform any other type of �iltering on objects that are not within

the parameter set, you can still use LDAP �ilters to �ind what you are looking for.

c10.indd 253c10.indd 253 03/09/11 10:55 AM03/09/11 10:55 AM

254

Part III: Server Management

Here are some examples of tasks that you have already seen with the ActiveDirectory

module. To retrieve a user named jack, you would use the Get-QADUser cmdlet:

Get-QADUser jack

In order to retrieve a computer object by specifying its DN, you would do this:

Get-QADComputer ‘CN=DC1,OU=Domain Controllers,DC=home,DC=psbible,DC=com’

If Get-QADUser is called by itself with no parameters, it will retrieve all of the users in the domain:

Get-QADUser

Wildcards are supported in Get-QADUser. This line gets all users whose name begins with

the letter u:

Get-QADUser u*

Wildcard support exists in the parameters that represent AD attributes. For example, the

following gets all users whose Department attribute has the word engineering in it:

Get-QADUser -Department *engineering*

If you need to connect to another domain, you can use the Service parameter to specify

another domain or domain controller:

Get-QADUser domain2\user -service dc1.domain2.com

You can retrieve the common reports that were returned by Search-ADAccount in the

ActiveDirectory module by using the same Get-QADUser with speci�ic switches:

Get-QADUser -NotLoggedOnFor 60
Get-QADUser -ExpiredFor 7

Pipeline support is just as robust in the Quest tools as it is in the ActiveDirectory module.

For example, the following line enables all disabled users:

Get-QADUser -Disabled |Enable-QADUser

In order to display all of the properties for a user, you must use the IncludeAllProperties

switch parameter of Get-QADUser. You must also specify Select * to see all of these

properties after they are retrieved.

Get-QADUser jack -IncludeAllProperties |Select *

Set-QADUser is used to modify a user object. For example, the following will populate the

Office attribute for users in the NYC OU:

$searchroot = ‘OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’
Get-QADUser -SearchRoot $searchroot |Set-QADUser -Office NYC

c10.indd 254c10.indd 254 03/09/11 10:55 AM03/09/11 10:55 AM

255

Chapter 10: Managing Active Directory

Viewing users in a group is accomplished with the Get-QADGroup cmdlet:

Get-QADGroup dharma1 |select -ExpandProperty Members
Get-QADGroup dharma1 |select -ExpandProperty NestedMembers
Get-QADGroup dharma1 |select -ExpandProperty AllMembers

You can �ind out which groups a user belongs by inspecting the MemberOf, NestedMemberOf,

and AllMemberOf properties of the user objects that are returned by Get-QADUser:

Get-QADUser jack |select -ExpandProperty MemberOf
Get-QADUser jack |select -ExpandProperty NestedMemberOf
Get-QADUser jack |select -ExpandProperty AllMemberOf

If you want to add a user to a group, you could do this:

Get-QADUser jack |Add-QADMemberOf -Group Dharma1

You can move a group to a new container with Move-QADObject:

Get-QADGroup dharma1
 |Move-QADObject ‘OU=NYC,OU=NY,OU=Offices,DC=home,DC=psbible,DC=com’

To remove a user, call Remove-QADObject. The following code suppresses the con�irmation

prompt by setting the Confirm parameter to $false:

Get-QADUser jack |Remove-QADObject -Confirm:$false -Force

Summary
In many environments, Active Directory is the foundational directory that core services

in IT rely upon. Whether it is used for �ile and print security, web authentication, or as a

corporate directory of user information, Active Directory drives much of what you see in

the enterprise. Windows PowerShell gives you a way to automate many of the common

tasks that administrators are responsible for daily. Combined with the other powerful

features that Windows PowerShell provides, Active Directory can also be used as a

reporting tool or a powerful logic-driven engine that manipulates data.

In the next chapter, you look closely at one of the core Microsoft features that leverages

Active Directory extensively, Group Policy.

c10.indd 255c10.indd 255 03/09/11 10:55 AM03/09/11 10:55 AM

c10.indd 256c10.indd 256 03/09/11 10:55 AM03/09/11 10:55 AM

257

C H A P T E R

IN THIS CHAPTER
Installing the Group Policy

Management Console cmdlets

Querying Group Policy Objects
and creating reports

Automating the creation and
manipulation of Group Policy
Objects

Working with Group Policy
Object backups

Managing Group Policy Object
security

Managing Group
Policy

Throughout Part III of this book, you have seen many of the new

modules that were introduced with Windows Server 2008 R2

that provide you with a Windows PowerShell way to work with

server components that are traditionally very tricky or impossible to

script against. Group Policy is another example of this. Prior to 2008

R2, Group Policy could be scripted via an API or a COM interface. With

the release of 2008 R2, you can now use the Windows PowerShell

module that is installed with the Group Policy Management Console

(GPMC).

Installing and Using the Cmdlets
The GroupPolicy module is directly attached to the GPMC. To install

the module on a computer, you must install or enable the GPMC on that

computer.

Enabling the Module on Windows
Server 2008 R2
To use the GroupPolicy module on Windows Server 2008 R2, you can

install the module and the GPMC by running the following two lines

of code:

Import-Module ServerManager
Add-WindowsFeature GPMC

c11.indd 257c11.indd 257 02/09/11 11:14 AM02/09/11 11:14 AM

258

Part III: Server Management

Installing the Module on Windows 7
For Windows 7, you must download and install the Remote Server Administration Tools

(RSAT). You can download these tools from www.microsoft.com/download/en/details
.aspx?id=7887. After you have installed RSAT, you can enable the GPMC feature by

performing the following steps:

 1. Click Start � Control Panel. The Control Panel window opens.

 2. Click Programs. Switch to the Programs section of the Control Panel.

 3. Underneath Programs and Features, click Turn Windows Features On or Off.
The Windows Features dialog box opens.

 4. Expand Remote Server Administration Tools and then Feature
Administration Tools.

 5. Select Group Policy Management Tools.
 6. Click OK.

A Word about Remoting
If you are using any other operating system, your only option is to install the module

on a computer that meets the requirements and then con�igure WinRM to allow remote

connections. The GroupPolicy module is an excellent candidate to be used with implicit

remoting so that you can load a wrapper module locally, but have it connect without effort

to the computer that is con�igured with WinRM.

Cross-Reference
Chapter 2, “What’s New in Windows PowerShell V2,” discusses this technique. �

Once the module is installed, you can load it into your Windows PowerShell session with:

Import-Module GroupPolicy

Getting Policy Information
You can view information about Group Policy with a series of cmdlets that use the

verb Get.

Group Policy Objects (GPOs)
A few cmdlets are available to help you get information about the GPOs in your domain.

Depending on the level of information, you might use one or a combination of these

cmdlets.

c11.indd 258c11.indd 258 02/09/11 11:14 AM02/09/11 11:14 AM

259

Chapter 11: Managing Group Policy

Getting Basic Information about a GPO
You can retrieve basic information about GPOs in a domain by using Get-GPO. It returns

information that is found in the Details pane of the GPO within the GPMC. This includes

things like the description, owner, and time the policy was last modi�ied. This cmdlet can

be used with the GUID or the name of a GPO you would like to retrieve by using the GUID or

Name parameter, respectively. You can also retrieve all of the GPOs in the domain by using

the All switch parameter. Unfortunately, wildcards are not supported, so there is no way

to �ilter for GPO names when you only know a part of the name. To do this type of �iltering,

you would need to use the All switch and then pipe it into a Where-Object. The following

example shows how you can use this cmdlet and includes an example of this �iltering

technique.

Get-GPO -Name ‘Default Domain Controllers Policy’
Get-GPO -GUID ‘6ac1786c-016f-11d2-945f-00c04fb984f9’
Get-GPO -All
Get-GPO -All |Where {$_.DisplayName -like ‘Default*’}

Note
All but two of the cmdlets that come with the module (Copy-GPO and Get-GPResultantSetOfPolicy)
have a Server and a Domain parameter. These parameters can be used to specify an alternate domain or
domain controller. This chapter does not focus on using these parameters, but it is important to note that they
are available. �

Getting a Detailed Report of Information about a GPO
To get detailed information about the settings within a GPO, you can use Get-GPOReport.

This cmdlet retrieves an HTML or XML report that displays all of the settings that are

con�igured by the GPO. When this cmdlet is used to create an HTML report, the report is

identical to the one you see within the GPMC when looking at the settings for a GPO. The

cmdlet takes an optional Path parameter so that you can specify a �ilename to create. Here

is an example of how this cmdlet can be used to generate an HTML report for the Default

Domain Policy:

Get-GPOReport ‘Default Domain Policy’ -ReportType HTML -Path c:\gporeport.html

If nothing is speci�ied in the Path parameter, it displays the report to the screen. The

following command illustrates how you can send the XML report to the screen. The example

also shows that you can use the pipeline to generate reports about GPOs retrieved using

Get-GPO.

Get-GPO ‘psbible’ |Get-GPOReport -ReportType XML

Caution
The Path parameter of Get-GPOReport does not operate as you would expect it to. If you specify only a
filename, it will create the file in c:\windows\system32 regardless of where you are in the FileSystem
provider. Because of this, you must ensure that you specify a full path name when using the Path parameter. �

c11.indd 259c11.indd 259 02/09/11 11:14 AM02/09/11 11:14 AM

260

Part III: Server Management

Getting Specific Values for Changes Made by a GPO
Though registry policy and preference information is shown when using Get-GPOReport,

the GroupPolicy module offers speci�ic cmdlets to help you view and set most of these

values. This gives you an interface to create and script dynamic policies. It will even let you

work with registry-based policies without having to create a custom ADMX �ile (an XML

representation of a set of Group Policy con�igurations).

Note
Using the Windows PowerShell cmdlets to modify GPO settings is a double-edged sword. It is great that
you can do it, but it does not work nicely with the ADMX files that specify which registry a setting affects.
There is no way to find out which key a particular setting like “Prohibit Adding Items to the desktop” changes
through the cmdlets. You must know this information by reading through the ADMX and ADML (language
resource) files. This makes querying this information difficult because you must specify the key you are
affecting when using the cmdlets in this section.

Similarly, if you create a registry-based policy that does not exist in any of the ADMX files, it is not possible to
edit that policy through the GPMC. In essence, you would be creating an orphaned setting just as you would if
you deleted an ADMX file that is in use. �

You can retrieve information about the registry-based policies con�igured within a GPO by

using Get-GPRegistryValue. It requires you to know which key you are modifying within

the policy. The following example shows how you can use the cmdlet to �ind all of the

settings con�igured for Active Desktop.

$key = ‘HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\ActiveDesktop’
Get-GPO psbible |
 Get-GPRegistryValue -key $key |
 select ValueName, PolicyState, Value |Format-Table -AutoSize

ValueName PolicyState Value
--------- ----------- -----
NoDeletingComponents Set 1
NoAddingComponents Set 1
NoEditingComponents Set 1
NoComponents Set 1

Get just the value of the NoComponents setting
get-gpo psbible |
 Get-GPPrefRegistryValue -Context User -Key $key -ValueName NoComponents |
 Select -ExpandProperty Value

1

In addition to using traditional registry-based policies, you can also use the Windows

PowerShell cmdlets to get and modify registry settings within the GPO’s registry preferences

section. Get-GPPrefRegistryValue is used to retrieve information about these settings. It

requires you to know the registry key the policy is affecting as well as the context in which

the preference exists. Context can be either User or Computer. The following example

illustrates how this cmdlet is used:

c11.indd 260c11.indd 260 02/09/11 11:14 AM02/09/11 11:14 AM

261

Chapter 11: Managing Group Policy

$key = ‘hkcu\Software\Policies\Microsoft\Windows\Control Panel’
Get-GPO psbible |
 Get-GPPrefRegistryValue -Context User -Key $key |
 Select Order, ValueName, Action, Value |
 Format-Table -AutoSize

Order ValueName Action Value
----- --------- ------ -----
 1 ScreenSaveIsSecure Create 1
 2 ScreenSaveIsSecure Update 1

Note
If you are not familiar with preference policies, they are a new feature that was added to Group Policy with
Windows Server 2008. They are Microsoft’s answer to the growing problem of unmanageable logon scripts.
They provide you with a way to set such things as drive mappings, INI file settings, shortcuts, and registry
settings. They allow you to specify the order in which these items are updated to give you control over which
GPOs have higher priorities for these specific configurations. With the GroupPolicy cmdlets, you can only
modify the registry settings preferences. �

Group Policy Links
To see what GPOs are applied to a particular container, you can use Get-GPInheritance.

This cmdlet takes a positional parameter called Target that lets you specify a

distinguished name (DN) for the container in question. This cmdlet returns an object that

has a GpoLinks and an InheritedGpoLinks property that contain the names of all of the

GPOs applied to this container. The following code snippet shows how to use this cmdlet to

retrieve the GPOs that are applied to an OU.

$ou = Get-GPInheritance ‘OU=NYC,OU=NY,OU=USA,dc=home,dc=psbible,dc=com’
$ou

Name : NYC
ContainerType : OU
Path : ou=theisland,dc=home,dc=toenuff,dc=com
GpoInheritanceBlocked : No
GpoLinks : {psbible1}
InheritedGpoLinks : {psbible2, Default Domain Policy}

You can also use this with Get-GPO to display information about the GPOs that are linked

to the container.

$ou.InheritedGpoLinks |foreach {
 Get-GPO $_.DisplayName
} |select DisplayName, ModificationTime

DisplayName ModificationTime
----------- ----------------
psbible2 10/24/2010 7:02:12 PM
Default Domain Policy 5/1/2011 4:48:06 PM

c11.indd 261c11.indd 261 02/09/11 11:14 AM02/09/11 11:14 AM

262

Part III: Server Management

Resultant Set of Policy (RSOP)
If you would like to see what policies are applied to a particular user, computer, or both, you

can use Get-GPResultantSetOfPolicy. This cmdlet requires you to specify the full name

of a �ile with the Path parameter where the RSOP report can be saved. You can create either

an HTML or XML version of the RSOP by using the mandatory parameter ReportType.

Listing 11-1 shows how this cmdlet can be used.

Cross-Reference
Listing 11-1 makes use of the splatting technique that was discussed in Chapter 2, “What’s New in Windows
PowerShell V2,” to pass a large set of parameters to a cmdlet. �

LISTING 11-1

Using Get-GPResultantSetOfPolicy to Create RSOP Reports

Create the html report in the current directory: $pwd
$report = Join-Path $pwd RSOP_user1.html

Generate an HTML RSOP report for user1
Get-GPResultantSetOfPolicy -User user1 -ReportType HTML -Path $report

Generate an XML RSOP report for computer1
$report = Join-Path $pwd RSOP_comp1.xml
Get-GPResultantSetOfPolicy -Computer comp1 -ReportType XML -Path $report

Create an RSOP report for user1 on comp1
$report = Join-Path $pwd RSOP_comp1user1.html
$params = @{
 Path = $report
 User = user1
 Computer = comp1
 ReportType = HTML
}
Get-GPResultantSetOfPolicy @params
View the report in your browser
Start-Process $report

Creating and Configuring GPOs
In addition to retrieving information, the GroupPolicy module enables you to create and

make changes to GPOs. Table 11-1 shows a list of the cmdlets that are used to perform these

types of tasks.

c11.indd 262c11.indd 262 02/09/11 11:14 AM02/09/11 11:14 AM

263

Chapter 11: Managing Group Policy

TABLE 11-1

Cmdlets Used to Manipulate GPOs

Name Description

New-GPO Creates a GPO

New-GPLink Links a GPO to a site, domain, or OU

Rename-GPO Renames a GPO’s display name

Set-GPLink Allows you to enable, disable, enforce, or specify the link
order for the GPO

Set-GPInheritance Blocks or unblocks inheritance for a specified domain or OU

Set-GPRegistryValue Applies a registry-based policy to a GPO

Set-GPPrefRegistryValue Applies a registry preference item to a GPO

Remove-GPO Removes a GPO

Remove-GPLink Removes a link

Remove-GPRegistryValue Removes a registry-based policy from a GPO

Remove-GPPrefRegistryValue Removes a registry preference item from a GPO

Here are a few examples that show how these cmdlets can be used. The following line

creates a new GPO with New-GPO:

$gpo = New-GPO psbible1 -Comment ‘An automated gpo’

The following illustrates how you can use Set-GPRegistryValue to create a registry-based

policy for the GPO you created above that prevents a user from deleting items from his or her

Active Desktop:

$key = ‘HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\ActiveDesktop’
$gpo |
 Set-GPRegistryValue -Key $key -ValueName NoComponents -Value 1 -Type Dword

The following sets a registry value as a registry preference item under the user con�iguration:

$params = @{
 Key = ‘HKCU\Software\PSBible’
 Context = ‘User’
 ValueName = ‘OffOn’
 Value = 1
 Type = ‘DWord’
 Action = ‘Create’
 Order = ‘1’
}
$gpo |Set-GPPrefRegistryValue @params

c11.indd 263c11.indd 263 02/09/11 11:14 AM02/09/11 11:14 AM

264

Part III: Server Management

The next two lines apply the GPO to an OU with New-GPLink:

$link = $gpo |
 New-GPLink -Target ‘OU=USA,DC=home,DC=psbible,DC=com’ -LinkEnabled ‘Yes’

The following section uses Set-GPInheritance to block inheritance of policies on the NY

organizational unit:

$target = ‘OU=NY,OU=USA,DC=home,DC=psbible,DC=com’
Set-GPInheritance -Target $target -IsBlocked ‘No’

The next line uses Set-GPLink to set the priority order for the link and mark it as enforced.

Marking the GPO as enforced will override the inheritance set at the NY OU.

$link |Set-GPLink -Order 1 -Enforced ‘Yes’

Here is an example of how you can use Rename-GPO to rename a GPO. In this case, the

psbible1 policy is being renamed to psbible1.markedfordelete.

Get-GPO psbible1 |Rename-GPO -TargetName psbible1.markedfordelete

The following line shows how you can use the Windows PowerShell pipeline to �ilter for

a speci�ic set of GPOs. In this command, it will return all of the GPOs that have the words

.markedfordelete at the end of their DisplayName. The pipeline then passes these objects

to Remove-GPO so that they will be deleted.

Get-GPO -All |Where {$_.DisplayName -like ‘*.markedfordelete’} | Remove-GPO

Note
The GroupPolicy cmdlets are sometimes inconsistent with the Windows PowerShell way of doing things. For
example, the use of ‘Yes’ and ‘No’ for things like the LinkEnabled parameter of New-GPLink would seem
more natural if the parameter were a switch or a Boolean. These are generally not complex things to take
note of, but they do require you to take a moment to understand a module or snap-in’s specific syntax. �

Backing Up and Restoring GPOs
The GroupPolicy module provides the Backup-GPO cmdlet to enable you to back up one or

more GPOs in your domain. For example, you can back up all of the GPOs in your domain

with one line of code:

Get-GPO -All |Backup-GPO -Path ‘\\server1\gpobackups’

The Restore-GPO cmdlet is used to restore from these backups. Restoring all of the GPOs in

a domain from the most recent backup is also one line of code.

Restore-GPO -Path ‘\\server1\gpobackups’ -All

c11.indd 264c11.indd 264 02/09/11 11:14 AM02/09/11 11:14 AM

265

Chapter 11: Managing Group Policy

To restore a single GPO, you can use the Name parameter of Restore-GPO. The following line

will restore the psbible GPO from the most recent backup found in \\server1\gpobackups.

Restore-GPO -Path ‘\\server1\gpobackups’ -Name psbible

If there is a speci�ic backup you would like to restore from, you can supply the backup ID to

Restore-GPO by using the BackupId parameter.

$id = ‘00003D27-F9E6-4C59-BF69-938E5AE43D05’
Restore-GPO -Path ‘\\server1\gpobackups’ -BackupId $id

In addition, you can use Import-GPO to restore a GPO with a new name. This �inal example

restores the last backup of the psbible GPO and restores it with the name psnew.

$dir = ‘\\server1\gpobackups’
Import-GPO -Path $dir -BackupGpoName psbible -TargetName psnew -CreateIfNeeded

Group Policy Security
The GroupPolicy module provides two cmdlets to work with permissions on GPOs:

� Get-GPPermissions

� Set-GPPermissions

Getting Security Information
Retrieving permissions for a GPO is as simple as piping a GPO object into

Get-GPPermissions. Two common sets of parameters are used with this cmdlet. You can

either specify the All parameter to get all of the users and groups associated with the GPO:

get-gpo psbible |Get-GPPermissions -All

Or you can use TargetName and TargetType to specify the Active Directory (AD) name

and the type of AD object it is. Valid arguments for the TargetType parameter are User,

Computer, or Group.

get-gpo psbible |
 Get-GPPermissions -TargetType Group -TargetName ‘group1’

Setting Permissions
Set-GPPermissions requires that you specify a TargetName and TargetGroup. It also

requires you to pass the level of security you are granting with the PermissionLevel

parameter. Valid arguments for this parameter are:

� GpoRead

� GpoApply

c11.indd 265c11.indd 265 02/09/11 11:14 AM02/09/11 11:14 AM

266

Part III: Server Management

� GpoEdit

� GpoEditDeleteModifySecurity

� None

If you use Set-GPPermissions to replace a permission for a user, group, or computer

that grants less access than the object already has, you must also use the Replace switch

parameter. Listing 11-2 shows an example of how you can use this cmdlet to grant and

revoke access for a group to read a GPO.

LISTING 11-2

Using Set-GPPermissions to Grant and Revoke Access to a GPO

$gpo = get-gpo psbible

Grant access to allow the group1 group to read the psbible gpo
$params = @{
 TargetName = ‘group1’;
 TargetType = ‘group’;
 PermissionLevel =’GpoRead’;
}
$gpo |Set-GPPermissions @params

Revoke access for the group1 group from the psbible gpo
$params = @{
 TargetName = ‘group1’;
 TargetType = ‘group’;
 PermissionLevel =’None’;
 Replace = $true;
}

$gpo |Set-GPPermissions @params

Summary
Group Policy provides a way to control almost all aspects of your server and desktop

con�igurations within your domains. The GroupPolicy module provides an easy way to

view what GPOs are in place and what settings they are using. Although it requires a bit of

extra digging to determine the registry settings you are interested in, the cmdlets provide

you with a method to automate changes to group policies that you can easily incorporate

into your change control process. In addition, the information that is exposed can be

c11.indd 266c11.indd 266 02/09/11 11:14 AM02/09/11 11:14 AM

267

Chapter 11: Managing Group Policy

used with the Windows PowerShell logic to provide you with a way to script cleanups,

consolidations, and migrations of group policies between users, groups, and containers.

This brings us to the end of Part III on Windows Server and some of the core services that

are shipped with it. In Part IV, you will look at how you can use Windows PowerShell to

manage the diverse server applications that run on Windows Server. The next chapter

begins that journey with a discussion of how to use Windows PowerShell in managing

Microsoft Exchange.

c11.indd 267c11.indd 267 02/09/11 11:14 AM02/09/11 11:14 AM

c11.indd 268c11.indd 268 02/09/11 11:14 AM02/09/11 11:14 AM

Part IV

Server Applications

IN THIS PART
Chapter 12
Managing Microsoft Exchange
Server

Chapter 13
Managing SQL Server 2008 R2

Chapter 14
Managing Microsoft SharePoint
2010 Server

Chapter 15
Managing Internet Information
Services 7

Chapter 16
Managing System Center
Operations Manager 2007 R2

Chapter 17
Managing Microsoft Deployment
Toolkit 2010

Chapter 18
Managing Citrix XenApp 6

Chapter 19
Managing Citrix XenDesktop 5

c12.indd 269c12.indd 269 03/09/11 10:57 AM03/09/11 10:57 AM

c12.indd 270c12.indd 270 03/09/11 10:57 AM03/09/11 10:57 AM

271

C H A P T E R

With the release of Microsoft Exchange Server 2007, Microsoft

made the decision to use Windows PowerShell for all

management tasks. Although the Exchange Management

Console is still available, all tasks run in the console actually run

Windows PowerShell scripts in the background.

As part of the installation of any Exchange role on Exchange Server

2007 or Exchange Server 2010, the Exchange Management Tools are

also installed.

Installing the Cmdlets on
a Workstation
Microsoft Exchange Server can be managed by logging in to an Exchange

Server directly or via remote desktop services. In my opinion, this opens

up your organization to potential security risks, because you will most

likely be logging in to the server with an account that has administrator

privileges on that server. For this reason, I always recommend installing

the Microsoft Exchange Management Tools on your local workstation. If

your workstation is not running one of the supported operating systems,

you can either upgrade the operating system or investigate one of the

freely available virtual machine solutions such as VMware Player or

VirtualBox. These solutions are outside the scope of this book.

Exchange Server 2010 introduces remote management via Windows

PowerShell Remoting. This resolves the security issue inherent with

logging in to the Exchange server directly, but is not without problems,

as explained later.

Managing Microsoft
Exchange Server

C H A P T E R

IN THIS CHAPTER
Installing cmdlets locally

Managing permissions in the
Exchange organization

Administering Exchange objects

Managing Exchange databases

Using filters to limit results

Managing Exchange remotely

Working with Exchange
Web Services

c12.indd 271c12.indd 271 03/09/11 10:57 AM03/09/11 10:57 AM

272

Part IV: Server Applications

Microsoft Exchange Server 2007
You can install just the Management Tools for Exchange Server 2007 on an administrator’s

workstation from the Exchange Server DVD (64-bit) or by downloading the tools from

Microsoft (32-bit).

To manage Exchange Server 2007, your management workstation can run Microsoft

Windows XP or Microsoft Windows Server 2003, in 32-bit or 64-bit format, and either

Windows PowerShell Version 1 or Version 2.

Microsoft Exchange Server 2007 Service Pack 1 adds Microsoft Windows Vista and Microsoft

Windows Server 2008 to the supported operating systems for the Exchange Management

Tools.

Microsoft Exchange Server 2007 Service Pack 3 adds Windows 7 and Microsoft Windows

Server 2008 R2 to the supported operating systems list.

Note
Visit http://technet.microsoft.com/en-us/library/bb232090(EXCHG.80).aspx for more
information on installing the Management Tools for Exchange 2007.

You can download the 32-bit tools from www.microsoft.com/downloads/en/details
.aspx?familyid=6BE38633-7248-4532-929B-76E9C677E802&displaylang=en#AffinityDownloads. ■

Once the Exchange Server 2007 Management Tools are installed, you can start the tools

by clicking Start � Programs � Microsoft Exchange Server 2007, and choosing Exchange

Management Shell. You can also load the Exchange Server 2007 cmdlets by adding the

snap-ins to an existing PowerShell session. Because there are two snap-ins for Exchange

Server, I use the wildcard character “*” to add them both at once:

Add-PSSnapIn -Name Microsoft.Exchange.*

Microsoft Exchange Server 2010
The Microsoft Exchange Server 2010 tools do not need to be installed on the administrator’s

workstation; you can manage Exchange Server 2010 by importing the Exchange session into

Windows PowerShell Version 2 and connecting to an Exchange server. This is covered later in

the chapter, in the “Managing Microsoft Exchange Server Remotely” section.

You can install the Exchange Server 2010 Management Tools on your administrator

workstation if you are running the 64-bit version of one of the following operating systems:

� Microsoft Windows Vista with SP2

� Microsoft Windows 7

� Microsoft Windows Server 2008 with SP2

� Microsoft Windows Server 2008 R2

c12.indd 272c12.indd 272 03/09/11 10:57 AM03/09/11 10:57 AM

273

Chapter 12: Managing Microsoft Exchange Server

You can install the Exchange Server 2010 Management Tools on the administrator workstation

by following the steps described at http://technet.microsoft.com/en-us/library/
bb232090.aspx.

Installing the Management Tools locally does bring some bene�its:

� You don’t need to create a session; it is created as you start the Management Tools.

� You don’t need to specify the Exchange server to connect to; the tools connect to

the closest Exchange server the Management Tools �ind.

� The Exchange server will return rich Exchange objects, as opposed to Windows

PowerShell objects. This can be important, as you will see later.

Once the Exchange 2010 Management Tools are installed, you can start them by clicking

Start � Programs � Microsoft Exchange Server 2010, and choosing Exchange

Management Shell.

What’s New in Microsoft Exchange Server 2010
Exchange Server 2010 introduces Role Based Access Control (RBAC). RBAC is the new

permission model for Exchange Server. As part of starting the shell or console, the shell

checks for permissions based on the RBAC, providing only the cmdlets appropriate to the

roles you have been assigned.

Except for servers running the Edge Transport role, all Exchange Server 2010 management

is done via remote shell — even if you are physically connected to the Exchange server.

In Exchange Server 2010, you can enable audit logging and track who made changes to

the organization and when. When audit logging is enabled, the default logs all Exchange

cmdlets except Get-* and Search-* cmdlets.

Exchange Server 2010 enables you to add or remove values in multi-valued properties with

a single command.

Exchange Server 2010 includes more than 255 new Exchange cmdlets; and a few have been

dropped, notably the cmdlets related to storage groups.

Note
For the rest of this chapter, I am going to operate on the assumption that you are loading the Exchange Management
Shell with no other snap-ins, with Windows PowerShell Version 2 installed. I will be using splatting to break long
script lines into shorter lines. For a refresher on splatting, see the section “Splatting” in Chapter 2, “What’s New
in Windows PowerShell V2.” If you have Windows PowerShell Version 1, and cannot upgrade your management
workstation to Version 2, you will have to “de-splat” the scripts. A simple example is:

$User =@{
Identity = “a*”

c12.indd 273c12.indd 273 03/09/11 10:57 AM03/09/11 10:57 AM

274

Part IV: Server Applications

Resultsize = “Unlimited”
SortBy = “Name”
}
Get-User @User

The equivalent Version 1 string would be:

Get-User -Identity a* -ResultSize Unlimited -SortBy Name ■

Managing Microsoft Exchange
Server Permissions
Managing either Exchange Server 2007 or Exchange Server 2010 requires that you have

been assigned the proper permissions. Permissions are managed differently in each

version. Exchange Server 2007 permissions may initially seem easier to manage than

Exchange Server 2010 permissions, but I highly recommend you take the time to learn the

new Role Based Access Control that is introduced with Exchange Server 2010 because

the permission model is far more granular than in Exchange Server 2007.

Microsoft Exchange Server 2007
To administer objects in Exchange Server 2007, you will need to be a member of at least one

of the following roles:

� Exchange Organization Administrators: People in this role have the highest

permissions on all properties for the whole Exchange organization.

� Exchange Recipient Administrators: People in this role have full permission to

manage all properties and objects for mailboxes, contacts, users, groups, dynamic

distribution groups, and public folders within the Exchange organization.

� Exchange View-Only Administrators: People in this role can view all Exchange

objects within the organization, but cannot modify them.

� Exchange Server Administrators: People in this role can manage a particular

Exchange server.

� Exchange Public Folder Administrators: People in this role can only administer

public folders. This role was added in Exchange Server 2007 Service Pack 1.

Note
To view a list of administrators and the roles assigned to them, use the Get-ExchangeAdministrator
cmdlet. Running the Get-ExchangeAdministrator cmdlet on its own provides a list of all administrators
and their roles.

To view a list of only Exchange Organization Administrators, you can pipe the output of the
Get-ExchangeAdministrator cmdlet to the Where-Object cmdlet:

Get-ExchangeAdministrator | Where-Object {$_.Role -eq “OrgAdmin”}

c12.indd 274c12.indd 274 03/09/11 10:57 AM03/09/11 10:57 AM

275

Chapter 12: Managing Microsoft Exchange Server

You can use the same concept to show all administrators except View-Only Administrators:

Get-ExchangeAdministrator | Where-Object {$_.Role -ne “ViewOnlyAdmin”} ■

To add an administrator to a group, use the Add-ExchangeAdministrator cmdlet, passing the

Identity of the administrator and the most permissive Role the administrator should have:

Add-ExchangeAdministrator -Identity contoso\karl -Role RecipientAdmin

Possible roles are OrgAdmin, RecipientAdmin, ViewOnlyAdmin, PublicFolderAdmin, or

ServerAdmin. For the ServerAdmin role, the cmdlet has an additional required parameter:

the Scope, which is the server that the administrator will be a server administrator on.

The following example assigns the user contoso\ben to the ServerAdmin role on the

server Exch01:

Add-ExchangeAdministrator -Identity contoso\ben -Role ServerAdmin -Scope Exch01

Microsoft Exchange Server 2010
Exchange Server 2010 introduces Role Based Access Control (RBAC). Within this permission

model, permissions across the organization can be more granularly applied. For instance,

Exchange Server 2010 provides nearly 60 built-in roles for granting permissions, and you

can create your own roles as well. The Get-ExchangeAdministrator cmdlet from Exchange

Server 2007 is no longer available in Exchange Server 2010. The equivalent cmdlet is the

Get-RoleGroup cmdlet. There are additional cmdlets for managing roles as well.

Note
A full explanation of RBAC is beyond the scope of this chapter. For a complete explanation, see “Understanding Role
Based Access Control” on TechNet at http://technet.microsoft.com/en-us/library/dd298183.aspx. ■

Use the Add-RoleGroupMember cmdlet to add an administrator to a role group. The

following example adds the Active Directory account John to the Recipient Management

role. This allows John to create or modify recipients in Exchange Server 2010.

Add-RoleGroupMember -Identity “Recipient Management” -Member John

If you are not in the ManagedBy property of the role group, but are in the Organization
Management role group, you can force the addition by adding the optional

BypassSecurityGroupManagerCheck parameter. The following example adds the Active

Directory account John to the Recipient Management role without requiring you to be in

the ManagedBy property of the role group:

$RoleGroupmember = @{
Identity = “Recipient Management”
Member = “John”
BypassSecurityGroupManagerCheck = $true
}
Add-RoleGroupmember @RoleGroupmember

c12.indd 275c12.indd 275 03/09/11 10:57 AM03/09/11 10:57 AM

276

Part IV: Server Applications

You can also add a universal security group to a role group. The following example adds

the members of the security group Accounting Administrators to the Recipient
Management role group:

$RoleGroupMember = @{
Identity = “Recipient Management”
Member = “Accounting Administrators”
}
Add-RoleGroupMember @RoleGroupMember

With Exchange Server 2010, however, you have the ability to set up �ine-grained role groups,

so you could create a role group named Accounting Recipient Management, and allow that

role group to only manage objects in the Accounting organizational unit. Look for more on

managing role groups later in the chapter.

Administering Objects
One of the �irst functions you should become familiar with in the Exchange Management

Shell is the Get-ExCommand function. This function takes no parameters, and returns all

Exchange cmdlets. The Get-ExCommand function is actually a wrapper for the Windows

PowerShell cmdlet Get-Command, returning only Exchange cmdlets. The default data

returned includes the command type, name, and de�inition for each cmdlet. Because

the output of Get-ExCommand will most likely not �it your Exchange Management Shell,

I recommend piping the output of the Get-ExCommand function to the Select-Object

cmdlet, specifying to return only the name of the cmdlets.

This next example, run in an Exchange Management Shell, returns all available

Exchange cmdlets, sorted by verb:

Get-ExCommand | Select-Object -Property Name
PS> Get-ExCommand | Select-Object -Property Name

Name

Add-ADPermission
Add-AvailabilityAddressSpace
Add-ContentFilterPhrase
Add-DistributionGroupMember
Add-ExchangeAdministrator
Add-IPAllowListEntry
Add-IPAllowListProvider
Add-IPBlockListEntry
Add-IPBlockListProvider
Add-MailboxPermission
Add-PublicFolderAdministrativePermission
Add-PublicFolderClientPermission

c12.indd 276c12.indd 276 03/09/11 10:57 AM03/09/11 10:57 AM

277

Chapter 12: Managing Microsoft Exchange Server

Clean-MailboxDatabase
Clear-ActiveSyncDevice
Connect-Mailbox
...

When run in an Exchange Management Shell, the following code returns all available Exchange

Server cmdlets, sorted by noun. As you will recall, Windows PowerShell cmdlets are named with

a verb-noun pair. The example script line sorts the Exchange Server cmdlets by the object they

operate on — all the mailbox cmdlets sort together, as do the user, group, database, and so on.

Get-ExCommand | Sort-Object -Property Noun | Select-Object -Property Name

PS> Get-ExCommand | Sort-Object -Property Noun | Select-Object -Property Name

Name

New-AcceptedDomain
Set-AcceptedDomain
Remove-AcceptedDomain
Get-AcceptedDomain
Test-ActiveSyncConnectivity
Remove-ActiveSyncDevice
Clear-ActiveSyncDevice
Get-ActiveSyncDeviceStatistics
Export-ActiveSyncLog
Set-ActiveSyncMailboxPolicy
Remove-ActiveSyncMailboxPolicy
New-ActiveSyncMailboxPolicy
Get-ActiveSyncMailboxPolicy
...

Unfortunately, Microsoft changed the output of the Get-ExCommand function in Exchange

Server 2010. You will have to do a little more work to get the same functionality the Exchange

Server 2007 Management Shell provides. The following example, when run in either version

of the shell, returns all available cmdlets, sorted by noun. In the case of Exchange Server 2010,

the list of cmdlets depends on your Exchange role.

$ExCommands = @{}
$Sort = @{
Property = “Value”
}
$Select = @{
Property = “Key”
}
Get-ExCommand | ForEach-Object {$ExCommands.Add($_.Name,$_.Name.Split(“-”)[1])}
$ExCommands.GetEnumerator() | Sort-Object @Sort | Select-Object @Select
>> $ExCommands.GetEnumerator() | Sort-Object @Sort | Select-Object @Select
>>

Key

c12.indd 277c12.indd 277 03/09/11 10:57 AM03/09/11 10:57 AM

278

Part IV: Server Applications

New-AcceptedDomain
Set-AcceptedDomain
Get-AcceptedDomain
Remove-AcceptedDomain
Test-ActiveSyncConnectivity
Clear-ActiveSyncDevice
Remove-ActiveSyncDevice
Get-ActiveSyncDeviceStatistics
Export-ActiveSyncLog
Remove-ActiveSyncMailboxPolicy
New-ActiveSyncMailboxPolicy
Set-ActiveSyncMailboxPolicy
Get-ActiveSyncMailboxPolicy
...

In either version, you can also tailor the output of the Get-ExCommand function by passing

a string to the cmdlet showing what sort of Exchange command you are looking for. These

following two examples, though very similar, return different data. The �irst example

returns all Exchange cmdlets that end in Mailbox, and the second example returns all

Exchange cmdlets that contain Mailbox in the name.

Get-ExCommand *Mailbox
Get-ExCommand *Mailbox*

You can get help for each of the Exchange Server roles by passing the Role parameter to the

Get-Help cmdlet. The following example shows the available mailbox cmdlets:

Get-Help -Role *Mailbox*
Get-Help -Role *ClientAccess*

The remaining server roles are Hub, UnifiedMessaging, and Edge. Additionally, you can get

role-speci�ic help for the administration roles OrgAdmin, SrvAdmin, RcptAdmin, WinAdmin,

and ReadOnly.

As with all strings passed to the Role parameter of the Get-Help cmdlet, the roles need

to be enclosed with asterisks (*).

Note
Besides roles, you can get help for components and functionality. To see valid values for components and
functionality, see Tables 7 and 8 on http://technet.microsoft.com/en-us/library/aa997174(EXCHG.80)
.aspx. ■

The four main recipient objects in Exchange (distribution group, mailbox, mail contact, and

mail user) share common verbs — Enable, Disable, New, Remove, Get, and Set.

For these four recipient types, Enable, Disable, Get, Set, and Remove operate on existing

Active Directory objects. The lone exception is New, which creates objects in Active

c12.indd 278c12.indd 278 03/09/11 10:57 AM03/09/11 10:57 AM

279

Chapter 12: Managing Microsoft Exchange Server

Directory while creating the Exchange object. The Get-* cmdlets are inherently read-only;

you cannot make any changes using only Get-* cmdlets.

Disable-* cmdlets in all cases remove Exchange attributes from an Active Directory

object, whereas Remove-* cmdlets delete the Active Directory object.

Armed with this knowledge, you can start reviewing information about recipients almost

immediately. You can get a list of all mailboxes within the domain with the Get-Mailbox

cmdlet:

Get-Mailbox

The Get-Mailbox cmdlet takes multiple optional parameters designed to provide just the

mailboxes you are interested in. Among those parameters is the ResultSize parameter.

You can set the result size to any number, or use Unlimited to retrieve all mailboxes that

match the query:

Get-Mailbox -ResultSize Unlimited

The result size defaults to 1,000 objects, so if you do not expect more than 1,000, you

can leave the parameter off. Using the optional parameters, you can limit the results to

mailboxes on a server or database, or within an organizational unit (Server, Database, and

OrganizationalUnit), or you can select a speci�ic mailbox with the Identity parameter:

Get-Mailbox -Identity Contoso\bob

Perhaps the most powerful parameter that the Get-Mailbox cmdlet takes is the Filter

parameter. With the Filter parameter, you can re�ine the results that the Exchange server

returns based on many Active Directory attributes. This �iltering is performed on the

Exchange server as opposed to piping results to the Where-Object cmdlet, which �ilters

results after the Exchange server sends them to the shell. See “Using Filters” later in this

chapter for more on �iltering.

The remaining Get-* cmdlets operate in much the same way, returning data on mail contacts,

mail users, users, distribution groups, dynamic distribution groups, and recipients.

Note
Except for the public folder cmdlets, New-* and Remove-* cmdlets require that you have the proper Exchange
permissions as well as Account Operator permissions in the Active Directory container in which the object
will be created or from which it will be removed, as do Set-* cmdlets that modify Active Directory
attributes. Although the New-* cmdlets do not normally require the Alias or OrganizationalUnit
parameters, I recommend that you always specify these parameters, and all my samples will use them. ■

Administering Recipients
To administer recipients, you will need to be in at least the RecipientAdmin role in Exchange

2007 or an equivalent role in Exchange 2010 such as the Recipient Management role.

c12.indd 279c12.indd 279 03/09/11 10:57 AM03/09/11 10:57 AM

280

Part IV: Server Applications

Recipients in Exchange are mailboxes, contacts, users, groups, and dynamic groups. Exchange

2007 and 2010 provide cmdlets that operate on only Exchange attributes of existing Active

Directory objects and cmdlets that create or modify Active Directory objects.

Administering Mailboxes
Use the Enable-Mailbox cmdlet to create a mailbox for a current Active Directory object,

passing the required parameters Identity and Database. The following example mail-

enables the Active Directory object contoso\bob, storing the mailbox on the database

described as ExchServer01\EXDB01:

$Mailbox = @{
Identity = “contoso\bob”
Database = “ExchServer01\EXDB01”
}
Enable-Mailbox @Mailbox

Tip
If you do not specify a server as part of the database parameter when running the Enable-Mailbox cmdlet,
the Exchange Management Shell attempts to find the database on the local machine. The database
parameter takes a GUID, database name, server\database, or server\storagegroup\database.
You will not need the storage group name unless you have multiple databases on the server with the same name. ■

To enable multiple mailboxes, you can use the Enable-Mailbox cmdlet in a loop, if you have

a comma-separated value (.csv) �ile known as c:\users.csv that contains the following:

Identity,Database
“Contoso\Bob”,”ExchServer01\EXDB-01”
....
“Contoso\Sherry”,”ExchServer02\EXDB-02”

You could mail-enable each listed account by running the following code:

foreach ($user in Import-Csv -Path C:\users.csv)
{
Enable-Mailbox –Identity $User.Identity –Database $User.Database
}

You can also enable multiple mailboxes by getting a list of Active Directory accounts that do not

have associated mailboxes and piping them to the Enable-Mailbox cmdlet. The following

sample �inds all accounts in the Accounting organizational unit that are of the type User

and pipes the output to the Enable-Mailbox cmdlet, which creates mailboxes in the

AccountingDB database. Mailboxes are assigned an email address based upon the recipient

template that applies to the mailbox.

$User = @{
OrganizationalUnit = “Accounting”
RecipientTypeDetails = “User”

c12.indd 280c12.indd 280 03/09/11 10:57 AM03/09/11 10:57 AM

281

Chapter 12: Managing Microsoft Exchange Server

ResultSize = “Unlimited”
}
Get-User @User | Enable-Mailbox -Database “ExchServer03\AccountingDB”

Tip
Exchange Server 2007 assigns the user principal name prefix as the alias for the mailbox, whereas Exchange
Server 2010 uses the common name, replacing all non-ASCII characters with question marks (?), and
removing spaces. Thus, Johnson, Bob gives an alias of Johnson?Bob. You can specify an alias while you
are enabling the mailbox. Exchange Server 2010 Service Pack 1 and newer reverts to the behavior provided
by Exchange Server 2007. ■

To enable a mailbox and specify the alias, you use the Alias parameter. The following

example mail-enables the Active Directory object Contoso\Bob on the database

described as ExchServer01\EXDB01, and sets the mailbox alias to bobj:

$Mailbox = @{
Identity = “Contoso\Bob”
Database = “ExchServer01\EXDB01”
Alias = “bobj”
}
Enable-Mailbox @Mailbox

Creating a mailbox and associated Active Directory account is nearly as easy as mail-enabling

an existing account. If you are not working in a split permissions model, the New-Mailbox

cmdlet operates as the Enable-Mailbox cmdlet did, with the additional required parameters

of Password, UserPrincipalName, and Name (which is the display name). The following

example creates the Active Directory object smitschke in the Users container, while creating

a mailbox on the mailbox server ExchServer02, in the EXDB2 mailbox database:

$password = ConvertTo-SecureString -String “NewPass91” -AsPlainText -Force
$Mailbox = @{
UserPrincipalName = “smitschke@contoso.com”
Database = “ExchServer02\EXDB2”
Name = “Mitschke, Sherry”
Password = $password
}
New-Mailbox @Mailbox

As shown, the password must be passed as a secure string. You can do it the way I have

shown, or read input from the keyboard as:

$password = Read-Host -Prompt “Please enter a valid password” -AsSecureString

Optionally, you can specify an organizational unit for the user account with the

OrganizationalUnit parameter. The next example creates the Active Directory object

smitschke@contoso.com in the organizational unit OU=Users,OU=Apps,DC=contoso,
DC=com, on the mailbox server ExchServer02 in the mailbox database EXDB2 and with a display

name of Mitschke, Sherry. This example uses the password from the preceding example:

c12.indd 281c12.indd 281 03/09/11 10:57 AM03/09/11 10:57 AM

282

Part IV: Server Applications

$Mailbox = @{
UserPrincipalName = “smitschke@contoso.com”
Database = “ExchServer02\EXDB2”
Name = “Mitschke, Sherry”
Password = $password
OrganizationalUnit = “OU=Users,OU=Apps,DC=contoso,DC=com”
}
New-Mailbox @Mailbox

You can add or change an address or change other Exchange attributes for an existing

mailbox by using the Set-Mailbox cmdlet. The following example adds a new email

address, bobj@contoso.com, to the mailbox Contoso\Bob:

$NewAddress = @{
Identity = “Contoso\Bob”
PrimarySmtpAddress = “bobj@contoso.com”
EmailAddressPolicyEnabled = $false
}
Set-Mailbox @NewAddress

To change the address, you need to wait for Active Directory replication and remove the

old address. The example in Listing 12-1 sets the primary SMTP address for the mailbox

bobj to bojohnson@contoso.com. After setting the new address, there will be at least

two SMTP addresses. Use a do ... while loop to get the mailbox email addresses

until the PrimarySmtpAddress is not equal to the newAddressString. Once the

PrimarySmtpAddress matches the NewAddressString, you set the variable $Addresses

to the current email addresses. You then remove all addresses that have a pre�ix

string indicating that they are SMTP addresses, and are not the PrimarySmtpAddress

from the $Addresses variable. Finally, you use the Set-Mailbox cmdlet to apply the

EmailAddresses to the variable $Addresses.

LISTING 12-1

Changing an Email Address for a Mailbox in Exchange 2007

$User = “bobj”
$NewAddressString = “bojohnson@contoso.com”
$NewAddress = @{
Identity = $User
PrimarySmtpAddress = $NewAddressString
EmailAddressPolicyEnabled = $False
}
Set-Mailbox @newAddress
$Select = {
Property = “PrimarySmtpAddress”
}
do{$address = Get-Mailbox -Identity $User | Select-Object @Select}

c12.indd 282c12.indd 282 03/09/11 10:57 AM03/09/11 10:57 AM

283

Chapter 12: Managing Microsoft Exchange Server

while ($address.PrimarySmtpAddress.ToString() -ne $NewAddressString)
$Mailbox = Get-Mailbox -Identity $User
$Addresses = $Mailbox.EmailAddresses
$Mailbox.EmailAddresses | ForEach-Object {
if (!$_.IsPrimaryAddress -and ($_.PrefixString -eq ‘SMTP’)) {
$Addresses -= $_}}
Set-Mailbox -Identity $User -EmailAddresses $Addresses

This script works in Exchange Server 2007 or Exchange Server 2010, but as mentioned in

the “What’s New in Microsoft Exchange Server 2010” section, you can now add or remove

values in multi-valued properties with a single command. This is shown in Listing 12-2,

which accomplishes the same email address change as the previous script, in an Exchange

Server 2010 Management Shell:

LISTING 12-2

Changing an Email Address for a Mailbox in Exchange 2010

$AddressesBefore = @{
Identity = “bobj”
}
$User = Get-Mailbox @AddressesBefore
$SetAddress = @{
Identity = $AddressesBefore[“Identity”]
EmailAddressPolicyEnabled = $False
PrimarySmtpAddress = “bojohnson@contoso.com”
}
Set-Mailbox @SetAddress
$RemoveAddresses = @{
Identity = $AddressesBefore[“Identity”]
EmailAddresses = @{Remove = $User.EmailAddresses}
}
Set-Mailbox @RemoveAddresses

Notice the �inal Set-Mailbox call removes all previous email addresses at once.

To disable a mailbox, you can use either the Disable-Mailbox or Remove-Mailbox cmdlets.

The following example removes the Exchange attributes from the account smitschke and

marks the mailbox for deletion while leaving the Active Directory object:

Disable-Mailbox -Identity smitschke

To remove the Active Directory object bobj and mark the mailbox for deletion, use the

following code:

Remove-Mailbox -Identity bobj

c12.indd 283c12.indd 283 03/09/11 10:57 AM03/09/11 10:57 AM

284

Part IV: Server Applications

In both cases, for as long as the deleted mailbox retention period lasts, the disconnected

mailbox can be reconnected to an existing Active Directory account that does not currently

have an associated mailbox. The deleted mailbox retention period is explained further in

the “Managing Databases” section of the chapter.

To reconnect the mailbox, you use the aptly named Connect-Mailbox cmdlet. This cmdlet

takes the required parameters Identity and Database. Optional parameters allow you to

choose which Active Directory account to connect the mailbox to, set the alias, and apply

managed folder policies. You can also specify that the mailbox is a resource account.

If you do not specify the User parameter, Exchange searches Active Directory for a matching

account based on the LegacyExchangeDN and Display Name of the disconnected mailbox.

If Exchange is not able to �ind a matching account, the mailbox is not reconnected. Not

specifying the user can potentially be a problem, because the matching account might not

be the account you expect. To verify the account before connecting the mailbox, add the

ValidateOnly parameter. Further optional parameters allow you to bypass con�irmation or

to simulate the action.

Unlike most of the recipient cmdlets, the Identity parameter does not accept an alias,

because the disconnected mailbox does not have an alias. Instead, you can use the

mailbox GUID, DisplayName, or LegacyExchangeDN.

This example connects the mailbox for Johnson, Bob to the existing Active Directory

account on the mailbox database ExchServer01\ExchDB:

Connect-Mailbox -Identity “Johnson, Bob” -Database “ExchServer01\ExchDB”

The following example shows what Active Directory account the mailbox for Johnson, Bob

would be connected to. Note that even though you set the ValidateOnly parameter, you

still need to pass the required parameter Database.

$Connect = @{
Identity = “Johnson, Bob”
Database = “ExchServer01\ExchDB”
}
Connect-Mailbox $Connect -ValidateOnly | Select-Object SamAccountName

The following code connects the mailbox Mitschke, Sherry to the Active Directory

account contoso\sherry:

$Connect = @{
Identity = “Mitschke, Sherry”
User = “contoso\sherry”
Alias = “sherrym”
}
Connect-Mailbox @Connect

c12.indd 284c12.indd 284 03/09/11 10:57 AM03/09/11 10:57 AM

285

Chapter 12: Managing Microsoft Exchange Server

You cannot use the Connect-Mailbox cmdlet to create an Active Directory account and

connect the mailbox to that account simultaneously. If an Active Directory account does not

already exist, you’d need to create one in a separate step.

You can get a list of disconnected mailboxes by using the Get-MailboxStatistics cmdlet and

using client-side �iltering for mailboxes that have a disconnect date. The following example

returns all mailboxes on the server ExchServer1 that have been disconnected. Details shown

are the display name, disconnect date, database where the mailbox exists, and mailbox GUID.

$Server = @{
Server = “ExchServer1”
}
$Object = @{
FilterScript = {$_.DisconnectDate -ne $null}
}
$Format =@{
Property = “DisplayName”,”DisconnectDate”,”Database”,”MailboxGuid”
AutoSize = $True
}
Get-MailboxStatistics @Server | Where-Object @Object | Format-Table @Format

The following example returns all mailboxes on all Exchange servers that have been

disconnected. Details shown are the display name, disconnect date, server name, and

database where the mailbox exists.

$Object = @{
FilterScript = {$_.DisconnectDate -ne $null}
}
$Select =@{
Property = “DisplayName”,”DisconnectDate”,”Database”
}
Get-MailboxServer | Get-MailboxStatistics | Where-Object @Object `
| Select-Object @Select

You may notice that recently disconnected mailboxes are not included in the output. To

view recently disconnected mailboxes, you can run the Clean-MailboxDatabase cmdlet

before the Get-MailboxStatistics cmdlet. The Clean-MailboxDatabase cmdlet takes

the required parameter Identity, which accepts pipeline input. This cmdlet scans

Active Directory for mailbox objects that have been disconnected and which are not yet

marked as disconnected in Microsoft Exchange. These mailboxes are then marked as

disconnected. You can clean all mailbox databases at once by piping the output of the

Get-MailboxDatabase cmdlet to the Clean-MailboxDatabase cmdlet:

Get-MailboxDatabase | Clean-MailboxDatabase

You can also clean all the databases on a speci�ic server by using the Server parameter of

the Get-MailboxDatabase cmdlet:

Get-MailboxDatabase -Server Exch2010 | Clean-MailboxDatabase

c12.indd 285c12.indd 285 03/09/11 10:57 AM03/09/11 10:57 AM

286

Part IV: Server Applications

To clean a speci�ic database, pass the database name to the cmdlet. The �irst line in the

following code cleans a database on Exchange Server 2007, whereas the second cleans a

database on Exchange Server 2010:

Clean-MailboxDatabase -Identity “Exchsvr\Ex2007DB”
Clean-MailboxDatabase -Identity Ex2010DB

Moving Mailboxes
Moving mailboxes is signi�icantly different in Exchange Server 2007 and Exchange Server

2010. Mailbox moves in Exchange Server 2007 are performed synchronously, whereas

mailbox moves in Exchange Server 2010 are performed asynchronously. Additionally,

dumpster data, otherwise known as recoverable deleted items, is not moved in Exchange

Server 2007, whereas it is moved in Exchange Server 2010.

Moving an Exchange Server 2007 mailbox causes user interruption. The mailbox is

inaccessible while it is being moved. Additionally, the mailbox is moved from the source

database to the administrative workstation, and then to the target database.

Moving a mailbox in Exchange Server 2010 is only an inconvenience to users. The users will

need to restart their client after the move is completed, as the mailbox is copied from one

database to another. Once the mailbox exists on the target database, it is deleted

from the source database. Mailboxes are moved directly from the source database to the

target database by the Exchange Mailbox Replication service. Additionally, users may

access their mailbox while it is being moved.

Moving a mailbox from Exchange Server 2007 Service Pack 2 to Exchange Server 2010

works the same way as moving mailboxes within Exchange Server 2010.

Moving Mailboxes in Microsoft Exchange Server 2007
To move a mailbox in Exchange Server 2007, you use the Move-Mailbox cmdlet, passing

the required parameters Identity and TargetDatabase. The following example

moves the mailbox for bobj to the database ex2007db1 on server Exchsvr1, after

prompting for con�irmation:

$Move = @{
Identity = “bobj”
TargetDatabase = “Exchsvr1\ex2007db1”
}
Move-Mailbox @Move

The Move-Mailbox cmdlet takes an optional parameter, BadItemLimit, which defaults to 0;

any bad items will cause the move to fail if the parameter is not set. A bad item, otherwise

known as a corrupted item, is any item in the mailbox database that cannot be read. This

could be an email message, contact, calendar item, etcetera. The following example moves

the mailbox for bobj to the database ex2007db1 on server Exchsvr1, ignoring up to 40 bad

items, after prompting for con�irmation:

c12.indd 286c12.indd 286 03/09/11 10:57 AM03/09/11 10:57 AM

287

Chapter 12: Managing Microsoft Exchange Server

$Move = @{
Identity = “bobj”
TargetDatabase = “Exchsvr1\ex2007db1”
BadItemLimit = 40
}
Move-Mailbox @Move

Tip
To avoid being prompted for confirmation, add the Confirm parameter to any cmdlet that accepts it as:
Confirm: $False or, in a script block used for splatting, as Confirm = $False. ■

Moving Mailboxes in Microsoft Exchange Server 2010
To move a mailbox in Exchange Server 2010, use the New-MoveRequest cmdlet, passing the

Identity and TargetDatabase required parameters. At this point, the New-MoveRequest

cmdlet looks like it’s nothing more than a renamed Move-Mailbox. The cmdlet returns

almost immediately, however. This is because the Mailbox Replication service, which runs

on all Client Access Servers, is processing the move request in the background. Unlike the

TargetDatabase  parameter     in  Exchange Server 2007, Exchange Server 2010 takes only a

database GUID or database name.

This example requests that the Client Access Server move the mailbox for bobj to the

database Ex2010db:

New-MoveRequest -Identity bobj -TargetDatabase Ex2010DB

You can move a list of mailboxes in a loop or by piping the output of one of the Get-*

cmdlets to the New-MoveRequest cmdlet. This example requests that the Client Access

Server move all mailboxes that match *mitschke to the database Ex2010db:

$Mailbox = @{
Identity = “*mitschke”
}
$Move = @{
TargetDatabase = “ExchServer01\Ex2010db”
}
Get-Mailbox @Mailbox | New-MoveRequest @Move

Finally, this example requests that the Client Access Server move all mailboxes for users in

the speci�ied organizational unit to the database Ex2010db:

$Mailbox = @{
OrganizationalUnit = “OU=Users,OU=Apps,DC=contoso,DC=com”
}
Get-Mailbox @Mailbox | New-MoveRequest -TargetDatabase Ex2010db

c12.indd 287c12.indd 287 03/09/11 10:57 AM03/09/11 10:57 AM

288

Part IV: Server Applications

Like the Move-Mailbox cmdlet, the New-MoveRequest cmdlet takes the optional parameter

BadItemLimit, which defaults to 0; if there are any bad items, the move will fail. If you set

the BadItemLimit to more than 50, you also have to pass the AcceptLargeDataLoss

switch parameter.

The following example modi�ies the previous example to allow 50 bad items, and

allows large data loss:

$Mailbox = @{
Identity = “*mitschke”
}
$Move = @{
TargetDatabase = “Ex2010db”
BadItemLimit = 50
AcceptLargeDataLoss = $True
}
Get-Mailbox @Mailbox | New-MoveRequest @Move

To see the status of the move request, you use the Get-MoveRequest cmdlet. This example

shows the status of the move request for bobj:

Get-MoveRequest -Identity bobj

You can also run the Get-MoveRequest cmdlet with no parameters to see the status of

all move requests, or specify the status of move requests you are interested in with the

MoveStatus parameter. This example returns all move requests that are completed:

Get-MoveRequest -MoveStatus Completed

If you have been performing move requests for a while, you will see multiple completed

requests. Valid status values for the MoveStatus parameter are shown in the following list:

� AutoSuspended

� Completed

� CompletedWithWarning

� CompletionInProgress

� Failed

� InProgress

� None

� Queued

� Suspended

Once you have requested a move using the New-MoveRequest cmdlet, you cannot request a

new move for that mailbox without removing the existing move request. This is true even

for completed moves. To remove move requests, use the Remove-MoveRequest cmdlet.

c12.indd 288c12.indd 288 03/09/11 10:57 AM03/09/11 10:57 AM

289

Chapter 12: Managing Microsoft Exchange Server

The �irst line in the following code removes the single move request for the user bobj. The

second example removes all completed move requests.

Remove-MoveRequest -Identity bobj
Get-MoveRequest -MoveStatus Completed | Remove-MoveRequest

One of the results might show “Failed” —  there are multiple reasons a move request can

fail. To view the reason for a failed move, use the Get-MailboxStatistics cmdlet with the

optional IncludeMoveReport switch parameter. The following example displays the

move report for the mailbox bobj:

(Get-MailboxStatistics -Identity bobj -IncludeMoveReport).MoveHistory

Another parameter of the Get-MailboxStatistics cmdlet is IncludeMoveHistory, which

shows a less detailed view of the move. This is handy for keeping track of the original

database for a mailbox. You can use this information if you need to restore a mailbox for a

user and aren’t sure what database the mailbox existed on.

This example shows the most recent move information for the mailbox bobj, followed by

as many move requests as possible, up to the con�igured limit. Details returned are the

SourceDatabase, TargetDatabase, and the CompletionTimeStamp.

$Statistics = @{
Identity = “bobj”
IncludeMoveHistory = $True
}
$Object = @{
Property = “SourceDatabase”,”TargetDatabase”,”CompletionTimeStamp”
}
(Get-MailboxStatistics @Statistics).MoveHistory | Select-Object @Object

To limit the results to only the most recent move, add the First parameter to the

Select-Object cmdlet, with a value of 1. The next example is identical to the preceding

one, with the exception that only the most recent move is displayed:

$Statistics = @{
Identity = “bobj”
IncludeMoveHistory = $True
}
$Object = @{
Property = “SourceDatabase”,”TargetDatabase”,”CompletionTimeStamp”
First = 1
}
(Get-MailboxStatistics @Statistics).MoveHistory | Select-Object @Object

By default, Exchange Server 2010 stores the move history for the previous two moves.

Each move history takes approximately 300 KB and is stored in a hidden folder in

the associated mailbox. You can change the number of move histories by editing

c12.indd 289c12.indd 289 03/09/11 10:57 AM03/09/11 10:57 AM

290

Part IV: Server Applications

an XML �ile on each Exchange Server 2010 Client Access Server. This �ile is named

MSExchangeMailboxReplication.exe.config and is located in the Bin folder on the

Client Access Server(s). The following script displays the current number of move

histories for each Exchange Server 2010 Client Access Server in your organization:

foreach ($server in Get-ExchangeServer | Where-Object {
$_.AdminDisplayVersion -like “Version 14*” -and $_.ServerRole -like “*Client*”})
{
$serverName = $server.Name
$hive =”LocalMachine”
$keyName = “SOFTWARE\Microsoft\ExchangeServer\v14\Setup”
$valueName = “MsiInstallPath”
$regHive = [Microsoft.Win32.RegistryHive]$hive
$regKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($regHive,$serverName)
$moveConfigPath = “\\$serverName\”
$moveConfigPath += ($regKey.OpenSubKey($keyName)).GetValue(“MsiInstallPath”)
$moveConfigPath += “Bin\MSExchangeMailboxReplication.exe.config”
$moveConfigPath = $moveConfigPath.Replace(“:”,”$”)
$xml = [xml](get-content $moveConfigPath)
$numberOfMoves = $xml.configuration.LastChild.MaxMoveHistoryLength
Write-Output -InputObject “$serverName is set to keep $numberOfMoves moves”
}

You can modify the number of move histories saved by each Client Access Server by adding

three lines to the preceding script, changing the 4 to the actual number you want:

$newMoveHistory = “4”
$xml.configuration.LastChild.MaxMoveHistoryLength = $newMoveHistory
$xml.Save($moveConfigPath)

Listing 12-3 provides the complete script.

LISTING 12-3

 Modifying the Move History to Retain Information on Four Moves

foreach ($server in Get-ExchangeServer | Where-Object {
$_.AdminDisplayVersion -like “Version 14*” -and $_.ServerRole -like “*Client*”})
{
$serverName = $server.Name
$hive = “LocalMachine”
$keyName = “SOFTWARE\Microsoft\ExchangeServer\v14\Setup”
$valueName = “MsiInstallPath”
$regHive = [Microsoft.Win32.RegistryHive]$hive
$regKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey($regHive,$serverName)
$moveConfigPath = “\\$serverName\”

c12.indd 290c12.indd 290 03/09/11 10:57 AM03/09/11 10:57 AM

291

Chapter 12: Managing Microsoft Exchange Server

$moveConfigPath += ($regKey.OpenSubKey($keyName)).GetValue(“MsiInstallPath”)
$moveConfigPath += “Bin\MSExchangeMailboxReplication.exe.config”
$moveConfigPath = $moveConfigPath.Replace(“:”,”$”)
$xml = [xml](get-content $moveConfigPath)
$numberOfMoves = $xml.configuration.LastChild.MaxMoveHistoryLength
Write-Output “$serverName is set to keep $numberOfMoves moves”
$newMoveHistory = “4”
$xml.configuration.LastChild.MaxMoveHistoryLength = $newMoveHistory
$xml.Save($moveConfigPath)
$xml = [xml](get-content $moveConfigPath)
$numberOfMoves = $xml.configuration.LastChild.MaxMoveHistoryLength
Write-Output -InputObject “$serverName is now set to keep $numberOfMoves moves”
}

Managing Contacts
The Enable-MailContact cmdlet mail-enables existing contact objects. This cmdlet requires

that you pass the Identity and ExternalEmailAddress parameters. The following example

mail-enables the existing contact Curt Johnson with an external email address of cjohnson@
powershell.com:

$MailContact = @{
Identity = “Curt Johnson”
ExternalEmailAddress = “cjohnson@powershell.com”
}
Enable-MailContact @MailContact

As with the Enable-Mailbox cmdlet, if you do not specify an alias, Exchange creates one

for you. In my experience, the alias will be the common name of the contact with spaces

removed and replacing all non-ASCII characters with question marks (?). Thus, Johnson,
Bob gives an alias of Johnson?Bob, and Tyler Jones gives an alias of TylerJones. This

behavior is the same in Exchange Server 2007 and Exchange Server 2010.

The New-MailContact cmdlet creates a new contact in Active Directory, and mail-enables it.

This cmdlet requires the Name and ExternalEmailAddress parameters. As with the Enable-
MailContact cmdlet, Exchange creates an alias if you do not specify one. Additionally,

unless speci�ied, the display name for the contact will be the Name you speci�ied.

The following example creates the new contact Jones, Kent with an alias of kjones and a

display name of Jones, Kent in the Contacts container of the Marketing organizational unit:

$MailContact = @{
Name = “Jones, Kent”
ExternalEmailAddress = “kjones@powershell.com”
OrganizationalUnit = “Contoso.com/Marketing/Contacts”
Alias = “kjones”
}
New-MailContact @MailContact

c12.indd 291c12.indd 291 03/09/11 10:57 AM03/09/11 10:57 AM

292

Part IV: Server Applications

You can change an address for an existing email contact with the Set-MailContact cmdlet,

passing the parameters Identity, ExternalEmailAddress, and EmailAddressPolicyEnabled.

The EmailAddressPolicyEnabled parameter must be set to $False.

The following example changes the external email address for the contact Ted Jones

to tedjones@powershell.com, and disables the email address policy that applies to the

contact (if any):

$MailContact = “Ted Jones”
$NewAddressString = “tedjones@powershell.com”
$NewAddress = @{
Identity = $MailContact
ExternalEmailAddress = $NewAddressString
EmailAddressPolicyEnabled = $False
}
Set-MailContact @NewAddress

Existing email contacts can be disabled or deleted with the Disable-MailContact or

Remove-MailContact cmdlets. As always, you can bypass the con�irmation prompt by

specifying the Confirm = $False parameter.

The following example disables the email contact for Jones, Kent. Changing the last line

to Remove-MailContact @MailContact deletes the email from Active Directory:

$MailContact = @{
Identity = “Jones, Kent”
Confirm = $false
}
Disable-MailContact @MailContact

Administering Users
Mail-enabled users are similar to mail-enabled contacts in that mail sent to either sends

to an external domain instead of a local Exchange mailbox. Mail-enabled contacts have no

login accounts in Active Directory, whereas mail-enabled users do have the ability to log in

to Active Directory.

You can mail-enable existing user accounts by using the Enable-MailUser cmdlet with the

required parameters Identity and ExternalEmailAddress.

The following example mail-enables the account jdoll, and sets the external email

address to jdoll@nowhere.com:

$MailUser = @{
Identity = “jdoll”
ExternalEmailAddress = “jdoll@nowhere.com”
}
Enable-MailUser @MailUser

c12.indd 292c12.indd 292 03/09/11 10:57 AM03/09/11 10:57 AM

293

Chapter 12: Managing Microsoft Exchange Server

As with the Enable-Mailbox cmdlet, if you do not specify an internal SMTP address,

Exchange assigns one for you. In this case, the primary SMTP address will be the

external email address, and Exchange will assign a secondary email address that

matches the email address policy.

You can create and mail-enable a new user with the New-MailUser cmdlet as shown in the

following example. The example creates the mail-enabled user Ed Johnson with an external

email address of ed@external.com, and a user principal name of ed@contoso.com.

This account will be created in the Users container. As seen in the section on creating

mailboxes, you create a password via the Read-Host cmdlet:

$Password = Read-Host “Enter password” -AsSecureString
$User =@{
Name = “Ed Johnson”
ExternalEmailAddress = “ed@external.com”
UserPrincipalName = “ed@contoso.com”
Password = $Password
}
New-MailUser @User

Optionally, you can pass an organizational unit for the user account with the

OrganizationalUnit parameter, and an alias with the Alias parameter, as shown in the

following example. I recommend always specifying the organizational unit and alias.

$Password = Read-Host “Enter password” -AsSecureString
$User =@{
Name = “Ed Johnson”
ExternalEmailAddress = “ed@external.com”
UserPrincipalName = “ed@contoso.com”
Password = $Password
OrganizationalUnit = “OU=Users,OU=Apps,DC=contoso,DC=com”
Alias = “ejohnson”
}
New-MailUser @User

Once again, you will need to have Account Operator permissions in Active Directory to use

the New-MailUser or Remove-MailUser cmdlets.

Changing the email address is as easy as with a mailbox, with the exception that you can

change the primary SMTP address or the external email address, or both. The primary

SMTP address is used inside the organization, and the external email address is

where mail is delivered. The external email address is speci�ied with the

ExternalEmailAddress parameter.

The following example adds the external email address emcray@federalbank.com to

the mail user and sets the primary SMTP address to emcray@contoso.com. As with

c12.indd 293c12.indd 293 03/09/11 10:57 AM03/09/11 10:57 AM

294

Part IV: Server Applications

mailboxes, you need to wait for Active Directory replication to be complete to remove

the old address.

$User = @{
Identity = “Erik Mcray”
PrimarySmtpAddress = “emcray@contoso.com”
EmailAddressPolicyEnabled = $false
ExternalEmailAddress = “emcray@federalbank.com”
}
Set-MailUser @User

In the next example, the code adds the external email address emcray@federalbank.com

to the mail user and sets the primary SMTP address to emcray@contoso.com. The example

then uses a do . . . while loop to wait for Active Directory to recognize the email address

change. Finally, the example removes the old email addresses.

$User = @{
Identity = “Erik Mcray”
PrimarySmtpAddress = “emcray@contoso.com”
EmailAddressPolicyEnabled = $false
ExternalEmailAddress = “emcray@federalbank.com”
}
Set-MailUser @User
do{$address = Get-MailUser -Identity $User[“identity”]}
while ($address.PrimarySmtpAddress.ToString() -ne $User[“PrimarySmtpAddress”])
$MailUser = Get-MailUser -Identity $user[“identity”]
$Addresses = $MailUser.EmailAddresses
$MailUser.EmailAddresses | ForEach-Object {
if (!$_.IsPrimaryAddress -and ($_.PrefixString -eq ‘SMTP’)){
$Addresses -= $_}}
$SetUser = @{
Identity = $user[“identity”]
EmailAddresses = $Addresses
}
Set-MailUser @SetUser

Because mail-enabled users are User objects, you can modify Active Directory attributes with

the Set-User cmdlet exactly as you could with mailboxes. The following example sets the

Company, StreetAddress, City, StateOrProvince, and PostalCode for the user Erik Mcray:

$User = @{
Identity = “Erik Mcray”
Company = “Federal Bank”
StreetAddress = “129 South Pine”
City = “Memphis”
StateOrProvince = “TN”
PostalCode = “38115”
}
Set-User @User

c12.indd 294c12.indd 294 03/09/11 10:57 AM03/09/11 10:57 AM

295

Chapter 12: Managing Microsoft Exchange Server

The Set-User cmdlet sets Active Directory attributes. As such, you need Account Operator

permissions in the Active Directory container. You use the Set-MailUser cmdlet to set

Exchange attributes for the object.

As you could with mailboxes, you can disable or remove a mailuser if you have Account

Operator permissions. The �irst line in the following code removes Exchange attributes

from the user object, and the second one deletes the user object:

Disable-MailUser -Identity ejohnson -Confirm:$False
Remove-MailUser -Identity ejohnson -Confirm:$False

Administering Groups
Microsoft Exchange Server provides two different kinds of groups: distribution groups and

dynamic distribution groups. Distribution Groups have static membership, managed by one

or more people. These people would normally not have any sort of Exchange management

permission. For instance, an AccountingUsers distribution group would normally be set up

so the membership is managed by someone in the accounting department.

As the name implies, dynamic distribution groups have their membership created

dynamically. These groups are, in effect, created each time an email is sent to them.

Administering Distribution Groups

Note
For the purpose of this book, I am not going to distinguish between mail-enabled security groups and true
distribution groups. �

Groups in Exchange Server 2007 and Exchange Server 2010 must be universal groups before

you can mail-enable them. You cannot use the Enable-DistributionGroup cmdlet to change

a group from a global or domain local group to a universal group. If you attempt to mail-

enable a group that is not a universal group, you will receive an error: “The group that you

want to mail-enable is not a universal group. Only a universal group can be mail-enabled.”

The following example mail-enables the existing universal group SafetyTeam with a display

name of Safety Team and an email address generated by the applicable email address policy:

Enable-DistributionGroup -Identity “SafetyTeam” -DisplayName “Safety Team”

You can specify the email address with the additional parameter PrimarySmtpAddress. The

following example mail-enables the existing universal group MarketingGroup, with a display

name of Marketing Group and a primary SMTP address of marketing@contoso.com:

$DistributionGroup = @{
Identity = “MarketingGroup”
DisplayName = “Marketing Group”
PrimarySmtpAddress = “marketing@contoso.com”
}
Enable-DistributionGroup @DistributionGroup

c12.indd 295c12.indd 295 03/09/11 10:57 AM03/09/11 10:57 AM

296

Part IV: Server Applications

If you have Account Operator permissions in the Active Directory container where the

group exists, you can convert a group to a universal group by using the Set-Group cmdlet

and passing the required parameter Identity and the switch parameter Universal. The

following example converts the existing group SalesTeam to a universal group:

Set-Group -Identity SalesTeam -Universal

If you have Account Operator permissions, you can create and mail-enable a distribution

group in Exchange 2007 with the New-DistributionGroup cmdlet, passing the required

parameters Name, Type (Distribution or Security), and SamAccountName.

This example creates the distribution group Accounting in the Users container with the

DisplayName of Accounting, and an Alias of accounting:

$DistributionGroup = @{
Type = “Distribution”
Name = “Accounting”
SamAccountName = “accounting”
}
New-DistributionGroup @DistributionGroup

The New-DistributionGroup cmdlet in Exchange 2010 requires only the Name parameter.

The following example creates a distribution group named Legal, also in the Users

container with the DisplayName and Alias of Legal. In Exchange Server 2010, the group

type will be Distribution unless speci�ied with the optional Type parameter.

$DistributionGroup = @{
Name = “Legal”
}
New-DistributionGroup @DistributionGroup

As with all of the New-* recipient cmdlets, I recommend you specify the optional parameters

OrganizationalUnit and Alias. I also recommend you use the optional parameter

ManagedBy, because the cmdlet sets a default to the person running the cmdlet in Exchange

Server 2010 and leaves ManagedBy blank in Exchange Server 2007. The account listed in the

ManagedBy attribute can add and remove members from the group, but is not a member of

the group on creation. Additionally, I recommend you set the DisplayName parameter.

An Exchange Server 2007 example script would look like this:

$DistributionGroup = @{
Type = “Distribution”
Name = “accounting”
DisplayName = “Accounting”
SamAccountName = “accounting”
Alias = “accountants”
OrganizationalUnit = “contoso.com/Accounting/Groups”
ManagedBy = “contoso\jballard”
}
New-DistributionGroup @DistributionGroup

c12.indd 296c12.indd 296 03/09/11 10:57 AM03/09/11 10:57 AM

297

Chapter 12: Managing Microsoft Exchange Server

The equivalent Exchange Server 2010 script would be:

$DistributionGroup = @{
Name = “accounting”
DisplayName = “Accounting”
Alias = “accountants”
OrganizationalUnit = “contoso.com/Accounting/Groups”
ManagedBy = “contoso\jballard”
}
New-DistributionGroup @DistributionGroup

Note that a SamAccountName was not speci�ied for the group in Exchange Server 2010. In this

case, the group defaults to using the name for the SamAccountName. The SamAccountName is

used for clients running operating systems prior to Windows 2000.

You can add members to distribution groups with the Add-DistributionGroupMember

cmdlet, passing the required parameters Identity and Member, where identity is the group,

and member is the object to add to the group. The following example adds the mailbox

associated with the Active Directory account jballard to the distribution group accounting:

$DistributionGroupMember = @{
Identity = “accounting”
Member = “jballard”
}
Add-DistributionGroupMember @DistributionGroupMember

You can also pipe the results of a Get-Mailbox cmdlet to the Add-DistributionGroupMember

cmdlet to add all the results to the group at once. The following example adds all mailboxes

in the Accounting organizational unit to the Accounting distribution group:

$Mailbox = @{
OrganizationalUnit = “Accounting”
}
$DistributionGroupMember = @{
Identity = “Accounting”
}
Get-Mailbox @Mailbox | Add-DistributionGroupMember @DistributionGroupMember

You can remove members from a distribution group with the Remove-
DistributionGroupMember cmdlet, once again passing the required parameters

Identity and Member. The following example removes the object associated with the

Active Directory account jballard from the distribution group Accounting:

Remove-DistributionGroupMember -Identity Accounting -Member jballard

You can view the members of a group with the Get-DistributionGroupMember cmdlet,

which has only one required parameter, the Identity. The following example shows all

members of the Accounting distribution group:

Get-DistributionGroupMember -Identity Accounting

c12.indd 297c12.indd 297 03/09/11 10:57 AM03/09/11 10:57 AM

298

Part IV: Server Applications

As with users and mailboxes, you can disable or remove distribution groups using the

Disable-DistributionGroup or Remove-DistributionGroup cmdlets. As always, the

Disable-DistributionGroup cmdlet leaves the Active Directory object, whereas the

Remove-DistributionGroup cmdlet removes the Active Directory object. Once again, the

Remove-DistributionGroup cmdlet requires that you have Account Operator permissions

on the Active Directory container. Both cmdlets require the Identity parameter, which

takes the group’s alias, display name, or name, among other values.

The �irst line in the following code removes the Exchange attributes from the Active

Directory object, and the second removes the Active Directory object:

Disable-DistributionGroup -Identity Accounting
Remove-DistributionGroup -Identity Accounting

Oddly enough, there is no built-in Exchange cmdlet for �inding groups a mailbox is a member

of. For this, you need to rely on Active Directory. The following example shows all groups

that jballard is a direct member of, and shows both security and distribution groups:

$Member = “(&(objectClass=person)(name=jballard))”
(([adsisearcher] $Member).FindOne()).Properties.memberof

Administering Dynamic Distribution Groups
Dynamic distribution groups are different from distribution groups in that their

membership is de�ined each time a mail message is sent to the group. The membership is

de�ined by an Active Directory query, which is created when the group is created. You can

modify the query after the group is created as well.

To create a dynamic distribution group, you use the New-DynamicDistributionGroup cmdlet,

which requires the parameters Name and either RecipientFilter or IncludedRecipients.

Modifying a dynamic distribution group is accomplished with the

Set-DynamicDistributionGroup cmdlet, which requires the Identity parameter.

Some of the parameters of these two cmdlets are mutually exclusive because they belong to

different parameter sets. If you use one, you cannot use the other. These are shown in Table 12-1.

TABLE 12-1

Parameter Sets for the DynamicDistributionGroup Cmdlets

If you use this parameter You cannot use these parameters

RecipientFilter IncludedRecipients

ConditionalCompany

ConditionalCustomAttribute1 through 15

ConditionalDepartment

ConditionalStateOrProvince

c12.indd 298c12.indd 298 03/09/11 10:57 AM03/09/11 10:57 AM

299

Chapter 12: Managing Microsoft Exchange Server

The following example creates a dynamic distribution group named Building 50 Users

with a recipient �ilter that �inds all mail-enabled Active Directory objects with Building
50 in the Office attribute:

$DynamicDistributionGroup = @{
Name = “Building 50 Users”
Alias = “Building50”
DisplayName = “Building 50 Users”
RecipientFilter = {Office -eq “Building 50”}
OrganizationalUnit = “Contoso.com/Groups/DynamicGroups”
}
New-DynamicDistributionGroup @DynamicDistributionGroup

You can restrict the membership of the dynamic distribution group to include speci�ic

mailboxes with an extended �ilter. The following example creates a dynamic distribution

group named Building 50 Users with a recipient �ilter that �inds all mailboxes with

Building 50 in the Office attribute:

$Filter = {
Office -eq “Building 50” -and RecipientTypeDetails -eq “usermailbox”
}
$DynamicDistributionGroup = @{
Name = “Building 50 Users”
Alias = “Building50”
DisplayName = “Building 50 Users”
RecipientFilter = $Filter
}
New-DynamicDistributionGroup @DynamicDistributionGroup

As an alternative to the RecipientFilter parameter, you can use the IncludedRecipients

parameter. This parameter accepts multiple recipient types, separated by a comma. Along

with the IncludedRecipients parameter, you can use any of the conditional parameters,

which cannot be used with the RecipientFilter parameter.

IncludedRecipients “MailboxUsers, MailUsers” �inds any mail-enabled objects that

are either mailboxes or mail users. ConditionalDepartment “Accounting,Finance”

�inds any Active Directory objects with the department of Accounting or Finance.

Put together, the two parameters �ind all mailboxes and mail users in the Accounting or

Finance department. The following example creates a new dynamic distribution group

named Finance & Accounting Users containing all mailboxes and mail users in the

Finance or Accounting department:

$Recipients = “MailboxUsers, MailUsers”
$Department = “Accounting”,”Finance”
$DynamicDistributionGroup = @{
Name = “Finance & Accounting Users”
Alias = “Finance&Accounting”

c12.indd 299c12.indd 299 03/09/11 10:57 AM03/09/11 10:57 AM

300

Part IV: Server Applications

DisplayName = “Finance & Accounting”
IncludedRecipients = $Recipients
ConditionalDepartment = $Department
}
New-DynamicDistributionGroup @DynamicDistributionGroup

Additional conditional parameters include ConditionalCompany,

ConditionalStateOrProvince, and ConditionalCustomAttribute1 through

ConditionalCustomAttribute15. These work the same as the ConditionalDepartment

parameter. Any strings passed to these parameters with a comma separating them are

treated as OR �ilters. That is, ConditionalCompany “Contoso”,”Contoso Sales”

would �ind objects with Contoso or Contoso Sales in the Company �ield.

Verifying the membership of a dynamic distribution group is a two-step process. First, you

set a variable to the group using the Get-DynamicDistributionGroup cmdlet, and then

you pass that variable to the Get-Recipient cmdlet. The following example shows which

mail-enabled objects would receive an email message sent to the dynamic distribution

group Building 50 Users at the moment the check is done. Any mail-enabled objects with

an of�ice attribute of Building 50 added after this check will also receive mail sent to the

group. Likewise, any mail-enabled object that no longer has an of�ice of Building 50 will

no longer receive email sent to the group.

$Building50 = Get-DynamicDistributionGroup -Identity “Building 50 Users”
Get-Recipient -RecipientPreviewFilter $Building50.RecipientFilter

Verifying the group membership is a good step to perform immediately after creating the

dynamic distribution group, because it will verify that the �ilter works as you expected.

If the veri�ication step returns results that you did not expect, you can set a new �ilter

with the Set-DynamicDistributionGroup cmdlet. This cmdlet requires the Identity

parameter, and whatever parameter you wish to change.

However, if the current �ilter uses the RecipientFilter parameter, you cannot add

�ilters that are not allowed with that parameter (any of the conditional parameters, or

the IncludedRecipients parameter).

You can see the current �ilter for the dynamic distribution group using the Identity

parameter and passing the name of the group. The following example shows the �ilter

for the dynamic distribution group Building 50 Users:

$Group = “Building 50 Users”
$Filter = “RecipientFilter”
(Get-DynamicDistributionGroup -Identity $Group |
Select-Object $Filter).RecipientFilter

You can modify an existing dynamic distribution group using the

Set-DynamicDistributionGroup cmdlet. The following example sets the ManagedBy

attribute for the dynamic distribution group Building 50 Users to contoso\ceverhart,

c12.indd 300c12.indd 300 03/09/11 10:57 AM03/09/11 10:57 AM

301

Chapter 12: Managing Microsoft Exchange Server

and adds an email address, Building50@contoso.com. If you want to remove the old

address, you will need to modify the code in Listing 12-1.

$DynamicDistributionGroup = @{
Identity = “Building 50 Users”
PrimarySmtpAddress = “Building50@contoso.com”
ManagedBy = “contoso\ceverhart”
EmailAddressPolicyEnabled = $false
}
Set-DynamicDistributionGroup @DynamicDistributionGroup

You can also set the �ilter for the dynamic distribution group by specifying the proper

parameters and values to the Set-DynamicDistributionGroup cmdlet. The following

example sets the ManagedBy, PrimarySmtpAddress, and RecipientFilter for the dynamic

distribution group Building 50 Users:

$DynamicDistributionGroup = @{
Identity = “Building 50 Users”
PrimarySmtpAddress = “Building50@contoso.com”
ManagedBy = “contoso\ceverhart”
EmailAddressPolicyEnabled = $false
RecipientFilter = {Office -eq “Building 50”}
}
Set-DynamicDistributionGroup @DynamicDistributionGroup

You can remove a dynamic distribution group with the Remove-DynamicDistributionGroup

cmdlet. This example removes the dynamic distribution group Finance & Accounting Users:

$Group = @{
Identity = “Finance & Accounting Users”
Confirm = $false
}
Remove-DynamicDistributionGroup @Group

Note
There is no Disable-DynamicDistributionGroup cmdlet. All Disable-* cmdlets remove Exchange
attributes from an Active Directory object. Dynamic distribution groups have no function in Active Directory,
and couldn’t exist without Exchange, thus, if there were a Disable-DynamicDistributionGroup cmdlet, it
would be functionally equivalent to the Remove-DynamicDistributionGroup cmdlet. �

Managing Resource Mailboxes
Resource mailboxes are mailboxes with several additional attributes and with an extra

requirement — the Active Directory account must be disabled. Resource mailboxes can be

rooms, equipment, or shared mailboxes.

Room mailboxes are mainly used to schedule an area, such as a conference room or an

of�ice. Equipment mailboxes are best used for items that are not tied to a speci�ic location

such as projectors, laptops, company vehicles, and other such items. Shared mailboxes

c12.indd 301c12.indd 301 03/09/11 10:57 AM03/09/11 10:57 AM

302

Part IV: Server Applications

are ideal in situations where you have multiple people in a department responsible for

answering mail sent to one address, such as marketing@contoso.com.

Managing resource mailboxes is exactly like managing mailboxes, with the added

parameter of the resource type. In all cases, the type is a switch parameter.

This parameter can be set to Room, Equipment, or Shared. The following example enables

the account Area 51 and sets it to a room:

$Mailbox = @{
Identity = “Area 51”
Database = “ResourceDb”
Room = $true
}
Enable-Mailbox @Mailbox

If the account is not disabled before running the Enable-Mailbox cmdlet, the error “The

user’s Active Directory account must be logon-disabled for linked, shared, or resource

mailbox” will be returned. If you have Account Operator permissions in the Active Directory

container that contains Area 51, you can disable the account with a combination of the

[adsisearcher] and [adsi] type accelerators. Type accelerators are a shortcut to an

underlying .NET type name. In this case, System.DirectoryServices.DirectorySearcher

and System.DirectoryServices.DirectoryEntry, respectively. This example disables the

Active Directory account and enables the Equipment mailbox Projector 1:

$user = (([adsisearcher]”(&(objectClass=person)(name=Projector 1))”).FindOne())
$account=[adsi]$user.Path
$account.PsBase.InvokeSet(“AccountDisabled”, $true)
$account.SetInfo()
$Mailbox = @{
Identity = “Projector 1”
Database = “ResourceDb”
Room = $True
}
Enable-Mailbox @Mailbox

You can create and mail-enable a resource mailbox with the New-Mailbox cmdlet. This example

creates the logon-disabled Active Directory object truck in the organizational unit resources,

and mail-enables it as an Equipment mailbox:

$Mailbox = @{
Name = “Delivery Truck”
UserPrincipalName = “truck@contoso.com”
DisplayName = “Parts Delivery Truck”
Alias = “truck”
OrganizationalUnit = “contoso.com/resources”
Database = “ResourceDb”
Equipment = $true
}
New-Mailbox @Mailbox

c12.indd 302c12.indd 302 03/09/11 10:57 AM03/09/11 10:57 AM

303

Chapter 12: Managing Microsoft Exchange Server

Note that when you are creating a new resource mailbox with associated Active Directory

account, you do not need to provide a password. As the account is disabled, a password is

not needed.

You can convert an existing mailbox to a room or equipment mailbox with the Set-Mailbox

cmdlet, passing the Type parameter. The following example converts the existing mailbox

Car 54 to the type Equipment:

$Mailbox = @{
Identity = “Car 54”
Type = “Equipment”
}
Set-Mailbox @Mailbox

Valid options for the Type parameter are Room, Equipment, Shared, and Regular. The type

Regular converts the mailbox back to a user mailbox, and enables the Active Directory account.

Disabling or removing a resource mailbox is exactly the same as performing the same

operation on a user mailbox. When a resource mailbox is disabled, the Active Directory

account remains disabled. If you want to then enable the account as a user mailbox, you will

need to enable the Active Directory account.

Managing Public Folders
Public folders are unlike the other recipient types in that they do not have an entry in

Active Directory unless or until they are mail-enabled. Once mail-enabled, all public folder

objects can be found in the Microsoft Exchange System Objects organizational unit.

Additionally, you cannot create and mail-enable a public folder with a single cmdlet as you

can the other recipients. Thus, mail-enabling a new public folder is inherently a two-step

process:

 1. Create the public folder.

 2. Mail-enable the public folder.

You create a public folder with the New-PublicFolder cmdlet passing the required

parameter Name. The following example creates the folder Legal under the root public

folder, also known as IPM_SUBTREE:

New-PublicFolder -Name Legal

You can specify the path for the new folder using the Path parameter. The following

example creates the folder Sales in the Marketing folder under the root public folder:

$PublicFolder = @{
Name = “Sales”
Path = “\Marketing”
}
New-PublicFolder @PublicFolder

c12.indd 303c12.indd 303 03/09/11 10:57 AM03/09/11 10:57 AM

304

Part IV: Server Applications

You can mail-enable an existing public folder with the Enable-MailPublicFolder cmdlet.

This cmdlet has the required parameter of Identity. The following example mail-enables

the Sales public folder using the email address policy that applies:

$MailPublicFolder = @{
Identity = “\Marketing\Sales”
}
Enable-MailPublicFolder @MailPublicFolder

You can pipe the New-PublicFolder cmdlet to the Enable-MailPublicFolder cmdlet to

create and mail-enable a folder at once. The following example creates a new folder named

District 3 Calendar under the \Marketing\Sales folder, and mail-enables it:

$PublicFolder = @{
Name = “District 3 Calendar”
Path = “\Marketing\Sales”
}
New-PublicFolder @PublicFolder | Enable-MailPublicFolder

Oddly enough, the Enable-MailPublicFolder cmdlet does not allow you to

specify the email address for a folder. To specify the address, you must use the

Set-MailPublicFolder cmdlet, passing the Identity, PrimarySmtpAddress, and

EmailAddressPolicyEnabled parameters.

Optionally, you can specify the parameters Alias and DisplayName for the public folder.

I recommend that you always specify these parameters. The following example adds

the email address district3@contoso.com to the public folder District 3 Calendar,

sets the alias to district3, and the display name to District 3 Sales Calendar while

preventing the email address policy from being applied. Note that there will already be

an email address for the folder, because the Enable-MailPublicFolder cmdlet does not

disable the email address policy.

$PublicFolder = @{
Identity = “\marketing\Sales\District 3 Calendar”
Alias = “district3”
PrimarySmtpAddress = “district3@contoso.com”
EmailAddressPolicyEnabled = $False
DisplayName = “District 3 Sales Calendar”
}
Set-MailPublicFolder @PublicFolder

If you’d rather not have the default email address as an additional email address, you will need

to remove it. The following example builds upon the previous example, and uses the method

introduced in Listing 12-1 to change the SMTP address for the mail-enabled public folder

District 3 Calendar to district3@contoso.com, removing all other SMTP addresses:

$PublicFolder = @{
Identity = “\marketing\Sales\District 3 Calendar”
Alias = “district3”

c12.indd 304c12.indd 304 03/09/11 10:57 AM03/09/11 10:57 AM

305

Chapter 12: Managing Microsoft Exchange Server

PrimarySmtpAddress = “district3@contoso.com”
EmailAddressPolicyEnabled = $false
DisplayName = “District 3 Sales Calendar”
}
Set-MailPublicFolder @PublicFolder
do{$address = Get-MailPublicFolder -Identity $PublicFolder.Identity}
While ($address.PrimarySmtpAddress -ne $PublicFolder.PrimarySmtpAddress)
$folder = Get-MailPublicFolder -Identity $PublicFolder.Identity
$Addresses = $folder.EmailAddresses
$folder.EmailAddresses | ForEach-Object {
if (!$_.IsPrimaryAddress -and ($_.PrefixString -eq ‘SMTP’)) {
$Addresses -= $_}}
Set-MailPublicFolder -Identity $PublicFolder.Identity -EmailAddresses $Addresses

You can disable or remove a public folder using the cmdlets Disable-MailPublicFolder

or Remove-PublicFolder. As previously mentioned, public folders do not have an entry

in Active Directory unless they are mail-enabled. Thus, the Disable-MailPublicFolder

cmdlet removes the Active Directory object. The public folder still exists, however, and

retains all data stored in it.

The Remove-PublicFolder cmdlet removes the public folder and all data stored in the folder.

Both cmdlets require the Identity parameter, and accept the optional Confirm switch

parameter. If you do not specify Confirm = $False, you will be prompted for con�irmation.

The following example removes the email address information from the public folder

District 3 Calendar:

$PublicFolder = @{
Identity = “\marketing\Sales\District 3 Calendar”
Confirm = $False
}
Disable-MailPublicFolder @PublicFolder

The Remove-PublicFolder cmdlet removes all data from the public folder, and removes the

folder from all servers in the organization. If the folder has subfolders, you need to specify

the switch parameter Recurse. This parameter causes the cmdlet to remove the speci�ied

folder and all subfolders.

The next example deletes all the data from the public folder District 3 Calendar and all

subfolders:

$PublicFolder = @{
Identity = “\marketing\Sales\District 3 Calendar”
Confirm = $False
Recurse = $True
}
Remove-PublicFolder @PublicFolder

c12.indd 305c12.indd 305 03/09/11 10:57 AM03/09/11 10:57 AM

306

Part IV: Server Applications

If you only want to remove the folder from one or more servers, you will need to use the

Set-PublicFolder cmdlet to manage replicas.

Note
When working with a public folder database, the Exchange Server 2010 documentation indicates that you can
use the server name as part of the Identity parameter as Server\Database. In my experience, that is
incorrect. In Exchange Server 2010, the name of the public folder database must be unique within the
organization, so you only need to specify the database name. In the Exchange Server 2007 Management
Shell, you can specify the Server\Database or Server\StorageGroup\Database to work with public
folder databases. �

Public folder replication can be set on a per-folder basis, or at the database level. Managing

replication on a per-folder basis can be a good way to minimize replication traf�ic across

the network, while still providing local access to necessary public folders. Imagine you

have three mailbox servers, ExMbx01, ExMbx02, and ExMbx03. On ExMbx01, you have a public

folder database, PF01, and mailbox databases for the Human Resources department. On

ExMbx02, you have a public folder database, PF02, and mailbox databases for Marketing

and Research & Development. On ExMbx03, you have another public folder database, PF03,

along with mailbox databases for Legal. For the purposes of this example, I am going to

use PF01 as the main public folder database, and replicate only a few folders to PF02 and

PF03. Setting public folder replication is accomplished with the Set-PublicFolder cmdlet,

passing the Replicas and ReplicationSchedule parameters.

The following example sets replication for the folder Marketing to the database PF02 on

the server ExMb02 to run from 1 minute after midnight on Monday until 1 minute before

midnight on Friday. The folder R&D will replicate to the same server and database as

Marketing, but will follow the default schedule of the database. The Legal folder will

replicate to the database PF03 on the server ExMbx03 every day of the week.

$PublicFolder = @{
Identity = “\Marketing”
Replicas = “PF02”
ReplicationSchedule = “Monday.00:01-Friday.23:59”
}
$PublicFolder2 = @{
Identity = “\R&D”
Replicas = “PF02”
ReplicationSchedule = “Always”
}
$PublicFolder3 = @{
Identity = “\Legal”
Replicas = “PF03”
ReplicationSchedule = “Sunday.12:01 AM-Saturday.11:59 PM”
}
Set-PublicFolder @PublicFolder
Set-PublicFolder @PublicFolder2
Set-PublicFolder @PublicFolder3

c12.indd 306c12.indd 306 03/09/11 10:57 AM03/09/11 10:57 AM

307

Chapter 12: Managing Microsoft Exchange Server

You can specify the time in 24-hour format, or in 12-hour format. If you use 12-hour

format, you need to add AM and PM to the time, with a space between the time and

either AM or PM.

If your public folder hierarchy experiences an error in replication, you will need to suspend

replication of the public folder content. After troubleshooting the errors, you can resume

replication. Suspending or resuming replication is an organization-wide procedure. You

use the Suspend-PublicFolderReplication or the Resume-PublicFolderReplication

cmdlets to perform this procedure. Note that the public folder hierarchy will continue to

replicate while the content replication is suspended.

The Suspend-PublicFolderReplication cmdlet accepts the optional Confirm parameter,

allowing you to bypass the con�irmation prompt. The following example suspends public

folder replication while bypassing the con�irmation prompt:

Suspend-PublicFolderReplication -Confirm:$False

Although the Resume-PublicFolderReplication cmdlet accepts the Confirm

parameter, it is not necessary to use it; running the cmdlet with no parameters will

resume replication of the public folder content. The following example resumes public

folder replication:

Resume-PublicFolderReplication

You can check to see if public folder replication is suspended with the Get-OrganizationConfig

cmdlet. The object you are interested in is the Heuristics �lag.

The following example returns only the heuristics information from the

Get-OrganizationConfig cmdlet. If replication is suspended, the cmdlet returns

SuspendFolderReplication. Otherwise, the cmdlet returns None.

 (Get-OrganizationConfig).Heuristics

You can manually replicate a public folder with the Update-PublicFolder cmdlet, passing

the required parameters Server and Identity, where Server is the server to replicate

from, and Identity is the folder to replicate.

The following example starts replication of the folder \Legal from the server Exch2010 to

all replicas of that folder:

$PublicFolder = @{
Identity = “\Legal”
Server = “Exch2010”
}
Update-PublicFolder @PublicFolder

c12.indd 307c12.indd 307 03/09/11 10:57 AM03/09/11 10:57 AM

308

Part IV: Server Applications

Managing Storage Groups
Databases in Exchange Server 2007 are stored within storage groups. In Exchange Server

2010, storage groups no longer exist.

In Exchange Server 2007 Standard edition, you can have up to 5 storage groups and

5 databases. Exchange Server 2007 Enterprise edition allows you to create up to

50 storage groups and 50 databases. Although you can store up to 5 databases

in each storage group, there are bene�its to keeping each database in its own

storage group.

You create a storage group using the New-StorageGroup cmdlet, passing the required

parameters of Name and LogFolderPath. If you are running the cmdlet from a workstation,

you will also need to pass the Server parameter.

The following example creates the storage group AccountingSG on the server Exch07 and

sets the log folder path to D:\AccountingLogs on the Exchange server. Note that the log

folder path is set on the storage group — any database in that storage group will share that

log folder. This means that if you need to do a recovery for any database in that storage

group, replaying the log �iles will take longer than it would have if you had only one database

in the storage group. Thus, I recommend that you have one database per storage group. This

is also Microsoft’s recommendation.

$StorageGroup = @{
Name = “AccountingSG”
LogFolderPath = “D:\Accountinglogs”
Server = “Exch07”
}
New-StorageGroup @StorageGroup

You can remove a storage group using the Remove-StorageGroup cmdlet if there are no

mailbox or public folder databases saved in the storage group. The Remove-StorageGroup

cmdlet takes the required parameter Identity, and prompts for con�irmation without the

optional Confirm parameter.

If the storage group contains one or more databases, the cmdlet will fail. The following

example removes the empty storage group LegalSG without prompting for con�irmation.

You will receive the warning illustrated in Figure 12-1 that you need to remove the log �iles,

along with the path to the log �iles.

$StorageGroup = @{
Identity = “LegalSG”
Confirm = $false
}
Remove-StorageGroup @StorageGroup

c12.indd 308c12.indd 308 03/09/11 10:57 AM03/09/11 10:57 AM

309

Chapter 12: Managing Microsoft Exchange Server

FIGURE 12-1

Output of Remove-StorageGroup

If you are sure that the storage group contains no database and that the log �iles are

not needed, you can remove the log �iles after removing the storage group by using a

combination of the Get-StorageGroup and Remove-Item cmdlets. The following example

removes the storage group LegalSG, and deletes all log �iles and the log �ile path. Using the

if construct prevents the log �iles from being removed if the Remove-StorageGroup cmdlet

fails. Without this, the log �iles would be deleted regardless of the storage group status.

$StorageGroup = @{
Identity = “LegalSG”
Confirm = $false
}
$LogFolderPath = Get-StorageGroup $StorageGroup[“Identity”]
if (Remove-StorageGroup @StorageGroup)
{
Remove-Item $LogFolderPath.LogFolderPath -Recurse -Confirm:$False
}

Managing Databases
Microsoft Exchange Server stores all mailbox and public folder data in databases. Exchange

Server 2007 and earlier stored the databases within storage groups. Mailbox database

names within Exchange Server 2007 do not need to be unique. You could name all your

mailbox databases MboxDB as long as they were in separate storage groups.

Exchange Server 2010 no longer uses storage groups. Every database in Exchange Server

2010 must have a name that is unique within the organization. The following sections

describe how to manage databases in both versions of Exchange Server.

c12.indd 309c12.indd 309 03/09/11 10:57 AM03/09/11 10:57 AM

310

Part IV: Server Applications

Microsoft Exchange Server 2007
A storage group isn’t much good without at least one database (either mailbox or public

folder) stored in it, so let’s create the mailbox database AccountingDB in the newly created

storage group AccountingSG. You will use the New-MailboxDatabase cmdlet, passing the

required parameters Name, EdbFilepath, and StorageGroup.

The following example creates the mailbox database AccountingDB in the storage group

AccountingSG on the server Exch07. As with the New-StorageGroup cmdlet, if you are

running this from a workstation, or a different Exchange server, you will need to specify

the speci�ic storage group in the format of server\storage group, the storage group’s

GUID, or the distinguished name of the storage group.

$MailboxDatabase = @{
Name = “AccountingDB”
EdbFilePath = “E:\AccountingDB\AccountingDB.edb”
StorageGroup = “Exch07\AccountingSG”
}
New-MailboxDatabase @MailboxDatabase

When you create the mailbox database, it is in an unmounted status. You can mount the

database with the Mount-Database cmdlet, passing the required parameter Identity. The

following example mounts the existing database Exch07\AccountingSG\AccountingDB on

the server Exch07, in the storage group AccountingSG:

Mount-Database -Identity “Exch07\AccountingSG\AccountingDB”

You can also create and mount the mailbox database at once by piping the New-
MailboxDatabase cmdlet to the Mount-Database cmdlet. The following example builds

on the New-MailboxDatabase example presented earlier to create the mailbox database

speci�ied in the previous example’s @MailboxDatabase hashtable and pass the output to

the Mount-Database cmdlet:

New-MailboxDatabase @MailboxDatabase | Mount-Database

Dismounting a mailbox database is accomplished with the aptly named Dismount-Database

cmdlet, passing the required parameter Identity. The next example dismounts the

Exchange Server 2007 mailbox database AccountingDB in the storage group AccountingSG,

on the server Exch07. The example prompts for con�irmation. Once again, this prompt can

be bypassed by adding the switch parameter Confirm, set to $false.

Dismount-Database -Identity “Exch07\AccountingSG\AccountingDB”

Microsoft Exchange Server 2010
Creating mailbox databases on Exchange Server 2010 is also accomplished with the

New-MailboxDatabase cmdlet. On Exchange Server 2010, the cmdlet requires the Name

and Server parameters. The following example creates the mailbox database Ex2010DB on

c12.indd 310c12.indd 310 03/09/11 10:57 AM03/09/11 10:57 AM

311

Chapter 12: Managing Microsoft Exchange Server

the server Exch2010. After the mailbox database is created, the mailbox database object is

piped to the Mount-Database cmdlet, which mounts it.

New-MailboxDatabase -Name Ex2010DB -Server Exch2010 | Mount-Database

As with the Exchange Server 2007 New-StorageGroup and New-MailboxDatabase

cmdlets, if you do not specify the EdbFilePath and LogFolderPath, they will be created

in the same folder path as the Exchange binaries, under the Mailbox folder. The following

example builds on the previous one, specifying that the EdbFilePath be F:\Ex2010db\
Ex2010db.edb, and the LogFolderPath be F:\Ex2010logs. In this case, the F: drive is a

mount point. Otherwise, it’s recommended that the EdbFilePath and LogFolderPath be on

separate drives.

$Database = @{
Name = “Ex2010DB”
Server = “Exch2010”
EdbFilePath = “F:\Ex2010DB\Ex2010DB.edb”
LogFolderPath = “F:\Ex2010Logs”
}
New-MailboxDatabase @Database | Mount-Database

Once again, as with Exchange Server 2007, to dismount a mailbox database, you use the

Dismount-Database cmdlet with the required parameter Identity.

Because mailbox database names in Exchange Server 2010 must be unique within the

organization, you need only pass the mailbox database name in the Identity parameter.

The following example dismounts the Exchange Server 2010 mailbox database Legal

without prompting for con�irmation:

Dismount-Database -Identity Legal -Confirm:$False

Finding Mailbox Database White Space
Exchange mailbox databases contain white space after online maintenance is completed.

White space is the space that exists in the mailbox database �ile after items have been

deleted. If the mailbox database had grown to 20 GB, and had 2 GB of data deleted, the

mailbox database �ile would still occupy 20 GB of disk space but would have 2 GB of internal

space that could be consumed before growing the mailbox database �ile. These data could

be items removed from mailboxes, or mailboxes being moved or deleted.

Finding White Space in Microsoft Exchange Server 2007
In Exchange Server 2007 (and previous), you need to look in the event logs to gather

white space information. When online maintenance completes, an event with the ID of 1221

and source of “MSExchangeIS Mailbox Store” is created in the application log. A separate

1221 event is created for each database.

c12.indd 311c12.indd 311 03/09/11 10:57 AM03/09/11 10:57 AM

312

Part IV: Server Applications

Because the white space is retrieved by viewing the application log, you can do this via the

Exchange Management Shell or a generic Windows PowerShell window. You use the

Get-WmiObject cmdlet, passing the required parameters Class, ComputerName, and Filter.

Listing 12-4 illustrates how to display the white space for all mailbox databases in

your Exchange Server 2007 organization.

LISTING 12-4

Finding Database White Space in Exchange 2007

$TimeConversion = [System.Management.ManagementDateTimeconverter]
$StartDate = $TimeConversion::ToDmtfDateTime((Get-Date).AddDays(-1).Date)
$EndDate = $TimeConversion::ToDmtfDateTime((Get-Date).Date)
$Version = @{
FilterScript = {$_.AdminDisplayVersion.major -eq 8}
}
$Action = @{
ErrorAction = “SilentlyContinue”
}
$Servers = Get-ExchangeServer| Where-Object @Version | Get-MailboxServer @Action
Foreach ($MailboxServer in $Servers)
{
$WMIObject = @{
ComputerName = $MailboxServer
Query = @”
Select * from Win32_NTLogEvent Where LogFile=’Application’
AND EventCode=1221
AND TimeWritten>=’$StartDate’
AND TimeWritten<=’$EndDate’
“@
}
$SelectObject = @{
Property = “ComputerName”,
@{Name=”DB”;Expression={$_.InsertionStrings[1]}},
@{Name=”FreeMB”;Expression={[int]$_.InsertionStrings[0]}}
}
$SortObject = @{
Property = “FreeMB”
Unique = $true
Descending = $true
}
Get-WMIObject @WMIObject | Select-Object @SelectObject | Sort-Object @SortObject
}

Finding White Space in Microsoft Exchange Server 2010
In Exchange Server 2010, you no longer need to examine event logs to determine mailbox

database white space. This information is available in real time via the Get-MailboxDatabase

cmdlet, passing the optional parameter Status.

c12.indd 312c12.indd 312 03/09/11 10:57 AM03/09/11 10:57 AM

313

Chapter 12: Managing Microsoft Exchange Server

The following example shows free space for all Exchange 2010 mailbox databases:

$Object = @{
Property = “Name”,”AvailableNewMailboxSpace”
}
Get-MailboxDatabase -Status | Select-Object @Object

You can also pass optional parameters to the Get-MailboxDatabase cmdlet to limit the

output to a speci�ic server or database by using the Server or Database parameters.

The following example shows the free space available for the mailbox database Legal:

$MailboxDatabase = @{
Identity = “Legal”
Status = $true
}
$Object = @{
Property = “Name”,”AvailableNewMailboxSpace”
}
Get-MailboxDatabase @MailboxDatabase | Select-Object @Object

The following example shows the free space available on each mailbox database on the

Exchange Server EXCH2010:

$MailboxDatabase = @{
Server = “EXCH2010”
Status = $true
}
$Object = @{
Property = “Name”,”AvailableNewMailboxSpace”
}
Get-MailboxDatabase @MailboxDatabase | Select-Object @Object

Discovering Space Used by
Disabled Mailboxes
Disabled mailboxes could consume a large amount of your mailbox database space. The

following example lists the server, display name, database, size in MB, and disconnected

date of all disconnected mailboxes:

$Server = @{
Server = @(Get-ExchangeServer)
}
$Object = @{
FilterScript = {$_.DisconnectDate -ne $null}
}
$Select =@{

c12.indd 313c12.indd 313 03/09/11 10:57 AM03/09/11 10:57 AM

314

Part IV: Server Applications

Property =
@{Name = ‘Server Name’;Expression={$_.ServerName}},
@{Name = ‘Display Name’;Expression={$_.DisplayName}},
“Database”,
@{Name=’Total Item Size(MB)’;Expression={$_.TotalItemSize.Value.ToMB()}},
@{Name=’Disconnect Date’;Expression={$_.DisconnectDate}},
MailboxGUID
}
foreach ($Server in Get-MailboxServer)
{
Get-MailboxStatistics -Server $Server |
Where-Object @Object | Select-Object @Select
}

You can gather information on all disconnected mailboxes on a speci�ic mailbox database

by passing that information to the Get-MailboxStatistics cmdlet. The following example

lists all disconnected mailboxes on the database Accounting:

$Object = @{
FilterScript = {$_.DisconnectDate -ne $null}
}
$Select =@{
Property =
@{Name = ‘Server Name’;Expression={$_.ServerName}},
@{Name = ‘Display Name’;Expression={$_.DisplayName}},
“Database”,
@{Name=’Total Item Size(MB)’;Expression={$_.TotalItemSize.Value.ToMb()}},
@{Name=’Disconnect Date’;Expression={$_.DisconnectDate}},
“MailboxGUID”
}
Get-MailboxStatistics -Database “AccountingDB” |
Where-Object @Object | Select-Object @Select

Although I recommend leaving disconnected mailboxes alone until they are automatically

purged via the Deleted Mailbox Retention policy, you may need to purge disconnected

mailboxes before the retention period expires.

You can do this by combining the Get-MailboxStatistics cmdlet with the Remove-
Mailbox cmdlet. The Remove-Mailbox cmdlet requires the parameters Database and

StoreMailboxIdentity. The StoreMailboxIdentity should be passed the mailbox

GUID for the value.

Suppose you �ind that the mailbox for Clayton Tarleton occupies 1721 MB in the database

AccountingDB, and you want to reclaim that space. You can get the GUID by running

Get-MailboxStatistics, �iltering by display name.

c12.indd 314c12.indd 314 03/09/11 10:57 AM03/09/11 10:57 AM

315

Chapter 12: Managing Microsoft Exchange Server

The following example returns the Display Name, Database, and GUID for the mailbox

Clayton Tarleton, as shown in Figure 12-2:

$Mailbox = @{
FilterScript = {$_.DisplayName -eq ‘Clayton Tarleton’}
}
$List =@{
Property =
@{Name = ‘Display Name’;Expression={$_.DisplayName}},
“Database”,
“MailboxGUID”
}
Get-MailboxStatistics | Where-Object @Mailbox | Format-List @List

FIGURE 12-2

Output of Get-MailboxStatistics cmdlet

Now that you have the GUID and database, you can call the Remove-Mailbox cmdlet as

shown here:

$Mailbox = @{
Database = “AccountingDB”
StoreMailboxIdentity = “1fd412bc-71db-446d-a13b-296d6850dd43”
Confirm = $false
}
Remove-Mailbox @Mailbox

Alternatively, you can get the mailbox and remove it at once by passing the output of the

Get-MailboxStatistics cmdlet to the Remove-Mailbox cmdlet. The following example

removes the disconnected mailbox for Clayton Tarleton:

$Mailbox = @{
FilterScript = {$_.DisplayName -eq ‘Clayton Tarleton’}
}

c12.indd 315c12.indd 315 03/09/11 10:57 AM03/09/11 10:57 AM

316

Part IV: Server Applications

$Remove = @{
Process = {Remove-Mailbox
Database = `_.Database
StoreMailboxIdentity = `$_.MailboxGuid
Confirm = $False
}
}
Get-MailboxStatistics | Where-Object @Mailbox | ForEach-Object @Remove

As you can see, the Remove-Mailbox cmdlet works in a ForEach-Object loop. This means

you can easily modify the previous example to remove all disconnected mailboxes on a speci�ic

mailbox database or mailbox server by changing the Get-MailboxStatistics criteria.

Managing Quotas
New mailbox databases have default mailbox quotas that may be too large for your

organization. By default, the IssueWarningQuota is set to 1.9 GB, the ProhibitSendQuota

is set to 2 GB, and the ProhibitSendReceiveQuota is set to 2.3 GB.

You can view the current quotas with the Get-MailboxDatabase cmdlet, sending the output

through either the Select-Object or Format-List cmdlet. The following example shows

the IssueWarningQuota, ProhibitSendQuota, and ProhibitSendReceiveQuota on the

Exchange Server 2007 mailbox database Exch07\AccountingSG\AccountingDB. The same

script run against an Exchange Server 2010 mailbox database returns the previous three

quotas, along with the RecoverableItemsQuota and RecoverableItemsWarningQuota. All

of these quotas can be set on the mailbox database level, or on individual mailboxes.

$MailboxDatabase = @{
Identity = “Exch07\AccountingSG\AccountingDB”
}
Get-MailboxDatabase @MailboxDatabase | Select-Object -Property *quota*

The following example sets the speci�ied quotas on the AccountingDB database to 200, 210,

and 220 MB. You can specify the limits in KB, MB, GB, or as just integers. If you specify an

integer value without a multiplier, the value will be applied as bytes.

$MailboxDatabase = @{
Identity = “Exch07\AccountingSG\AccountingDB”
IssueWarningQuota = “200MB”
ProhibitSendQuota = “210MB”
ProhibitSendReceiveQuota = “220MB”
}
Set-MailboxDatabase @MailboxDatabase

As mentioned, Exchange Server 2010 adds the RecoverableItemsQuota and

RecoverableItemsWarningQuota to the list of quotas that can be con�igured. These quotas

manage the dumpster data for the mailbox database, or an individual mailbox. By default,

the RecoverableItemsWarningQuota is set to 20 GB and the RecoverableItemsQuota is

c12.indd 316c12.indd 316 03/09/11 10:57 AM03/09/11 10:57 AM

317

Chapter 12: Managing Microsoft Exchange Server

set to 30 GB on each mailbox database. These quotas are not enabled on individual mailboxes

by default.

The following example sets the mailbox quotas for all mailboxes on the Legal

database to 100, 110, and 120 MB, and sets the RecoverableItemsWarningQuota and

RecoverableItemsQuotas to 10 GB and 20 GB, respectively.

$MailboxDatabase = @{
Identity = “Legal”
IssueWarningQuota = “100MB”
ProhibitSendQuota = “110MB”
ProhibitSendReceiveQuota = “120MB”
RecoverableItemsWarningQuota = “10GB”
RecoverableItemsQuota = “20GB”
}
Set-MailboxDatabase @MailboxDatabase

Along with the quota limits, you can set the QuotaNotificationSchedule, which

determines when users are noti�ied that their mailbox limit(s) have been exceeded. The

following example adds Monday from 1:00 to 1:15 p.m. to the existing noti�ication schedule:

$Database = “WIN-DKV0RVOVBJS\AccountingSG\AccountingDB”
$Quota = (Get-MailboxDatabase -Identity $Database).QuotaNotificationSchedule
$Quota += “Monday.13:00-Monday.13:15”
Set-MailboxDatabase -Identity $Database -QuotaNotificationSchedule $Quota

The day for the QuotaNotificationSchedule can be set using names as I have or the

integers 0 through 6, where 0 represents Sunday.

Knowing this allows you to create a noti�ication schedule in a ForEach-Object loop. The

following example sets the noti�ication schedule for the mailbox database AccountingDB in

the storage group AccountingSG on the server Exch2007 to send out noti�ications between

11:00 and 11:15 p.m. on a daily basis:

$Database = “Exch2007\AccountingSG\AccountingDB”
0..6 | ForEach-Object {$Quota += @(“$_.11:00 PM-$_.11:15 PM”)}
$MailboxDatabase = @{
Identity = “$Database”
QuotaNotificationSchedule = “$Quota”
}
Set-MailboxDatabase @MailboxDatabase

The following example sets the noti�ication schedule for all databases on the Exchange

server Exch2007 to run between 1:00 and 1:15 a.m. on a daily basis:

0..6 | ForEach-Object {$Quota += @(“$_.01:00-$_.01:15”)}
$Database = @{
QuotaNotificationSchedule = $Quota
}
Get-MailboxDatabase -Server Exch2007 | Set-MailboxDatabase @Database

c12.indd 317c12.indd 317 03/09/11 10:57 AM03/09/11 10:57 AM

318

Part IV: Server Applications

You can pipe the results of the Get-MailboxDatabase cmdlet without using the Server

parameter to the Set-MailboxDatabase cmdlet to modify all mailbox databases on that

version of Exchange at once.

Another limit that can be set on the database or mailbox level is the deleted item retention. The

default is to keep 14 days of deleted items. You can set the retention period on a database with

the Set-MailboxDatabase cmdlet using the required parameter Identity and the optional

parameter DeletedItemRetention. The following example sets the DeletedItemRetention

period on all mailbox databases on the server Exch2007 to 21 days, 0 hours, 0 minutes, and 0

seconds. The format for the retention period is days.hours:minutes:seconds.

$DB = @{
DeletedItemRetention = “21.00:00:00”
}
Get-MailboxDatabase -Server Exch2007 | Set-MailboxDatabase @DB

You can set the deleted item retention period for any mailbox or mailbox result set with

the Set-Mailbox cmdlet, passing the RetainDeletedItemsFor parameter. The following

example sets the deleted item retention period for all mailboxes in the organizational unit

Accounting to 45 days, 12 hours, 0 minutes, and 0 seconds:

$mailbox = @{
OrganizationalUnit = “Accounting”
}
$retention = @{
RetainDeletedItemsFor = “45.12:00:00”
}
Get-Mailbox @mailbox | Set-Mailbox @retention

Retention for deleted mailboxes is set on the database level, once again using the

Set-MailboxDatabase cmdlet, along with the MailboxRetention parameter. By default,

deleted mailboxes are retained for 30 days. You can set the retention period on an

individual mailbox database by specifying the Identity parameter, or pass a

Get-MailboxDatabase result set to the Set-MailboxDatabase cmdlet.

The following example, when run in either the Exchange Server 2007 or Exchange Server

2010 Management Shell, sets all mailbox databases on that version of Exchange to use a

deleted mailbox retention period of 45 days. If you have a mix of Exchange Server 2007 and

Exchange Server 2010, you will need to run the script on both.

Get-MailboxDatabase | Set-MailboxDatabase -MailboxRetention “45.00:00:00”

Interestingly, both Exchange Server 2007 and Exchange Server 2010 have a parameter

that you can pass to the Get-MailboxDatabase cmdlet that will display information about

the databases on either version. The following example, when run from an Exchange

Server 2010 Management Shell, shows the mailbox retention and identity for each mailbox

database:

c12.indd 318c12.indd 318 03/09/11 10:57 AM03/09/11 10:57 AM

319

Chapter 12: Managing Microsoft Exchange Server

$Object = @{
Property = “MailboxRetention”,”Identity”
}
Get-MailboxDatabase -IncludePreExchange2010 | Select-Object @Object

The parameter on Exchange Server 2007 is, appropriately, IncludePreExchange2007 —

contrary to its name, it displays Exchange Server 2010 mailbox database information. In

both versions of the shell, you can abbreviate the parameter to IncludePreExchange to

allow one script to run on either version.

The following example, when run from either Exchange Server 2007 or Exchange

Server 2010 management shells, shows the mailbox retention period and identities for

all mailbox databases on either version. In an Exchange Server 2007 Management Shell,

depending on your warning preference, you may see warnings for each Exchange Server

2010 mailbox database indicating that the database is corrupted. You can safely ignore

these warnings.

$Object = @{
Property = “MailboxRetention”,”Identity”
}
Get-MailboxDatabase -IncludePreExchange | Select-Object @Object

If you con�igure replication to allow a subset of folders to be replicated for performance

issues as described in the “Managing Public Folders” section, you might want to also set

the default public folder database for mailbox databases on the affected servers as well.

You do this with the Set-MailboxDatabase cmdlet, passing the required parameter

Identity and the optional parameter PublicFolderDatabase. The following

example sets the default public folder database for the mailbox database MarketingDB

to PF02:

$MailboxDatabase = @{
Identity = “MarketingDB”
PublicFolderDatabase = “PF02”
}
Set-MailboxDatabase @MailboxDatabase

If you replicate an entire public folder structure to more than one server, you can set all

mailbox databases to a speci�ic public folder database by piping the output of the

Get-MailboxDatabase cmdlet to the Set-MailboxDatabase cmdlet. The following example

sets the default public folder database for every mailbox database on the server Exch2010

to PF02:

$Server = “Exch2010”
$Database = @{
PublicFolderDatabase = “PF02”
}
Get-MailboxDatabase -Server $Server | Set-MailboxDatabase @Database

c12.indd 319c12.indd 319 03/09/11 10:57 AM03/09/11 10:57 AM

320

Part IV: Server Applications

Managing Microsoft Exchange
Server Remotely
As mentioned at the beginning of the chapter, you do not need to install the Exchange

Server 2010 Management Tools locally to manage Exchange Server 2010. You can

create a remote session to an Exchange Server 2010 server running any role except the

Edge Transport role. Your management workstation will need to be running Windows

PowerShell Version 2 or above, and TCP port 80 will need to be open from your workstation

to the Exchange server.

If you are not logged in to your workstation with Exchange Administrator privileges, you

will need to pass credentials. Run the following command:

$UserCredential = Get-Credential

In the dialog box that opens, type the username and password of an administrator account

that has access to administer the Exchange 2010 server you want to connect to, and then

click OK. Once the password is entered, you can open the connection to Exchange Server

2010 by running the following command:

$PSSession = @{
ConfigurationName = “Microsoft.Exchange”
ConnectionUri = “http://Exch2010.contoso.com/PowerShell/”
Authentication = “Kerberos”
Credential = $UserCredential
}
$Session = New-PSSession @PSSession

In this case, Exch2010.contoso.com is the fully quali�ied domain name of one of your

Exchange servers. You now import the Windows PowerShell session into your Windows

PowerShell console by running the following command:

Import-PSSession -Session $Session

You can add the session initialization to your pro�ile to start the Exchange session each time

you load Windows PowerShell if you’d like. The complete script to add to your $profile is:

$UserCredential = Get-Credential
$PSSession = @{
ConfigurationName = “Microsoft.Exchange”
ConnectionUri = “http://Exch2010.contoso.com/PowerShell/”
Authentication = “Kerberos”
Credential = $UserCredential
}
$Session = New-PSSession @PSSession
Import-PSSession -Session $Session

c12.indd 320c12.indd 320 03/09/11 10:57 AM03/09/11 10:57 AM

321

Chapter 12: Managing Microsoft Exchange Server

If you will be starting Windows PowerShell as a user who already has Exchange permissions,

you can skip the Get-Credential step. The complete script to add this version to your

pro�ile is:

$PSSession = @{
ConfigurationName = “Microsoft.Exchange”
ConnectionUri = “http://Exch2010.contoso.com/PowerShell/”
Authentication = “Kerberos”
}
$Session = New-PSSession @PSSession
Import-PSSession -Session $Session

Although this is a supported con�iguration, I would discourage it for all but basic

administration of the Exchange organization.

If you are running an operating system that will support the installation of the

Exchange Server 2010 Management Tools, I would highly recommend that you install

them locally.

As previously mentioned, if you are running Windows PowerShell with a remote Exchange

session, the objects returned will be Windows PowerShell objects, instead of Exchange

objects. A simple example of this is the Get-Mailbox cmdlet.

In a native Exchange Server 2010 Management Shell, you can retrieve the white  space of a

database and convert that number to bytes, kilobytes, megabytes, gigabytes, terabytes, or

a string. The returned object is of the type Microsoft.Exchange.Data
.ByteQuantifiedSize.

In a remote session, the returned object is a System.String, which you will have to

manipulate to be useful.

The following script, when run in a native Exchange Server 2010 Management Shell,

returns the available new mailbox space for the database Ex2010DB in megabytes:

$Database = @{
Identity = “Ex2010DB”
Status = $true
}
(Get-MailboxDatabase @Database).AvailableNewMailboxSpace.ToMB()

The same script, when run in a remote session, returns the error shown in Figure 12-3.

c12.indd 321c12.indd 321 03/09/11 10:57 AM03/09/11 10:57 AM

322

Part IV: Server Applications

FIGURE 12-3

Results of Get-MailboxDatabase in remote session

If you remove ToMb() from the preceding script, it will run and return data. The available

new mailbox space will be a string, which you can manipulate with the ToString()

method. In my environment, the following example returns a string showing the free

space number and quanti�ier:

Get-MailboxDatabase @Database).AvailableNewMailboxSpace).Split(“(“)[0]

Although this example of the difference between the native Exchange Management Shell

and a remote session may seem trivial, converting a string to a numeric value can be

problematic. Additionally, besides the scripts in this chapter, many of the scripts you will

�ind online for Exchange Server 2010 rely on the Exchange objects. Any script that you �ind

online that depends on the Exchange objects will fail with often cryptic errors when run in

a remote session.

Email Address Policies
Email address policies stamp an email address on each recipient object as it is

created, and whenever the policy is applied, unless the recipient object’s attribute

EmailAddressPolicyEnabled is set to False.

You can create an email address policy with the New-EmailAddressPolicy

cmdlet, passing the required parameters Name, IncludedRecipients, and

EnabledEmailAddressTemplates. The following example creates a new email address

policy named PowerShell Email Policy, which includes all recipients, sets the priority to

lowest, and sets the email address to an SMTP address of %1g%s@powershell.com:

$EmailAddressPolicy = @{
Name = “PowerShell Email Policy”
IncludedRecipients = “AllRecipients”

c12.indd 322c12.indd 322 03/09/11 10:57 AM03/09/11 10:57 AM

323

Chapter 12: Managing Microsoft Exchange Server

Priority = “Lowest”
EnabledEmailAddressTemplates = “SMTP:%1g%s@powershell.com”
}
New-EmailAddressPolicy @EmailAddressPolicy

The %1g and %s variables are de�ined in Table 12-2.

TABLE 12-2

Variables for the Email Address Policy

Variable Definition

%g First Name (Given Name)

%i Middle Initial

%s Last Name (Surname)

%d Display Name

%m Exchange Alias

%xg Uses x number of letters of the first name

%xs Uses x number of letters of the last name

You can also create an email address policy that applies only to mailboxes in the Marketing

department by specifying the ConditionalDepartment parameter, and setting the

IncludedRecipients parameter to MailboxUsers. The following example creates

the previously speci�ied email address policy, with an email address of

firstinitiallastname@marketing.powershell.com:

$EmailAddressPolicy = @{
Name = “Marketing Mailbox Email Policy”
IncludedRecipients = “MailboxUsers”
ConditionalDepartment = “Marketing”
Priority = “Lowest”
EnabledEmailAddressTemplates = “SMTP:%1g%s@marketing.powershell.com”
}
New-EmailAddressPolicy @EmailAddressPolicy

By default, email address policies are applied only to new recipients. If you want to apply

the policy to existing recipients, you will need to use the Update-EmailAddressPolicy

cmdlet, passing the required parameter Identity. The following example applies the

Marketing Mailbox Email Policy:

Update-EmailAddressPolicy -Identity “Marketing Mailbox Email Policy”

c12.indd 323c12.indd 323 03/09/11 10:57 AM03/09/11 10:57 AM

324

Part IV: Server Applications

In a pure Exchange Server 2010 environment, you can create an email address policy for

recipients in speci�ic organizational units by specifying the RecipientContainer parameter.

The following example creates the email address policy Sales Mailbox Email Policy,

which includes AllRecipients in the organizational unit OU=Sales,DC=contoso,DC=com.

The email address policy has a Priority of Lowest, and uses the email address template of

%1g%s@sales.contoso.com.

$EmailAddressPolicy = @{
Name = “Sales Mailbox Email Policy”
IncludedRecipients = “AllRecipients”
RecipientContainer = “OU=Sales,DC=contoso,DC=com”
Priority = “Lowest”
EnabledEmailAddressTemplates = “SMTP:%1g%s@sales.contoso.com”
}
New-EmailAddressPolicy @EmailAddressPolicy

The RecipientContainer parameter can be speci�ied as the organizational unit’s

distinguished name or canonical name, or a domain name.

If you discover that an email address policy is con�igured incorrectly, you can modify it

with the Set-EmailAddressPolicy cmdlet, passing the required parameter Identity, and

whichever parameters you wish to change. The following example modi�ies the marketing

mailbox email policy to apply to all recipients, instead of only applying to mailboxes:

$EmailAddressPolicy = @{
Identity = “Marketing Mailbox Email Policy”
IncludedRecipients = “AllRecipients”
}
Set-EmailAddressPolicy @EmailAddressPolicy

You can view the properties for an email address policy with the Get-EmailAddressPolicy

cmdlet. The following example displays all properties of the Marketing Mailbox Email
Policy in a list:

$EmailAddressPolicy = @{
Identity = “Marketing Mailbox Email Policy”
}
Get-EmailAddressPolicy @EmailAddressPolicy | Format-List -Property *

Interoperating with Earlier Versions
of Microsoft Exchange
Several of the Set-* cmdlets in Exchange Server 2007 and Exchange Server 2010 require

the target object to be of the same Exchange version as the management shell you are

working with. In Exchange Server 2007, for instance, to work with a distribution group

that has an Exchange version of 2003, you will need either to use the Exchange Server

c12.indd 324c12.indd 324 03/09/11 10:57 AM03/09/11 10:57 AM

325

Chapter 12: Managing Microsoft Exchange Server

2003 tools, or to upgrade the distribution group to Exchange Server 2007. Once an object

is upgraded to the current version, it cannot be managed by the previous version of the

Exchange Management Tools. Thus, if you have a diverse management team, you will want

to be sure everyone has upgraded their Management Tools to the newer version before

upgrading the objects, or upgrade them as needed.

Exchange Server 2003 and previous used LDAP �ilters to de�ine dynamic distribution

groups, email address policies, address lists, and global address lists.

Exchange Server 2007 and newer use OPATH �ilters to de�ine these objects, and for

�ilterable parameters for the Exchange cmdlets (covered later in the chapter in “Using

Server-Side Filters”).

Note
Microsoft has posted an LDAP-to-OPATH conversion script on the EHLO blog: http://msexchangeteam
.com/files/12/attachments/entry442867.aspx. ■

Microsoft Exchange Server 2007
In Exchange Server 2007, you can upgrade address lists, dynamic distribution groups,

email address policies, and global address lists.

Before upgrading address lists and email address policies, you will want to update the

�ilters that create the policies and lists. Exchange Server 2003 and previous use LDAP

�iltering to create email address policies and address lists, whereas Exchange Server 2007

and 2010 use OPATH �iltering. Updating the �ilters that create default policies and lists is

easy to do; custom policies and lists will take more work.

The default Email Address Policy matches all recipient objects, so it is very easy to update.

You will not need to write a custom OPATH �ilter for this. The following example prompts

for con�irmation before upgrading the default policy. If you want to bypass con�irmation,

you can add the switch parameter ForceUpgrade.

$EmailAddressPolicy = @{
Identity = “Default Policy”
IncludedRecipients = “AllRecipients”
}
Set-EmailAddressPolicy @EmailAddressPolicy

The following example performs the same upgrade as the previous example, without

prompting for con�irmation:

$EmailAddressPolicy = @{
Identity = “Default Policy”
IncludedRecipients = “AllRecipients”
ForceUpgrade = $true
}
Set-EmailAddressPolicy @EmailAddressPolicy

c12.indd 325c12.indd 325 03/09/11 10:57 AM03/09/11 10:57 AM

326

Part IV: Server Applications

The following example upgrades the default Address List All Users without prompting

for con�irmation:

$AddressList = @{
Identity = “All Users”
IncludedRecipients = “MailboxUsers”
ForceUpgrade = $true
}
Set-AddressList @AddressList

This example upgrades the default Address List All Groups without prompting for

con�irmation:

$AddressList = @{
Identity = “All Groups”
IncludedRecipients = “MailGroups”
ForceUpgrade = $true
}
Set-AddressList @AddressList

Finally, this example upgrades the default Address List All Contacts without prompting

for con�irmation:

$AddressList = @{
Identity = “All Contacts”
IncludedRecipients = “MailContacts”
ForceUpgrade = $true
}
Set-AddressList @AddressList

Once an object is upgraded, you cannot manage it from Exchange Server 2003 or earlier tools.

Microsoft Exchange Server 2010
In Exchange Server 2010, you can upgrade address lists, distribution groups, dynamic

distribution groups, email address policies, global address lists, mail contacts,

and mail users.

When you attempt to modify one of these objects that has an Exchange version prior to

2010, you will be prompted to upgrade the object. The following example, run from an

Exchange Server 2010 Management Shell against an Exchange Server 2007 Distribution

Group, produces the con�irmation prompt shown in Figure 12-4:

$DistributionGroup = @{
Identity = “AccountingGroup”
MaxReceiveSize = “5MB”
}
Set-DistributionGroup @DistributionGroup

c12.indd 326c12.indd 326 03/09/11 10:57 AM03/09/11 10:57 AM

327

Chapter 12: Managing Microsoft Exchange Server

FIGURE 12-4

The results of attempting to modify an object stamped with an earlier Exchange version

You use the associated Set-* cmdlet, with the ForceUpgrade parameter to bypass the

upgrade prompt:

$DistributionGroup = @{
Identity = “AccountingGroup”
MaxReceiveSize = “5MB”
ForceUpgrade = $True
}
Set-DistributionGroup @DistributionGroup

If all Exchange administrators have upgraded their Management Tools to the Exchange

Server 2010 version, you can upgrade all distribution groups at once. The following

example �inds all distribution groups that are not of the current version and upgrades them

to Exchange Server 2010. You can substitute any of the associated Get/Set cmdlet pairs to

upgrade any of the objects that are upgradeable.

$DGroup = @{
Filter = {ExchangeVersion -lt “0.10 (14.0.100.0)”}
}
Get-DistributionGroup @DGroup | Set-DistributionGroup -ForceUpgrade

The Filter parameter is explained in the next section.

You can use a similar �ilter to update all mail contacts and mail users. The following

example upgrades all mail contacts to Exchange Server 2010:

$MailContact = @{
Filter = {ExchangeVersion -lt “0.10 (14.0.100.0)”}
}
Get-MailContact @MailContact | Set-MailContact -ForceUpgrade

c12.indd 327c12.indd 327 03/09/11 10:57 AM03/09/11 10:57 AM

328

Part IV: Server Applications

The following example upgrades all mail users to Exchange Server 2010:

$MailUser = @{
Filter = {ExchangeVersion -lt “0.10 (14.0.100.0)”}
}
Get-MailUser @MailUser | Set-MailUser -ForceUpgrade

The address lists can be upgraded with the examples from the “Microsoft Exchange

Server 2007” section.

Using Filters
Filtering refers to limiting the results returned from a cmdlet. You can �ilter the output of

any cmdlet on the client with the Where-Object cmdlet. Many Exchange cmdlets accept the

Filter parameter, which performs the �iltering on the Exchange server before returning

the data to the management shell.

These two forms of �iltering are known as client-side and server-side �iltering. I describe

both in the following sections.

Using Client-Side Filters
You can �ilter the output of any cmdlet by sending the output down the pipeline and through

the Where-Object cmdlet. This is called client-side �iltering because the cmdlet returns all

available objects to the client before sending them to the Where-Object cmdlet.

An example of this would be retrieving all mailboxes with an email address in the

powershell.com domain. You can do this by sending the output of the Get-Mailbox cmdlet

to the Where-Object cmdlet. The following example retrieves all mailboxes within your

recipient scope, and then sends every one of those objects down the pipeline to the Where-
Object cmdlet, where only objects with an email address at powershell.com are output. On

larger domains, this is very inef�icient. In my domain, with approximately 15,000 mailboxes,

this takes 380 seconds to return 353 mailboxes.

$Mailbox = @{
ResultSize = “Unlimited”
}
$Object = @{
FilterScript = {$_.emailaddresses -like “*powershell.com”}
}
Get-Mailbox @Mailbox | Where-Object @Object

An example that more clearly shows the problem with client-side �iltering is looking for

one speci�ic email address within the organization. An email address can be assigned to

c12.indd 328c12.indd 328 03/09/11 10:57 AM03/09/11 10:57 AM

329

Chapter 12: Managing Microsoft Exchange Server

any of the recipient types, so the quickest way to search for an email address is via the

Get-Recipient cmdlet.

The following example, when run in my domain with approximately 30,000 recipients,

takes 196 seconds to return the single mailbox that matches the speci�ic email address.

You might wonder why I included the ResultSize unlimited parameter. This is needed in

any organization with more than 1,000 recipient objects, because the Exchange Management

Shell defaults to returning only 1,000 objects.

$Recipient = @{
ResultSize = “Unlimited”
}
$Object = @{
FilterScript = {$_.emailaddresses -eq ‘kmitschke@powershell.com’}
}
Get-Recipient @Recipient | Where-Object @Object

Remember that �iltering with the Where-Object cmdlet requires that the Exchange server

�irst return all objects to the client. However, as mentioned, the output of any cmdlet can be

�iltered via the Where-Object cmdlet.

Using Server-Side Filters
Many Exchange Server 2007 and Exchange Server 2010 Get-* cmdlets accept the optional

Filter parameter. Wherever there is a Filter parameter, I recommend its use. The

equivalent Get-Mailbox script from the client-side �iltering section is:

$Mailbox = @{
ResultSize = “Unlimited”
Filter = {EmailAddresses -like “*@powershell.com”}
}
Get-Mailbox @Mailbox

In my domain, with the same approximately 15,000 mailboxes, this takes 11 seconds to

return 353 mailboxes.

The equivalent Get-Recipient script from the client-side �iltering section, rewritten to a

server-side �ilter, would be:

Get-Recipient -Filter{EmailAddresses -eq ‘kmitschke@powershell.com’}

In my domain, this test took 0.08 seconds to return the single object.

Any time you can use a server-side �ilter, the data will be returned more quickly than

if you had used the equivalent Where-Object �ilter.

You can combine conditions in a �ilter using the standard logical operators -and, -or,

-xor, and -not.

c12.indd 329c12.indd 329 03/09/11 10:57 AM03/09/11 10:57 AM

330

Part IV: Server Applications

Note
You can get a list of properties for the Filter parameter from Microsoft TechNet.

For Exchange Server 2007 Service Pack 1 through Exchange Server 2010, see http://technet.microsoft
.com/en-us/library/bb738155(EXCHG.80).aspx.

If you are still running Exchange Server 2007 RTM, see http://technet.microsoft.com/en-us/library/
bb430744(EXCHG.80).aspx. ■

The Get-Mailbox cmdlet does not accept the property Company for the Filter parameter.

However, the Get-User cmdlet does. Further, the Get-User cmdlet accepts the property

RecipientType for the Filter parameter. This enables you to get a list of all mailboxes in a

speci�ied company. The following example displays all user mailboxes that are identi�ied as

in the company Contoso:

$User = @{
ResultSize = “Unlimited”
Filter = {Company -eq “Contoso” -and RecipientType -eq “UserMailbox”}
}
Get-User @User

Suppose you wanted to set all mailboxes for users in the company Contoso to have a warning,

prohibit send, and prohibit send receive quota of 1.5, 2, and 2.5 GB, respectively. You can

accomplish this by passing the results of the previous Get-User example to the Set-Mailbox

cmdlet, as shown here:

$User = @{
ResultSize = “Unlimited”
Filter = {Company -eq “Contoso” -and RecipientType -eq “UserMailbox”}
}
$Mailbox = @{
IssueWarningQuota = 1.5GB
ProhibitSendQuota = 2GB
ProhibitSendReceiveQuota = 2.5GB
}
Get-User @User | Set-Mailbox @Mailbox

Managing Recipient Scope
By default, the Exchange Management Shell is set to operate in a Domain scope — the shell

connects to a domain controller, and operates on objects in that domain. This means that

you can view or modify only objects in the domain controller’s domain.

You can set the recipient scope to operate in a Forest scope, which connects the shell to

a Global Catalog. This enables you to view or modify any object within the forest. Any

modi�ications are written to a domain controller in the correct domain, and then replicated

c12.indd 330c12.indd 330 03/09/11 10:57 AM03/09/11 10:57 AM

331

Chapter 12: Managing Microsoft Exchange Server

to the Global Catalog. This could cause your view of the object to be out of date, due to

replication latency.

Managing Scope in Microsoft Exchange Server 2007
Managing recipient scope in Exchange Server 2007 is accomplished by modifying an

Exchange Management Shell variable called $AdminSessionADSettings.

To view the current recipient scope, you need only enter $AdminSessionADSettings in the

Exchange Management Shell. The relevant parameter is the ViewEntireForest parameter.

This is a Boolean parameter, and defaults to $False. To manage objects across the forest,

you need to set the value to $True. The following example sets the recipient scope to the

forest level:

$AdminSessionADSettings.ViewEntireForest = $True

You may also want to hard-code the global catalog server, con�iguration domain controller,

or preferred domain controllers. The following three lines set the global catalog,

con�iguration domain controller, and preferred domain controllers:

$AdminSessionADSettings.PreferredGlobalCatalog = “GC1”
$AdminSessionADSettings.ConfigurationDomainController = “DC1”
$AdminSessionADSettings.PreferredDomainControllers = “DC3”,”DC2”

A �inal property of the $AdminSessionADSettings variable is the DefaultScope. This

property is null if you are in forest scope. If you are in domain scope, you can set this

parameter to allow the Exchange Management Shell to only manage objects within a

certain organizational unit. The following example sets the scope for the Exchange

Management Shell to modify objects only in the Accounting organizational unit:

$AdminSessionADSettings.DefaultScope = “Contoso.com/Accounting”

If you set the DefaultScope, ViewEntireForest is set to null. Likewise, if you set

ViewEntireForest to True, the DefaultScope will be null.

Any changes you make to the $AdminSessionADSettings variable while in the

Exchange Management Shell are valid for only that session. If you want them to persist

across sessions, you will need to load them in your $Profile script.

Managing Scope in Microsoft Exchange Server 2010
Recipient scope in Exchange Server 2010 is managed with the Active Directory cmdlets

Get-AdServerSettings and Set-AdServerSettings.

Use Get-AdServerSettings to view the current settings. Get-AdServerSettings takes

no parameters. The cmdlet returns more data than can be viewed onscreen, however, so

c12.indd 331c12.indd 331 03/09/11 10:57 AM03/09/11 10:57 AM

332

Part IV: Server Applications

you should pipe the cmdlet to the Format-List cmdlet. The following example returns the

current Active Directory server settings:

Get-AdServerSettings | Format-List

To modify the Active Directory server settings, you use the Set-AdServerSettings

cmdlet, passing the parameter or parameters that you want to modify.

As with Exchange Server 2007, you can set preferred domain controllers, the con�iguration

domain controller, the preferred global catalog server, the recipient scope, and the forest/

domain scope. The following example sets the recipient scope to forest level:

Set-AdServerSettings -ViewEntireForest $True

The following example sets the recipient scope to forest level, and sets the con�iguration

domain controller, global catalog, and preferred domain controllers:

$AdServerSettings = @{
ViewEntireForest = $true
ConfigurationDomainController = “DC1”
PreferredGlobalCatalog = “GC1”
SetPreferredDomainControllers = “DC3”,”DC2”
}
Set-AdServerSettings @AdServerSettings

As with Exchange Server 2007, you can restrict the shell to manage objects in only a

speci�ic organizational unit with the RecipientViewRoot parameter. The following

example sets the scope for the Exchange Management Shell to modify objects only in the

Accounting organizational unit:

Set-AdServerSettings -RecipientViewRoot “Contoso.com/Accounting”

If you set the RecipientViewRoot, the ViewEntireForest is set to False. Likewise, if you

set ViewEntireForest to True, the RecipientViewRoot will be null.

Any changes you make to the Active Directory server settings while in the Exchange

Management Shell will be valid for only that session. If you want them to persist across

sessions, you will need to load them in your $Profile script.

Managing Role Based Access Control
Exchange 2010 provides 11 default management role groups. These role groups should

be suf�icient if you centrally manage Exchange. If, however, you want to delegate

management to separate management groups, you will want to create your own

role groups.

c12.indd 332c12.indd 332 03/09/11 10:57 AM03/09/11 10:57 AM

333

Chapter 12: Managing Microsoft Exchange Server

Suppose you want to create a role group to allow the universal security group

AccountingServiceDesk to manage recipients in the Accounting organizational unit.

You use the New-RoleGroup cmdlet, passing the required parameters Name, Roles, Members,

and RecipientOrganizationalUnitScope.

The following example creates the role group Accounting, and assigns the role group

to the AccountingServiceDesk global security group, allowing that group to create

mailboxes and mail-enabled public folders. The accounting help desk will only be able to

perform these tasks on recipients in the Accounting organizational unit.

$RoleGroup = @{
Name = “Accounting”
Roles = “Mail Recipient Creation”,”Mail Enabled Public Folders”
Members = “AccountingServiceDesk”
RecipientOrganizationalUnitScope = “Accounting”
}
New-RoleGroup @RoleGroup

You can get a list of current role groups with the Get-RoleGroup cmdlet. The following

example shows the name and assigned roles for all current role groups:

Get-RoleGroup | Format-List -Property Name, Roles

If you want to add a management role to a current role group, universal security group,

user, or management role assignment policy, you use the New-ManagementRoleAssignment

cmdlet. The required parameters for this cmdlet depend on the target. For a universal

security group or role group, the required parameters are SecurityGroup and Role. In the

case of a role group, SecurityGroup is the name of the role group.

The following example adds the Retention Management role to the existing role group

Accounting:

$ManagementRoleAssignment = @{
SecurityGroup = “Accounting”
Role = “Retention Management”
}
New-ManagementRoleAssignment @ManagementRoleAssignment

You can verify that the role was added with the Get-RoleGroup cmdlet, specifying the

Identity parameter:

Get-RoleGroup -Identity Accounting | Format-List -Property Name, Roles

As mentioned in the “Microsoft Exchange Server 2010”  subsection of the “Managing

Microsoft Exchange Server Permissions” section, you can add a speci�ic user or users to a

role group with the Add-RoleGroupMember cmdlet. Conversely, to remove a user or users

from a role group, you use the Remove-RoleGroupMember cmdlet, passing the required

c12.indd 333c12.indd 333 03/09/11 10:57 AM03/09/11 10:57 AM

334

Part IV: Server Applications

parameters Identity and Member. The following example removes the user John from the

role group Recipient Management:

$RoleGroupmember = @{
Identity = “Recipient Management”
Member = “John”
}
Remove-RoleGroupmember @RoleGroupmember

You can add the switch parameter Confirm = $False to prevent being prompted for

con�irmation on the member removal.

Additionally, as with the Add-RoleGroupMember cmdlet, you can specify the optional

switch parameter BypassSecurityGroupManagerCheck to perform the modi�ication

if you are not in the ManagedBy property of the role group. The following example

removes the member John from the role group Recipient Management, without

prompting for con�irmation, and will not fail if you are not in the ManagedBy property

of the role group:

$RoleGroupmember = @{
Identity = “Recipient Management”
Member = “John”
Confirm = $false
BypassSecurityGroupManagerCheck = $true
}
Remove-RoleGroupmember @RoleGroupmember

You can see a list of current members of a particular role group with the Get-RoleGroupMember

cmdlet, passing the Identity parameter. The following example lists all members of the role

group Recipient Management:

Get-RoleGroupMember -Identity “Recipient Management”

You can pass the output of the Get-RoleGroup cmdlet to the Get-RoleGroupMember cmdlet

to get a list of all members of all role groups. The following example lists all members of all

role groups:

Foreach($group in Get-RoleGroup)
{
$Member = Get-RoleGroupMember $group | Select-Object -Property Name
Write-Host -NoNewline -Object Group: $group.Name has members: $Member.Name`n
}

Note
For more information on role groups, see TechNet: http://technet.microsoft.com/en-us/library/
dd298183.aspx. ■

c12.indd 334c12.indd 334 03/09/11 10:57 AM03/09/11 10:57 AM

335

Chapter 12: Managing Microsoft Exchange Server

Introducing Microsoft Exchange
Web Services
Microsoft has included programming APIs with every version of Exchange Server,

and Exchange Server 2007 and Exchange Server 2010 are no different in that respect.

In Exchange Server 2000 and Exchange Server 2003, Microsoft provided CDO

and WebDAV.

In Exchange Server 2007, WebDAV is still supported, but deprecated. Microsoft provided

Exchange Web Services for Exchange Server 2007 and Exchange Server 2010. Starting with

Exchange Server 2007 Service Pack 1, Microsoft also provides the Exchange Web Services

Managed API.

The managed API enables you to directly manipulate mailbox or public folder contents,

among other tasks, within a .NET Framework. This means that you can create, modify, or

view items in mailboxes with Windows PowerShell.

Before you can use the API, you need to download it from www.microsoft.com/downloads/
en/details.aspx?displaylang=en&FamilyID=c3342fb3-fbcc-4127-becf-872c746840e1.

Once you have downloaded and installed the Managed API, you can start using it from

Windows PowerShell. Because the Managed API does not include cmdlets, you work

with it by loading the DLL.

Suppose you need to change the name of a folder in all mailboxes in the Sales department

from Leads to Sales Leads. Depending on users to modify their folders is problematic

at best.

Using the Exchange Web Services Managed API and Windows PowerShell, you can easily

accomplish this task.

Note
The Exchange Web Services Managed API does not rely on the Exchange Management Shell. You can use
either Windows PowerShell or the Exchange Management Shell if you do not need to gather data from the
Exchange infrastructure, such as mailbox names. ■

The �irst step in any script utilizing Exchange Web Services is to load the DLL. Currently,

the version of the DLL is 1.1. You will need to modify the $path to match the actual version

you download:

$path = “$env:ProgramFiles\Microsoft\Exchange\Web Services\1.1”
$dllpath = “$path\Microsoft.Exchange.WebServices.dll”
Add-Type -Path $dllpath

c12.indd 335c12.indd 335 03/09/11 10:57 AM03/09/11 10:57 AM

336

Part IV: Server Applications

Once you have the DLL loaded, you need to create an Exchange Server object. If you are

running Exchange Server 2010, you can do this as:

$EWSObject = @{
TypeName = “Microsoft.Exchange.WebServices.Data.ExchangeService”
}
$EWSService = New-Object @EWSObject

If you are running Exchange Server 2007 Service Pack 1, however, you will need to set

the version:

$EWSObject = @{
TypeName = “Microsoft.Exchange.WebServices.Data.ExchangeService”
ArgumentList = “Exchange2007_SP1”
}
$EWSService = New-Object @EWSObject

Now that you have the service, you need to populate the AutoDiscoverUrl.

The AutodiscoverUrl is set by passing an email address. You can hard-code an

AutoDiscoverUrl as:

$EWSService.AutoDiscoverUrl(“email@contoso.com”)

If you do not want to hard-code the email address into the AutoDiscoverUrl, you

can get the email address of the current logged-in user, and use that for the

AutoDiscoverUrl:

$Identity = [System.Security.Principal.WindowsIdentity]::GetCurrent()
$bind = “LDAP://<SID=” + $Identity.User.Value.ToString() + “>”
$User = [ADSI]$bind
$EWSService.AutoDiscoverUrl($User.mail.ToString())

If you do not want to use AutoDiscover, or cannot for some reason, such as not being logged

in to the domain, you can hard-code the service URL:

$EWSservice.Url = “https://webmail.contoso.com/EWS/Exchange.asmx”

Finally, if you do not want to use the credentials of the logged-in user, you can pass a

username and password to the EWS Service:

$Object = @{
TypeName = “System.Net.NetworkCredential”
ArgumentList = (“user”,”password”,”domain”)
}
$EWSService.Credentials = New-Object @Object

Now the service is complete, so you can use it.

c12.indd 336c12.indd 336 03/09/11 10:57 AM03/09/11 10:57 AM

337

Chapter 12: Managing Microsoft Exchange Server

You need the email address for each mailbox you want to modify. If you have the Exchange

Management Shell loaded, you can get the email addresses for everyone in the Marketing

department with the Get-Recipient cmdlet:

$Recipient = @{
Filter = {Department -eq “Sales” -and RecipientTypeDetails -eq “UserMailbox”}
}
$Address = @{
Property = “PrimarySmtpAddress”
}
$Mailboxes = @(Get-Recipient @Recipient | Select-Object @Address)

Now that you have the list of email addresses, and have created the service, you can bind

to each mailbox and change the folder name:

$PropObject = @{
TypeName = “Microsoft.Exchange.WebServices.Data.PropertySet”
}
$PropSet = New-Object @PropObject
foreach ($Mailbox in $Mailboxes)
{
$Email = $Mailbox.PrimarySmtpAddress.ToString()
$RootFolderID = `
New-Object -TypeName Microsoft.Exchange.WebServices.Data.FolderId `
-ArgumentList `
([Microsoft.Exchange.WebServices.Data.WellKnownFolderName]::MsgFolderRoot`
,$Email)
$Root = `
[Microsoft.Exchange.WebServices.Data.Folder]::Bind($EWSService,$RootFolderID)
$View = New-Object Microsoft.Exchange.WebServices.Data.FolderView(10000)
$View.Traversal = [Microsoft.Exchange.WebServices.Data.FolderTraversal]::Deep
$View.PropertySet = $Propset
$Response = $Root.FindFolders($View)
foreach ($folder in $Response.Folders)
{
if ($folder.DisplayName -eq “Leads”)
{
Write-Output “Found Marketing Deals on $Email”
$folder.DisplayName = “Sales Leads”
$folder.Update()
}
}
}

The complete script to change the name of a folder in all mailboxes in the Sales

department from Leads to Sales Leads is shown in Listing 12-5. This example uses the

credentials of the current user.

c12.indd 337c12.indd 337 03/09/11 10:57 AM03/09/11 10:57 AM

338

Part IV: Server Applications

LISTING 12-5

Changing a Folder Name in a List of Exchange Mailboxes

$path = “$env:ProgramFiles\Microsoft\Exchange\Web Services\1.1”
$dllpath = “$path\Microsoft.Exchange.WebServices.dll”
Add-Type -Path $dllpath
$EWSObject = @{
TypeName = “Microsoft.Exchange.WebServices.Data.ExchangeService”
}
$PropObject = @{
TypeName = “Microsoft.Exchange.WebServices.Data.PropertySet”
}
$EWSService = New-Object @EWSObject
$PropSet = New-Object @PropObject
$Identity = [System.Security.Principal.WindowsIdentity]::GetCurrent()
$bind = “LDAP://<SID=” + $Identity.user.Value.ToString() + “>”
$User = [ADSI]$bind
$EWSService.AutodiscoverUrl($User.mail.ToString())
$Recipient = @{
Filter = {Department -eq “Sales” -and RecipientTypeDetails -eq “UserMailbox”}
}
$Address = @{
Property = “PrimarySmtpAddress”
}
$Mailboxes = @(Get-Recipient @Recipient | Select-Object @Address)
foreach ($Mailbox in $Mailboxes)
{
$Email = $Mailbox.PrimarySmtpAddress.ToString()
$RootFolderID = `
New-Object -TypeName Microsoft.Exchange.WebServices.Data.FolderId `
-ArgumentList `
([Microsoft.Exchange.WebServices.Data.WellKnownFolderName]::MsgFolderRoot`
,$Email)
$Root = `
[Microsoft.Exchange.WebServices.Data.Folder]::Bind($EWSService,$RootFolderID)
$View = New-Object Microsoft.Exchange.WebServices.Data.FolderView(10000)
$View.Traversal = [Microsoft.Exchange.WebServices.Data.FolderTraversal]::Deep
$View.PropertySet = $Propset
$Response = $Root.FindFolders($View)
foreach ($folder in $Response.Folders)
{
if ($folder.DisplayName -eq “Leads”)
{
Write-Output -InputObject “Found Marketing Deals on $Email”
$folder.DisplayName = “Sales Leads”
$folder.Update()
}
}
}

c12.indd 338c12.indd 338 03/09/11 10:57 AM03/09/11 10:57 AM

339

Chapter 12: Managing Microsoft Exchange Server

If you are only concerned with folders at the root of the mailbox, you can eliminate the

$View.Traversal = [Microsoft.Exchange.WebServices.Data.FolderTraversal]::Deep

line from the preceding examples.

If you routinely work with Exchange Web Services, you can create a function in your

$profile script to allow you to easily load the DLL and create the references. The following

example loads the DLL and creates references using the currently logged-in user. This

example is speci�ic to Exchange Server 2010. Remember to modify the sample if you have

Exchange Server 2007 Service Pack 1 or newer, or if you want to pass credentials.

function Load-EWS
{
$path = “$env:ProgramFiles\Microsoft\Exchange\Web Services\1.1”
$dllpath = “$path\Microsoft.Exchange.WebServices.dll”
Add-Path -Path $dllpath $EWSObject = @{
TypeName = “Microsoft.Exchange.WebServices.Data.ExchangeService”
}
$EWSService = New-Object @EWSObject
$Identity = [System.Security.Principal.WindowsIdentity]::GetCurrent()
$bind = “LDAP://<SID=” + $Identity.User.Value.ToString() + “>”
$User = [ADSI]$bind
$EWSService.AutoDiscoverUrl($User.mail.ToString())
}

Once you have this function in your $profile script, you can use the Exchange Web

Services API by calling the function, and then whatever Exchange Web Services API calls

you need to make. Remember to dot-source the function.

Note
For more information on working with Windows PowerShell and the Exchange Web Services Managed API,
see http://msdn.microsoft.com/en-us/library/dd633696.aspx. ■

Summary
In this chapter, you explored how to manage Exchange recipient objects, databases, and

permissions. You also took a look at using Exchange Web Services to manage data within

mailboxes.

You learned how to manage Exchange Server 2010 via Windows PowerShell Version 2

remote consoles. You also learned why I recommend that the Exchange Management Tools

be loaded on a local workstation as opposed to logging in to an Exchange server via either

remote desktop or remote Windows PowerShell.

c12.indd 339c12.indd 339 03/09/11 10:57 AM03/09/11 10:57 AM

340

Part IV: Server Applications

Finally, you explored using �ilters to limit results, and explored the two kinds of �ilters. You

saw the difference between client-side and server-side �ilters, and why server-side �ilters

are more ef�icient.

In the next chapter, you explore managing SQL Server with Windows PowerShell. Important

concepts include querying and adding data to databases, discovering information about the

databases, and learning about SQL Server itself.

c12.indd 340c12.indd 340 03/09/11 10:57 AM03/09/11 10:57 AM

341

C H A P T E R

IN THIS CHAPTER
Basics of SQL Server

management

Querying and inserting data

Getting information from SQL
Server

Scripting and automation

Using SQL Server agent jobs

Managing SQL
Server 2008 R2

Software systems have many interdependent moving parts.

These parts might include operating systems, databases, and

applications. The historical challenge of managing this type of

system was that each part of a software system required a different

mechanism to communicate with the component. A database might

need T-SQL, application code might require C#, and the operating

system may require a command-line scripting language. Managing

these varied components required either multiple people with unique

skill sets or people who were capable of learning multiple languages.

Either way, it was a challenge.

In Windows PowerShell, we have a single language that can be used

to interact with an operating system, an application, or a database.

This is a huge bene�it for anyone who wears multiple hats in their

organization. Windows PowerShell enables IT professionals to develop

a single skill set that can help bridge the gap between each area of the

system. This level of �lexibility and control over my environment is

why Windows PowerShell is my favorite topic to teach and write on.

This chapter focuses on how to leverage Windows PowerShell in a SQL

Server environment and covers tasks that can be made more ef�icient

and reusable in both development and administration processes.

PowerShell Basics for SQL Server
Whether it be using Windows PowerShell and adding in SQL

functionality or using SQL PowerShell (SQLPS), the SQL Server speci�ic

mini-shell of Windows PowerShell, there is a lot of value to be had by

learning to use PowerShell in a SQL Server environment. SQL Server

c13.indd 341c13.indd 341 02/09/11 11:20 AM02/09/11 11:20 AM

342

Part IV: Server Applications

2008 and 2008 R2 have only �ive PowerShell cmdlets; however, increasing the number of

cmdlets is already being addressed in the next release of SQL Server, SQL Server 2012.

With SQL Server, you have several distinct approaches available to access the same

information. They fall into the following categories:

� Windows PowerShell cmdlets

� SQL Server cmdlets

� WMI

� SMO (SQL Management Objects)

� Other .NET classes

SMO are a highly customized group of .NET objects that are purpose-built for working with

SQL Server. They can be very confusing to use at �irst, so this chapter uses examples that

show how to get exactly the same information using SMO, Provider, and cmdlets. Because

SQL Server 2008 has only �ive cmdlets available, sometimes the SMO must be used to

perform everyday tasks. The community CodePlex project SQLPSX (http://sqlpsx
.codeplex.com/) is a collection of scripts that enables you to access the SMO

more simply. At the time of this writing, 163 advanced functions and 2 cmdlets are

available in SQLPSX.

Keep in mind that SQL Server is not a single product; it is a suite of products. As such,

some products like MDS (Master Data Services) have had cmdlets built for them, whereas

other products like SSRS (SQL Server Reporting Services) have not. The cmdlets for Master

Data Services are out of scope for this book.

The examples included in this chapter are based on functionality in SQL Server 2008

(and SQL Server 2008 R2) unless otherwise speci�ied. To work with SQL Server in Windows

PowerShell, you need to have SQL Server Management Studio (SSMS) 2008 or SSMS 2008

R2 installed.

Note
If you don’t have access to the install media, you can download and install SQL Server 2008 R2 Express
with Advanced Services from http://www.microsoft.com/download/en/details
.aspx?displaylang=en&id=25174. �

The installation of SSMS contains the required .NET assemblies and the Windows PowerShell

features that you will be working with throughout this chapter. The documentation states

that you can install some downloads off the Feature Pack; however, I have found that simply

installing SSMS 2008 or SSMS 2008 R2 is much more reliable.

Even though the version of SSMS used here is 2008, the examples also work on SQL Server

2005 instances and their databases.

c13.indd 342c13.indd 342 02/09/11 11:20 AM02/09/11 11:20 AM

343

Chapter 13: Managing SQL Server 2008 R2

Note
The examples demonstrated in this chapter use a default instance of SQL Server as well as a named instance
of SQL Server. “R2” is the name of the named instance. Both instances used to produce these examples are
the R2 version of SQL Server 2008.

Some of the examples use a database called SandBox. If you don’t have a database on your localhost\R2
instance, you can create one quickly by running the following PowerShell code:

Invoke-Sqlcmd -ServerInstance “LocalHost\R2” -Database “master” -Query “
CREATE DATABASE SandBox”

In addition, a few Windows PowerShell functions are referenced that are available for download from the
TechNet Script Center Repository. This site is a freely available resource where other users have posted
scripts that they have developed. The site for this repository is: http://gallery.technet.microsoft.com/
scriptcenter/2fdeaf8d-b164-411c-9483-99413d6053ae. �

Managing SQL Server Services
Before getting started with what SQL Server brings to the Windows PowerShell table,

this section takes a quick look at something you can do with Windows PowerShell and

SQL Server right away. You can use the Get-Service cmdlet to look for installed SQL Server

services on your local or remote machines.

In the following code sample, you’ll see that I piped the output to the Where-Object cmdlet

to �ilter down to just the “SQL*” services on the machine. It’s important to note that

I used the DisplayName property coming back from the Get-Service cmdlet because

several of the services don’t actually start with the name SQL when you use the Name

property. Keep in mind that if you had a service installed that just happened to begin with

the letters SQL, it would be returned as well.

Get-Service -ComputerName “localhost” |
Where {$_.DisplayName -like “SQL*”} |
Select MachineName, Name, DisplayName, Status, ServiceName |
Format-Table -AutoSize

If you are working through these examples at home on your laptop, the –Force switch is a

handy feature to be aware of. It is used in a situation where you want to restart a service

that has a dependent service. For example, the main SQL Engine has a service called SQL

Agent that can only run when the parent (SQL Engine) service is already running, making

it dependent. Normally, when you try to restart the SQL Server (Engine) service from the

Services window, it gives an error if it’s already running. In Windows PowerShell, if you use

the –Force switch, it will go ahead and stop and start the dependent service for you after it

stops and starts the parent service.

Get-Service -Name *SQL* | Where-Object {$_.Name -eq “MSSQLSERVER”} |
Restart-Service -Force

c13.indd 343c13.indd 343 02/09/11 11:20 AM02/09/11 11:20 AM

344

Part IV: Server Applications

This type of granular control over common SQL Server operations is an example of why

Windows PowerShell is a great option for anyone who needs to interact with one or

multiple instances or databases.

There are two additional ways to affect services using Windows PowerShell. These include

the Get-WMIObject cmdlet and the SMO itself.

The following example returns information about each SQL Server service using

Get-WMIObject:

Get-WmiObject -Query “
SELECT * FROM win32_service WHERE DisplayName LIKE ‘%SQL%’
“ -ComputerName localhost |
SELECT DisplayName, Name, PathName, ServiceType, StartName, SystemName |
Sort DisplayName |
Format-Table -AutoSize

The following example returns information about the service using SMO:

 [System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.Sqli
WmiManagement”) | Out-Null
$SMOWmiserver = New-Object (‘Microsoft.SqlServer.Management.Smo.Wmi.Managedi
Computer’) “LOCALHOST”

<#These just act as some queries about the SQL Services on the
machine you specified.#>
$SMOWmiserver.Services |
Select name, type, ServiceAccount, DisplayName, Properties, StartMode, Starti
upParameters |
Format-Table

Note
Although the preceding SMO example for retrieving information about services has been provided in
the interest of comprehensiveness, using it will likely present performance issues when compared to the
performance of Get-Service or Get-WMIObject. Avoid using this code whenever possible. If you’ve
inherited code that evaluates service information using SMO, consider rewriting it using either the
Get-Service cmdlet or Get-WMIObject.

The exception to this practice is when you need to change the account that the SQL Server service is running
under. In this case, SMO is required. For more information, see the MSDN article at http://technet
.microsoft.com/en-us/library/ms345578.aspx. �

Working with Snap-ins
SSMS 2008 and SSMS 2008 R2 both come with a pair of cmdlets for working with

SQL Server. The SqlServerCmdletSnapin100 snap-in contains two cmdlets:

Invoke-SQLcmd and Invoke-PolicyEvaluation. The SqlServerProviderSnapin100

snap-in, which is primarily known for making your SQL Server traversable just like any drive

c13.indd 344c13.indd 344 02/09/11 11:20 AM02/09/11 11:20 AM

345

Chapter 13: Managing SQL Server 2008 R2

on your machine, brings in three more cmdlets: Convert-UrnToPath, Encode-SqlName,

and Decode-SqlName. To use these snap-ins, run the following lines of code for each

snap-in, respectively:

Add-PSSnapin SqlServerCmdletSnapin100;
Add-PSSnapin SqlServerProviderSnapin100

Note
You can download the SQLServerProviderSnapin100 snap-in from the Microsoft SQL Server 2008 R2
Feature Pack at www.microsoft.com/download/en/confirmation.aspx?id=16978. �

When you open up the Integrated Scripting Environment (ISE) and run Get-PSDrive,

you’ll see a list of drives and providers on your machine. Once you add the

SqlServerProviderSnapin100 snap-in (Add-PSSnapin SqlServerProviderSnapin100),

you will notice a new drive called SQLServer:\. You can do a CD (Change Directory) or

Set-Location over to the SQLServer:\ drive. From there, you have six options, which are

basically logical subfolders of the SQLSERVER:\ object:

� SQL

� SQLPolicy

� SQLRegistration

� DataCollection

� Utility

� DAC

When you navigate under the SQL\ directory, you can begin navigating your SQL Servers

and instances just as though they were any other directory on your machine. The really

exciting thing is that you are not limited to just the instances on your local machine; by

default, you will be able to access any instance for which you have permissions.

One thing to keep in mind when working with the SQLServer:\ Provider is that you don’t

actually have to set your location (via CD or Set-Location) into the SQLServer Provider to

be able to use it and pull information out of it. In fact, staying outside of the provider itself

can often be a much less frustrating way to work with SQL Server. When you’re inside the

SQL Server 2008 or 2008 R2 version of the SQLServer Provider, things like tab completion,

also known as command completion, don’t behave as you would expect and can lead to

frustration.

Get-ChildItem SQLServer:\SQL\LocalHost | select name, version

Working with Assemblies
When writing scripts, I try to avoid loading assemblies directly in the script. I prefer to

leverage functions that have already loaded the necessary assembly for me. This is because

c13.indd 345c13.indd 345 02/09/11 11:20 AM02/09/11 11:20 AM

346

Part IV: Server Applications

using functions rather than assemblies generally results in cleaner, more concise code. The

assemblies that you are most likely to work with in the current version of SQL Server are:

� Microsoft.SqlServer.SMO

� Microsoft.SqlServer.SMOExtended

� Microsoft.SqlServer.SqlWmiManagement

� Microsoft.SqlServer.ConnectionInfo

Changing the Service Account
With SQL Server 2005 through 2008 R2 running on Windows 2008 or Windows 2003,

you must use SQL Server Con�iguration Manager if you need to change the account the

service is running under. When you use the SQL WMI Management class to change a SQL

Server service account, service account security changes required by SQL Server are also

addressed.

Note
See http://blogs.msdn.com/b/dtjones/archive/2010/12/15/changing-service-account-amp-
service-account-password.aspx for a detailed explanation. �

Having the ability to programmatically make this type of change allows you to affect

multiple instances without having to access multiple user interfaces, and it also enables

you to schedule a change during off hours while you’re not even there.

The following code shows how to change the service account for the SQL Server engine:

#Load the SqlWmiManagement assembly off of the DLL
[System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.SqlWmii
Management”) | Out-Null
$SMOWmiserver = New-Object (‘Microsoft.SqlServer.Management.Smo.Wmi.Managedi
Computer’) “LocalHost”
#Suck in the server you want

<#Specify the “Name” (from the query above) of the one service whose
Service Account you want to change.#>
$ServiceToChange=$SMOWmiserver.Services | where {$_.name -eq “MSSQLSERVER”}
#Make sure this is what you want changed!
#Check which service you have loaded first
$ServiceToChange

$UName=”DomainName\UserName”
$PWord=”YourPassword”

$ServiceToChange.SetServiceAccount($UName, $PWord)
#Now take a look at it afterwards
$ServiceToChange

c13.indd 346c13.indd 346 02/09/11 11:20 AM02/09/11 11:20 AM

347

Chapter 13: Managing SQL Server 2008 R2

Querying SQL Server
Querying SQL Server is very straightforward with Windows PowerShell. The simplest

way to write T-SQL (Transact SQL) within Windows PowerShell is to load the

SqlServerCmdletSnapin100 snap-in and pass your query to Invoke-SQLcmd. There

are two options for Invoke-SQLcmd. You can pass a query in a quoted string to the –Query

parameter, or you can pass in the name and location of a .sql �ile to the

–InputFile parameter for the cmdlet to run.

Using a Quoted String to Query SQL Server
The most direct way to query SQL Server with Windows PowerShell is to use Invoke-
SQLcmd and a quoted string. Imagine that you are using SSMS, and you have a very basic

query of sys.dm_db_partition_stats because you want to identify the number of pages

on disk for each of your tables. The SQL would look like this:

SELECT * FROM sys.dm_db_partition_stats;

To run the same query from Windows PowerShell, you place the SELECT statement within

a quoted string and identify that string as a query by using the -Query parameter. You

will need to provide the server instance information to de�ine which instance is being

queried. This is accomplished with the -ServerInstance parameter. Optionally, you can

provide a database name with the -Database parameter, along with the -Username and

-Password credentials that will allow you to access the instance. Keep in mind that if you

do not provide a database name, the default database tied to the account you are logged in

with will be used, as de�ined within the security of the instance you are connecting to. If no

username and password are provided, your current login credentials are used.

Invoke-SQLcmd -ServerInstance “Localhost\R2” -Database “master” -Query “
SELECT * FROM sys.dm_db_partition_stats”

Using Variable Expansion
One of the major bene�its of running T-SQL queries from Windows PowerShell is the ability

to leverage variable expansion. Anyone who’s ever suffered through writing dynamic

SQL will see the beauty of being able to cleanly provide a parameter to a query. Assume

that you’re running a process that determines the table to query at runtime. Within

T-SQL, you’d have to concatenate a variable into a string and carefully ensure that correct

syntax is maintained. With variable expansion, this is not a concern. Simply assign the

table name to a variable, and include it in the query. At runtime, Windows PowerShell will

expand the variable into the value it was set to as long as it is contained within a

double-quoted string, producing a syntactically correct query to pass to SQL Server.

$table = ‘sys.databases’
Invoke-SQLcmd -ServerInstance “Localhost\R2” -Database “master” -Query “
SELECT * FROM $table”

c13.indd 347c13.indd 347 02/09/11 11:20 AM02/09/11 11:20 AM

348

Part IV: Server Applications

The query that is actually passed to the database is:

SELECT * FROM sys.dm_db_partition_stats

Note
Should you use single quotes or double quotes? Minor but very impactful differences exist between using
a quoted string with a variable and without a variable. If the query does not contain a variable, it can be
encapsulated in single quotes, such as ‘SELECT * FROM sys.dm_db_partition_stats’. However, if a
parameter is provided as part of the query string, the query needs to be wrapped in double quotes, as in
“SELECT * FROM $table”. �

Running Queries Against Multiple Servers
Windows PowerShell variable expansion greatly simpli�ies the process of passing

parameters into a quoted string. The real bene�it is realized when you want to run

the same query against multiple servers using a single code block. Imagine that you’re

collecting information from a Data Management View (DMV), sys.dm_os_wait_stats.

Using a variable and a foreach loop, you can query the same view on each instance and

return the results to the console:

$MultipleServers = ‘127.0.0.1’, ‘LocalHost’

Foreach($Server in $MultipleServers)
{
Invoke-SQLCmd -Query “
SELECT * FROM sys.dm_os_wait_stats” -ServerInstance $Server -Database “master”
}

What is happening in this example is that as the foreach loop iterates through each value

assigned to $ MultipleServers, it passes the value into $Server. The query is passed to

SQL Server, and each result set is returned to the console.

Returning Data into a Datatable
When data is returned by Invoke-SQLCmd, the result set comes back in an array of data rows,

whether it is 1 row or 400,000 rows. Unless you are only viewing the results or the result set

contains only one row, the result set often needs to be converted to a datatable. If the results

need to be pushed into a SQL Server table, HTML table, or if you need to combine result sets, it is

much simpler to interact with a datatable than an array. While you can use the WriteToServer

method of SQLBulkCopy, you may �ind it easier to move the results into the datatable so that

you have more �lexibility later on in your processes. The following example illustrates that, by

default, the results are returned in an array. The GetType() method displays the result set type,

which is System.Array.

$dbSizes = Invoke-SQLcmd -Query “
sp_databases” -Database master -ServerInstance “LocalHost\R2”
$dbSizes;
$dbSizes.GetType()

c13.indd 348c13.indd 348 02/09/11 11:20 AM02/09/11 11:20 AM

349

Chapter 13: Managing SQL Server 2008 R2

Piping the results to the Out-DataTable function, as shown in the next code sample,

converts the result set from an array to a datatable. This function, written by Chad Miller

and available in the TechNet Script Center Repository, is available at http://gallery
.technet.microsoft.com/scriptcenter/4208a159-a52e-4b99-83d4-8048468d29dd.

$dbSizes = Invoke-SQLcmd -Database master -ServerInstance “LOCALHOST\R2” `
-Query “sp_databases” | Out-DataTable
$dbSizes;
$dbSizes.GetType()

Finally, ADO.NET can be used to execute a query or stored procedure and return the results

directly into a datatable without having to call the third-party function Out-DataTable.

However, this is quite a bit more code to achieve the same result:

$conn = New-Object System.Data.SqlClient.SqlConnection(“Data Source=i
LocalHost\R2; Initial Catalog=master; Integrated Security=SSPI”)
$conn.Open()
$cmd1 = $conn.CreateCommand()
$cmd1.CommandType = [System.Data.CommandType]::StoredProcedure
$cmd1.CommandText =”sp_databases”
$data = $cmd1.ExecuteReader()
$dt = new-object “System.Data.DataTable”
$dt.Load($data)
$dt | Format-Table
$conn.Close()

Using an Input File to Query SQL Server
In some situations, you want to deploy database objects that you have developed,

or just want to run a query that you have saved. When you need to reuse a query or load

database objects, the query or set of queries can be saved as a .sql �ile. Much like a quoted

string, it can be referenced by Invoke-SQLcmd. But instead of using the -Query parameter

with a quoted string, the query �ile is referenced and the -InputFile parameter is

provided. The following example passes the query stored within SavedQueryFile.sql �ile

to SQL Server:

Invoke-SQLcmd -ServerInstance “Localhost\R2” -Database “AdventureWorks” `
-InputFile “SavedQueryFile.sql”

Note
You have other options for querying SQL Server from Windows PowerShell, such as building a connection
string and opening a connection to SQL Server using ADO.NET objects, but that takes significantly more code
than Invoke-SQLcmd. In practice, a common reason to avoid the ADO.NET approach is because it is not only
harder to read, but also harder to troubleshoot and transition to other developers. �

c13.indd 349c13.indd 349 02/09/11 11:20 AM02/09/11 11:20 AM

350

Part IV: Server Applications

Loading Data
The previous section covered how to get data out of a SQL Server database. This section

takes the next step and addresses how to get data into a database by using different types

of data to load: SQL Server data and non-SQL Server data, as well as data contained in an

array or datatable.

Note
The use of PowerShell instead of Windows PowerShell indicates the capabilities of both Windows PowerShell
and SQLPS. �

Loading SQL Server Data
Loading data into SQL Server with PowerShell can be pretty simple. In fact, if you already

have your table created and your INSERT statement formed, all you have to do is leverage

Invoke-SQLcmd and away you go. In the following example, you create a basic table in the

SandBox database that was mentioned at the beginning of this chapter. You insert two rows

with the next PowerShell statement. Finally, you execute a statement to retrieve all the

rows from the table to verify that the rows were inserted correctly:

Invoke-SQLcmd -ServerInstance “LocalHost\R2” -Database “SandBox” -Query “
CREATE TABLE [dbo].[FoundSQLServers](
 [ServerName] [varchar](128) NULL,
 [InstanceName] [varchar](128) NULL,
 [IsClustered] [varchar](5) NULL,
 [VersionNumber] [varchar](64) NULL
) ON [PRIMARY]”

Invoke-SQLcmd -ServerInstance “LocalHost\R2” -Database SandBox -Query “
INSERT INTO dbo.FoundSQLServers
VALUES
(‘PoShSQL’, ‘R2’, ‘No’, ‘10.50.1600.1’),
(‘PoShSQL’, ‘DENALI’, ‘No’, ‘11.0.1103.9’)”

Invoke-SQLcmd -ServerInstance “LocalHost\R2” -Database SandBox -Query “
SELECT ServerName, InstanceName, IsClustered, VersionNumber
 FROM dbo.FoundSQLServers”

For those times when you don’t yet have a SQL statement to call, you can form your INSERT

statement by using variable expansion in the pipeline. In this approach, you compose the

VALUES for the INSERT and add only one row of data at a time as it comes in off the pipeline.

This approach can be ideal in situations where you are collecting one or only a few lines of

data at a time before you move to another object to start the collection process again. An

example of that type of behavior is when you connect to one instance, grab a row, insert it

into a table, and then move on to another table, as shown in the following code sample:

c13.indd 350c13.indd 350 02/09/11 11:20 AM02/09/11 11:20 AM

351

Chapter 13: Managing SQL Server 2008 R2

[Microsoft.SqlServer.Management.Smo.SmoApplication]::EnumAvailableSqlServers() |
foreach {

Invoke-SQLcmd -ServerInstance “LocalHost\R2” -database SandBox -query “
INSERT INTO dbo.FoundSQLServers
VALUES (‘$($_.Server)’, ‘$($_.Instance)’, ‘$($_.IsClustered)’,
‘$($_.Version)’)”

 }

Once the data is inserted into dbo.FoundSQLServers, you can query it using:

Invoke-SQLcmd -ServerInstance “LocalHost\R2” -database SandBox -query “
SELECT ServerName, InstanceName, IsClustered, VersionNumber
 FROM dbo.FoundSQLServers”

Loading Non-SQL Server Data
The whole point of using Windows PowerShell in a SQL Server environment is that you can

integrate querying and manipulating data into an overall process seamlessly. Once you’ve

queried data, the next step is to do something with that output. You can load data produced

by Windows PowerShell into SQL Server using an input �ile, array, or with ADO.NET and a

datatable.

The following example shows how to load data from an input �ile named InsertRows.sql:

invoke-sqlcmd -InputFile “C:\temp\InsertRows.sql” `
-database master -serverinstance “LOCALHOST\R2”

Arrays are notoriously dif�icult to use for loading data because they must be parsed to pull

the data out �ield by �ield. However, if an array is all you have to work with, it can be done.

You can use the SQLBulkCopy class to load data into a SQL Server table from a datatable.

Neither of these options is covered in this book.

Getting SQL Server Information
Most people think that keeping up to date with patches and service packs is only important

for security reasons. It’s not. For example, Microsoft used Service Pack 2 of SQL Server

2008 to retro�it/allow SQL Server 2008 instances to work with Utility Control Point, a

feature introduced in SQL Server 2008 R2.

Just as vital is maintaining the same patch version in your Production, QA, and

Development environments. Because more people tend to have direct access to servers in

lower environments, it’s completely possible for someone to install a patch accidentally. If a

developer builds a local copy of the database on the server, he or she might be running the

c13.indd 351c13.indd 351 02/09/11 11:20 AM02/09/11 11:20 AM

352

Part IV: Server Applications

latest service pack (or not). While you can easily see the connection, you’re probably not

going to want to log in to every single developer’s workstation one at a time inside of SSMS.

Getting Version Information
In T-SQL, you can determine the version of the SQL Server instance you’re connected to by

running:

SELECT @@version;

The challenge in evaluating instance versions and recording them somewhere lies in the fact

that in order for the query to run, you must be connected to the instance. With Windows

PowerShell, you’re able to use the SMO to retrieve the same information. The bene�it of this

method is that you can iterate through multiple instances by using a foreach loop.

 [System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.SMO”) |
 Out-Null
$SQLInstance=New-Object Microsoft.SqlServer.Management.Smo.Server “LocalHost\R2”
$SQLInstance |Format-Table -Property name, version, Product

Getting Service Pack Information
Obtaining the service pack level from your SQL instance is just as easy as retrieving the

version. All you need to do is snag the ProductLevel property from the server instance

object:

[System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.SMO”) |
Out-Null
$SQLInstance= New-Objecti
 Microsoft.SqlServer.Management.Smo.Server “LOCALHOST\R2”
$SQLInstance | Format-Table -Property name, version, ProductLevel –AutoSize

Getting Instance Uptime Information
Gathering the uptime of a SQL Server instance has become easier in more recent versions.

SQL Server 2005 provided the Data Management View (DMV) sys.dm_os_sys_info, which

had a column called ms_ticks that you could use to calculate server uptime. Unfortunately,

the word “calculate” in that last sentence was very accurate; ms_ticks contains the number

of milliseconds that have elapsed since the last time that the instance was started. You then

needed to subtract all those milliseconds from the current date and time to �igure out when

the instance started.

In SQL Server 2008, there is a column called sqlserver_start_time that provides the date

and time the instance started without forcing you to go through the process of writing the

code to do the calculation yourself.

c13.indd 352c13.indd 352 02/09/11 11:20 AM02/09/11 11:20 AM

353

Chapter 13: Managing SQL Server 2008 R2

To store the data, you’ll need a table:

Invoke-SQLcmd -ServerInstance “LOCALHOST\R2” -Database “Sandbox” -Query “
CREATE TABLE [dbo].[InstanceUpTime](
 [ServerName] [nvarchar](128) NULL,
 [InstanceName] [nvarchar](128) NULL,
 [sqlserver_start_time] [datetime] NOT NULL,
 [CheckedOn] [datetimeoffset](7) NOT NULL
) ON [PRIMARY]”

To gather the uptime information, you need to connect to one instance, grab the

information, store it in a variable, then connect to a different instance and insert it into

a table. If you’re pulling the information from a SQL Server 2005 instance, it is best to go

ahead and convert the values into an actual date and time that the instance started. Here’s

what that would look like:

Invoke-SQLcmd -ServerInstance “LOCALHOST\R2” -Database “Sandbox” -Query “
INSERT INTO InstanceUpTime
SELECT @@SERVERNAME AS ‘ServerName’,
 @@SERVICENAME AS ‘InstanceName’,
 DATEADD(S, ((-1) * ([ms_ticks]/1000)), GETDATE()) AS ‘sqlserver_start_time’,
 SYSDATETIMEOFFSET() AS ‘CheckedOn’
 FROM sys.dm_os_sys_info”

Grabbing the information from a SQL Server 2008 instance can be done with a slightly

different approach:

Invoke-SQLcmd -ServerInstance “LOCALHOST\R2” -Database “Sandbox” -Query “
INSERT INTO InstanceUpTime
SELECT @@SERVERNAME AS ‘ServerName’,
 @@SERVICENAME AS ‘InstanceName’,
 sqlserver_start_time,
 SYSDATETIMEOFFSET() AS ‘CheckedOn’
 FROM sys.dm_os_sys_info”

Finally, insert the data into a log table:

Invoke-SQLcmd -ServerInstance “LOCALHOST\R2” -Database “Sandbox” -Query “
INSERT INTO InstanceUpTime
VALUES
(
‘$($UTValues.ServerName)’,
‘$($UTValues.InstanceName)’,
‘$($UTValues.sqlserver_start_time)’,
‘$($UTValues.CheckedOn)’
)”

c13.indd 353c13.indd 353 02/09/11 11:20 AM02/09/11 11:20 AM

354

Part IV: Server Applications

Gathering Performance Counters
Gathering SQL Server performance counters is very straightforward in SQL Server 2005 and

above thanks to the sys.dm_os_performance_counters DMV. Through the DMV, you are

able to access over 800 SQL Server–speci�ic performance counters for that instance plus 31

performance counters per database that you have running on your instance. This is great,

but it comes with a caveat the size of the great state of Texas: sys.dm_os_performance_
counters only exposes performance counters for the instance of SQL Server that you are

connected to when you run a SELECT against it. What if you want to grab performance

counters from another instance of SQL Server on the same machine or performance counters

from the server itself? That’s where Windows PowerShell comes in handy.

The components of the SQL Server Business Intelligence Stack, SSIS, SSAS, and SSRS, each

have their own performance counters. These performance counters are not exposed by sys
.dm_os_performance_counters. However, they are available through Windows PowerShell.

Windows PowerShell enables you to easily discover and collect all the counters from the

operating system, and once they are converted to a datatable, they are easily stored in a CSV,

Excel spreadsheet, or my personal favorite, a table inside of SQL Server. In other chapters, you

learned how to discover what counters are available and retrieve large blocks of them. With

SQL Server, the easiest way to discover them is to run the following T-SQL query:

SELECT [object_name], counter_name
FROM sys.dm_os_performance_counters;

Alternatively, you can use the following PowerShell code to retrieve the same information:

<# All SQL Server Counters #>
Get-Counter -listset SQLSERVER* | ForEach-Object {$_.CounterSetName, $_.Paths} |
 Format-Table -AutoSize

As you have learned in other chapters, the easiest way to capture multiple performance

counters at once is to create a hashtable with an array of items as shown here:

$CountersList = @(
‘\SQLServer:Buffer Manager\Page life expectancy’,
‘\SQLServer:Buffer Manager\Page reads/sec’,
‘\SQLServer:Buffer Manager\Page writes/sec’,
‘\SQLServer:Buffer Manager\Page lookups/sec’,
‘\SQLServer:Buffer Manager\Free list stalls/sec’,
‘\SQLServer:Buffer Manager\Total pages’,
‘\SQLServer:Buffer Manager\Database pages’,
‘\SQLServer:Buffer Manager\Reserved pages’,
‘\SQLServer:Buffer Manager\Stolen pages’,
’\SQLServer:Buffer Manager\Lazy writes/sec’,
’\SQLServer:Buffer Manager\Readahead pages/sec’,
’\SQLServer:Buffer Manager\Checkpoint pages/sec’
)

c13.indd 354c13.indd 354 02/09/11 11:20 AM02/09/11 11:20 AM

355

Chapter 13: Managing SQL Server 2008 R2

Once you have your list of counters, you can start collecting them on a timed interval and

for a speci�ic period of time:

Get-Counter -SampleInterval 10 -MaxSamples 360 -Counter $CountersList

Once that is accomplished, what you have is a lot of information that doesn’t appear to be

very useful. The counters come back in a format that is not very readable. In fact, they look

nothing like you would expect. That’s because they need to be translated into a datatable

so they are formatted on the screen as you’d expect. This also lets you save the collected

counters more cleanly. To get the results into the datatable, you’ll need to separate the

results from each sampling. A foreach loop can handle that simply.

Note
Other methods for “shredding” your results exist. Although the other methods may in fact be faster as far
as converting and then storing the data, they are not nearly as concise as the method described here. If you
are collecting performance counters from tens or hundreds of servers, you probably want to have a look at
http://sqlblog.com/blogs/aaron_bertrand/archive/2011/01/31/how-i-use-powershell-to-
collect-performance-counter-data.aspx. �

Regardless of the method you use to run an ad hoc query of performance counters, you may

not have the time to �igure everything else out. Use the Out-DataTable function to convert

the output captured in the variable $CountersList into a datatable. You can pipe your

variable into this function using the following code:

$CounterResults = Get-Counter -SampleInterval 2 -MaxSamples 10 `
-Counter $CountersList
foreach($CounterStats in $CounterResults)
{
$CounterRecords += $CounterStats.CounterSamples | Out-DataTable
}

Once you have the results in the datatable, you’re now ready to start saving them to a SQL

table. Although CSV and Excel are great for doing quick work analysis, you should store the

data in a SQL table to allow quick access to the historical information. When you store the data,

make sure to retain the name of the machine that the counters came from. Even if you’re

only capturing one machine right now, you’ll need this information if you add counters

from another server.

For the sake of this example, I have created a very basic SQL table:

CREATE TABLE [dbo].[CounterSamples](
 [Path] [varchar](256) NULL,
 [InstanceName] [varchar](128) NULL,
 [CookedValue] [varchar](50) NULL,
 [RawValue] [varchar](50) NULL,
 [SecondValue] [varchar](100) NULL,
 [MultipleCount] [varchar](50) NULL,

c13.indd 355c13.indd 355 02/09/11 11:20 AM02/09/11 11:20 AM

356

Part IV: Server Applications

 [CounterType] [varchar](256) NULL,
 [Timestamp] [varchar](50) NULL,
 [Timestamp100NSec] [varchar](50) NULL,
 [Status] [varchar](50) NULL,
 [DefaultScale] [varchar](50) NULL,
 [TimeBase] [varchar](50) NULL
) ON [PRIMARY]

The following is a simple example of how to dump the counters to a SQL table. It uses

Write-DataTable, a publicly available Windows PowerShell function, written by Chad Miller,

which can be downloaded from the TechNet Script Center Repository: http://gallery
.technet.microsoft.com/ScriptCenter/2fdeaf8d-b164-411c-9483-99413d6053ae/.

Write-DataTable -ServerInstance “LOCALHOST\R2” -Database CentralInfo `
-TableName CounterSamples -Data $CounterRecords

Invoke-SQLcmd -ServerInstance “LOCALHOST\R2” -Database SandBox -Query “
SELECT Path,
 InstanceName,
 CookedValue,
 RawValue,
 SecondValue,
 MultipleCount,
 CounterType,
 Timestamp,
 Timestamp100NSec,
 Status,
 DefaultScale,
 TimeBase
 FROM [dbo].[CounterSamples]” | Format-Table

Going out and gathering this data is a good �irst step, but you will likely have reason to

tell a particular machine or set of machines to collect their counters locally and then send

the results to a central point once they are done. This book has taught you how to use

Windows PowerShell remote jobs for this type of thing. This chapter covers how to use the

scheduling engine inside of SQL Server, called SQL Agent.

Note
For more information on Windows PowerShell jobs, look at the content help topics about_jobs, about_job_
details, and about_remote_jobs. �

When using SQL Server 2008 or 2008 R2, I tend to shy away from using Windows

PowerShell in a job step at all. Though SQL Server recognizes Windows PowerShell as a

valid language, it unfortunately uses the SQLPS implementation of Windows PowerShell

(using the now deprecated Make-Shell), which does not allow you to import modules

or use all of the awesome features of Windows PowerShell V2. I often avoid using

c13.indd 356c13.indd 356 02/09/11 11:20 AM02/09/11 11:20 AM

357

Chapter 13: Managing SQL Server 2008 R2

SQLPS by simply calling PowerShell.exe –NonInteractive –File c:\scripts\
NameOfSomeScriptSQLAgentHasAccessTo.ps1 as the only syntax in my job step.

Caution
An important note about using Windows PowerShell in SQL Agent job steps is that the account the SQL Agent
Service is running under must be a domain account if you want to be able to do things like send an email
with your results or connect to another machine. The domain account must also have file access to wherever
the .PS1 script file it is about to run resides. Although this type of permission requirement is second nature to
experienced SQL administrators, even I got tripped up by this for a bit because when I first develop scripts on
my local machine, it is running under a low-privileged non-domain account. �

Scripting Objects
Scripting objects in SQL Server can be deceivingly easy with Windows PowerShell. The

deception comes in when you’re using the Provider and you want to script out the DROP and

CREATE statements. If you don’t need the DROP statement, however, it’s the greatest thing

since Jeffrey Snover!

Note
If the Snover reference is lost on you, check out the following link: http://www.microsoft.com/
presspass/exec/de/snover/default.mspx. �

When you’re scripting with the Provider, what you’re doing is grabbing a complete object

(a table, an index, a database, a linked server, logins) and then executing the script method

on that object.

First, you navigate to the directory where your object lives inside of your SQL Server:

CD SQLSERVER:\sql\LocalHost\Default\DATABASES\ADVENTUREWORKS\TABLES

Next, you actually script out your object:

$PTH = Get-Item Production.TransactionHistory
$PTH.Script()

In the previous two lines of script, notice that you used the Get-Item cmdlet to grab your

table named TransactionHistory, which is in the Production schema. You then created

a variable called $PTH to hold the table and its properties. On the next line, you used the

.script() method on your object to script it out. To �ind out if an object has a .script()

method, just pipe the object to Get-Member:

Get-Item Production.TransactionHistory | Get-Member

Scripting out all the tables in a database is very simple. In the next example, you cycle

through the tables one at a time; as you do, you build a unique �ilename for each table that

c13.indd 357c13.indd 357 02/09/11 11:20 AM02/09/11 11:20 AM

358

Part IV: Server Applications

you want to script out and store that in the variable $k. You will need to have followed the

CD step above and have a directory named temp on the C:\ drive of your machine.

foreach ($tbl in Get-ChildItem)
{
$k=”C:\Temp\$($tbl.Schema).$($tbl.name)_table.SQL”
$tbl.Script() > $k
}

The downside to this approach is that it doesn’t include the Primary Keys, Foreign Keys,

Indexes, Default Constraints, and so on that you will need to fully re-create the entire

database schema. You could CD to the child directory of each table and script out the child

objects, but thankfully, the SMO already provides another feature to accomplish this.

To retrieve all of the objects in a database, you have to load an assembly and �ire up

a new server object that you’ll let the SMO de�ine. Then, grab one of the databases

on the instance. From there, you’ll be able to grab the speci�ic objects you want to script

out. When you go to script them out, you now have a large number of options to choose

from. As you set these different options, most of them are basically adding things that

will ultimately be included in your �inal script. Things like setting Options
.ClusteredIndexes to $true are pretty clear and return the results you would expect.

A CREATE statement for the clustered index will be included in the script if the table in fact

has a clustered index.

When you set the Options.ScriptDrops to $true, however, you get a completely

unexpected result. You end up with only the DROP statement itself, which doesn’t make

any sense at all if you’re trying to generate a script that drops and re-creates objects. To get

the DROP statement in addition to the CREATE statement, you use another scripter object to

generate the DROP statement separately.

$ScriptDrops = New-Objecti
 (‘Microsoft.SqlServer.Management.Smo.Scripter’) ($SMOserver)

By my count, there are 78 different scripter options in SQL Server 2008 R2. To see a full list

of them, open up your standard Windows PowerShell window and run the following:

[System.Reflection.Assembly]::LoadWithPartialNamei
 (“Microsoft.SqlServer.SMO”) | out-null
$server = “LOCALHOST\R2”
$scriptr = New-Objecti
 (‘Microsoft.SqlServer.Management.Smo.Scripter’) ($SMOserver)
$scriptr.Options

You should end up with a list that looks something like this:

FileName :
Encoding : System.Text.UnicodeEncoding
DriWithNoCheck : False
IncludeFullTextCatalogRootPath : False

c13.indd 358c13.indd 358 02/09/11 11:20 AM02/09/11 11:20 AM

359

Chapter 13: Managing SQL Server 2008 R2

BatchSize : 1
ScriptDrops : False
TargetServerVersion : Version80
TargetDatabaseEngineType : Standalone
AnsiFile : False
AppendToFile : False
ToFileOnly : False
SchemaQualify : True
IncludeHeaders : False
IncludeIfNotExists : False
WithDependencies : False
DriPrimaryKey : False
DriForeignKeys : False
DriUniqueKeys : False
DriClustered : False
DriNonClustered : False
DriChecks : False
DriDefaults : False
Triggers : False
Bindings : False
NoFileGroup : False
NoFileStream : False
NoFileStreamColumn : False
NoCollation : False
ContinueScriptingOnError : False
IncludeDatabaseRoleMemberships : False
Permissions : False
AllowSystemObjects : True
NoIdentities : False
ConvertUserDefinedDataTypesToBaseType : False
TimestampToBinary : False
AnsiPadding : False
ExtendedProperties : False
DdlHeaderOnly : False
DdlBodyOnly : False
NoViewColumns : False
Statistics : True
SchemaQualifyForeignKeysReferences : False
ClusteredIndexes : False
NonClusteredIndexes : False
AgentAlertJob : False
AgentJobId : True
AgentNotify : False
LoginSid : False
FullTextIndexes : False
NoCommandTerminator : False
FullTextStopLists : False
NoIndexPartitioningSchemes : False
NoTablePartitioningSchemes : False

c13.indd 359c13.indd 359 02/09/11 11:20 AM02/09/11 11:20 AM

360

Part IV: Server Applications

IncludeDatabaseContext : False
FullTextCatalogs : False
NoXmlNamespaces : False
NoAssemblies : False
PrimaryObject : True
DriIncludeSystemNames : False
Default : True
XmlIndexes : False
OptimizerData : False
NoExecuteAs : False
EnforceScriptingOptions : False
NoMailProfileAccounts : False
NoMailProfilePrincipals : False
NoVardecimal : True
ChangeTracking : False
ScriptDataCompression : True
ScriptSchema : True
ScriptData : False
ScriptBatchTerminator : False
ScriptOwner : False
Indexes : False
DriIndexes : False
DriAllKeys : False
DriAllConstraints : False
DriAll : False

Listing 13-1 creates a function that produces a separate .sql �ile for each object de�ined:

Tables, Views, Stored Procedures, and User De�ined Functions. It builds in a DROP statement

in case the object already exists. The collection of �iles will be written to C:\TEMP\
Databases\<Database Name>\<Date & Time>\<Object Type>.

LISTING 13-1

Script-DBObjectsIntoFolders Function

function Script-DBObjectsIntoFolders([string]$dbname, [string]$server){
[System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.SMO”) |
Out-Null
$SMOserver = New-Object (’Microsoft.SqlServer.Management.Smo.Server’) `
-ArgumentList $server
$db = $SMOserver.databases[$dbname]

$Objects = $db.Tables
$Objects += $db.Views
$Objects += $db.StoredProcedures
$Objects += $db.UserDefinedFunctions

<#Build this portion of the directory structure out here in case

c13.indd 360c13.indd 360 02/09/11 11:20 AM02/09/11 11:20 AM

361

Chapter 13: Managing SQL Server 2008 R2

 scripting takes more than one minute.#>
$SavePath = “C:\TEMP\Databases\” + $($dbname)
$DateFolder = Get-Date -Format yyyyMMddHHmm
New-Item -Type directory -Name “$DateFolder” -Path “$SavePath”

foreach ($ScriptThis in $Objects | where {!($_.IsSystemObject)}) {
#Need to Add Some mkDirs for the different $Fldr=$ScriptThis.GetType().Name
$scriptr = New-Object (‘Microsoft.SqlServer.Management.Smo.Scripter’) `
($SMOserver)
$scriptr.Options.AppendToFile = $True
$scriptr.Options.AllowSystemObjects = $False
$scriptr.Options.ClusteredIndexes = $True
$scriptr.Options.DriAll = $True
$scriptr.Options.ScriptDrops = $False
$scriptr.Options.IncludeHeaders = $True
$scriptr.Options.ToFileOnly = $True
$scriptr.Options.Indexes = $True
$scriptr.Options.Permissions = $True
$scriptr.Options.WithDependencies = $False
<#Script the Drop too#>
$ScriptDrop = new-object (‘Microsoft.SqlServer.Management.Smo.Scripter’) `
($SMOserver)
$ScriptDrop.Options.AppendToFile = $True
$ScriptDrop.Options.AllowSystemObjects = $False
$ScriptDrop.Options.ClusteredIndexes = $True
$ScriptDrop.Options.DriAll = $True
$ScriptDrop.Options.ScriptDrops = $True
$ScriptDrop.Options.IncludeHeaders = $True
$ScriptDrop.Options.ToFileOnly = $True
$ScriptDrop.Options.Indexes = $True
$ScriptDrop.Options.WithDependencies = $False

<#This section builds folder structures.
 Remove the date folder if you want to overwrite#>
$TypeFolder=$ScriptThis.GetType().Name
if ((Test-Path -Path “$SavePath\$DateFolder\$TypeFolder”) -eq “true”)
 {“Scripting Out $TypeFolder $ScriptThis”}
else {new-item -type directory -name “$TypeFolder” -path “$SavePath\i
$DateFolder”}
$ScriptFile = $ScriptThis -replace “\[|\]”
$ScriptDrop.Options.FileName = “” + $($SavePath) + “\” + $($DateFolder) + `
“\” + $($TypeFolder) + “\” + $($ScriptFile) + “.SQL”
$scriptr.Options.FileName = “$SavePath\$DateFolder\$TypeFolder\$ScriptFile.SQL”
#This is where each object actually gets scripted one at a time.
$ScriptDrop.Script($ScriptThis)
$scriptr.Script($ScriptThis)
} #This ends the loop
} #This completes the Script-DBObjectsIntoFolders function

c13.indd 361c13.indd 361 02/09/11 11:20 AM02/09/11 11:20 AM

362

Part IV: Server Applications

To call this function, use the following statement:

Script-DBObjectsIntoFolders “ADVENTUREWORKS” “LocalHost\R2”

Note
If you’re interested in learning more about this particular example, you can read more at the Hey, Scripting
Guy! Blog: http://blogs.technet.com/b/heyscriptingguy/archive/2010/11/04/use-powershell-
to-script-sql-database-objects.aspx. �

Scheduling Windows PowerShell SQL
Server Agent Job Steps
Scheduling PowerShell tasks to run in SQL Agent has a few quirks that you need to be aware

of in order to be successful. In SQL Server 2008, when creating a job step, you can now select

a type of “PowerShell.” Running PowerShell code inside SQL Agent 2008 and 2008 R2 comes

with a few boundaries, the most painful of which is SQLPS.exe itself. SQLPS is a mini-shell or

closed shell. It doesn’t have the extensibility that Windows PowerShell does.

Note
For more information on SQLPS and why it is likely to change in the next version of SQL Server, read
the following MSDN article: http://blogs.msdn.com/b/powershell/archive/2008/06/23/sql-
minishells.aspx �

The other major limitation is the same as any other SQL Agent job you have created in the

past; you are constrained by the rights of the service account that SQL Agent is running

under. If your service account is running under Local System and the Windows PowerShell

task that you set up is trying to copy a �ile to another server, it will fail because you won’t

have the required permissions. Likewise, if you try to send an email via your company’s

Exchange server and SQL Agent isn’t running under a domain account, the job is not going

to be able to send the email.

In future versions of SQL Server, SQL Agent will have a fully functional version of Windows

PowerShell that is more consistent with the OS version you’re already using while still

implementing the SQLSERVER Provider by default when you launch it.

When you run scripts through SQL Agent, they cannot be interactive. You can’t have

anything that requires user input on the local machine. If your job requires using

interaction, it will hang and have to be shut down manually.

An additional limitation of running PowerShell steps inside of SQL Agent jobs for SQL

Server 2008 and SQL Server 2008 R2 is that you cannot import modules. If you want to

bring in outside functionality, you will have to include it in the script that you are running.

c13.indd 362c13.indd 362 02/09/11 11:20 AM02/09/11 11:20 AM

363

Chapter 13: Managing SQL Server 2008 R2

Oftentimes, an easier approach to running SQLPS from SQL Agent is to simply call

Powershell.exe from inside of a Windows PowerShell Type Step.

Getting Space Usage Information
Gathering information about space used and space available is a vital task in any

environment. So common, in fact, that it is one of the most written about and discussed topics

about Windows PowerShell in SQL Server. In addition to knowing how much space is used on

a drive, you also need to know how much space each table in the database is taking up. In this

section, you learn how to evaluate volume space usage as well as database space usage.

Getting Volume Space Usage
A lot of Windows PowerShell examples focus on gathering space for local disks. The issue

with this approach is that it misses the measurement of mount points, which have become

very prevalent in clustered SQL Server instances. The code below �inds mount points on a

Windows Server:

Function Get-DisksSpace ($ServerName, $unit= “GB”)
{
$measure = “1$unit”

Get-WmiObject -ComputerName $ServerName -query “
SELECT SystemName, Name, DriveType, FileSystem, FreeSpace, Capacity, Label
 FROM Win32_Volume
 WHERE DriveType = 2 or DriveType = 3” |
SELECT SystemName, `
Name, `
@{Label=”SizeIn$unit”;Exp={“{0:n2}” -f($_.Capacity/$measure)}}, `
@{Label=”FreeIn$unit”;Exp={“{0:n2}” -f($_.freespace/$measure)}}, `
@{Label=”PercentFree”;Exp={“{0:n2}” -f(($_.freespace/$_.Capacity)*100)}}, `
Label
}#Get-DisksSpace

To call the function Get-DisksSpace, simply provide it with a name of a server that you

want to interrogate and discover the disk space usage on. By default, it will return results

in gigabytes. You can optionally pass “MB” to the function and it will return the value in

megabytes.

Get-DisksSpace LocalHost MB

Getting Database Space Usage
A lot of options exist for gathering space information about a database. However, the need

for information doesn’t stop there. Knowing the remaining capacity of each data �ile is

c13.indd 363c13.indd 363 02/09/11 11:20 AM02/09/11 11:20 AM

364

Part IV: Server Applications

vital to making sure you aren’t going to run out of space unexpectedly. If you have 20 GB

of total space free throughout the database, that’s not going to do you a lick of good if your

Transaction Log �ile is down to 0 MB free.

Note
Databases need a minimum of two files: a data file and a log file. You only need one log file, and having more
than one does you no good, because the engine will write to only one transaction log file at a time. On the
other hand, you can often benefit from having more than one Data File. Data Files belong to File Groups, and
there can be more than one Data File per File Group. However, this is not a common scenario because you
can only control which File Group a table is written to, not the individual Data File. The very first Data File
is always in the Primary File Group and it ends with an .mdf extension. Subsequent Data Files can be part of
the Primary File Group (although they shouldn’t) and should end with a file extension of .ndf. Log files will
end with an .ldf extension.

When creating a database that you expect to grow larger than 10 GB, it’s a good habit to go ahead and
create a Secondary File Group and make that the Default File Group for tables. The reason for this is that the
Primary File Group holds all the definitions for all tables regardless of which File Group they were created
on. It also holds all of the information for any Service Broker Queues as well as several other items. Setting
up this Secondary File Group gives you the opportunity to put your tables on a separate set of disks than all of
your database objects that will be going into the Primary File Group by default. This may seem excessive for
just a 10-GB database, but if it’s expected to grow to 100 GB, you’ll be glad you went to the trouble of setting
up your data files properly in the first place. �

All that being said, to gather database space usage information, you can use several

different approaches. The following sections cover the Provider, cmdlet, and the SMO.

Getting Database Space Usage with the Provider
With the Provider, you don’t even have to navigate inside of the SQLSERVER provider

directory to collect the information. You can just run Get-ChildItem to gather the

information. On top of that, you can switch the database context and even switch instances

and servers all while staying at the C:\ prompt. The following example returns the size,

data space usage, index space usage, and space available for the AdventureWorks database:

$AdvWrks = Get-Item SQLSERVER:\sql\LocalHost\R2\DATABASES\ADVENTUREWORKS
$AdvWrks |
Format-Table -Prop Size DataSpaceUsage,IndexSpaceUsage,SpaceAvailable -Auto

Beyond collecting data for one database, you can also collect the statistics for

multiple databases. In the event you want to collect the data for a production database

and a staging database, you can store the results in variables as you switch through the

Provider.

dir SQLSERVER:\sql\LocalHost\R2\DATABASES |
Format-Table -Prop Name,Size,DataSpaceUsage,IndexSpaceUsage,SpaceAvailable -Auto

c13.indd 364c13.indd 364 02/09/11 11:20 AM02/09/11 11:20 AM

365

Chapter 13: Managing SQL Server 2008 R2

Getting Database Space Usage with the Cmdlet
Gathering space usage information with the cmdlet can use a relatively tiny amount of code

depending on what you’re looking for. You have the option to collect overall data and log

�ile space usage information, or you can return more granular data, evaluating the space

usage for each data �ile in the database independently. The following code sample returns

information about database �iles used by the AdventureWorks database.

Invoke-SQLCmd -ServerInstance “LocalHost\R2” -database “AdventureWorks” -query “
SELECT [file_id],
 [type_desc],
 [name],
 ([size] * 8) as ‘SizeInKB’,
 [physical_name]
 FROM [AdventureWorks].[sys].[database_files]”

Getting Database Space Usage with the SMO
Finally, for completeness, have a look at how to do this with the SMO:

 [System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.SMO”) |
Out-Null
$SMOserver = New-Object (’Microsoft.SqlServer.Management.Smo.Server’) `
“LocalHost\R2”
$SMOserver.databases |
Format-Table -Prop Name,Size,DataSpaceUsage,IndexSpaceUsage,SpaceAvailable -Auto

Getting Table Space Usage
You can approach the challenge of retrieving table space information from two different

angles: from the Provider or the SMO.

Getting Table Space Usage with the Provider
Using the Provider is just like grabbing properties off a �ile in a directory. With the

Provider, all you have to do is a simple Get-ChildItem (aliased as dir), and then �ilter the

results by piping them to Format-Table and specifying only the properties you want to

display. Tables have approximately 60 properties that you can look at.

dir SQLSERVER:\sql\LocalHost\R2\DATABASES\ADVENTUREWORKS\TABLES |
Format-Table -Property Schema, Name, DataSpaceUsed, IndexSpaceUsed, RowCount

Getting Table Space Usage with the SMO
The SMO route is a little more involved. The assembly must be loaded and a new SQL

Server object instantiated. Then, the instance that you want to interrogate must be

passed to the object. From there, a new variable, $db, is created to name the database

c13.indd 365c13.indd 365 02/09/11 11:20 AM02/09/11 11:20 AM

366

Part IV: Server Applications

that is evaluated. Once the variable is populated, the properties that you want to return

are passed in. At this point, the table properties are piped to Format-Table, just as in the

Provider example.

[System.Reflection.Assembly]::LoadWithPartialName(“Microsoft.SqlServer.SMO”) |
Out-Null
$SMOserver = New-Object (’Microsoft.SqlServer.Management.Smo.Server’) `
“LocalHost\R2”
$db = $SMOserver.databases[“AdventureWorks”]
$db.Tables | Format-Table -Property `
Schema, Name, DataSpaceUsed, IndexSpaceUsed, RowCount -AutoSize

In addition to retrieving space information, you may want to know whether or not the

table is partitioned, and if so, what the partition scheme is. The PhysicalPartitions and

PartitionScheme properties can come in handy here. To get an answer for whether or not

the table is partitioned, you can call the IsPartitioned property on the table.

Managing Registrations in SQL Server
Management Studio
Registered Servers (abbreviated as Reg.S) is one of the two things that got me hooked on

Windows PowerShell. (The other is SQLPSX.) Registered Servers is an often overlooked

feature, usually by people who do not need to administer a high number of SQL Server

instances. However, bene�its of Reg.S can be realized even if you’re only working with a

few instances.

Registered Servers can be confused with Central Management Servers (CMS)

because CMS is located within the Registered Servers pane in SQL Server Management

Studio (SSMS). Though both are used for keeping track of a list of servers, there are

some major differences to know about. Reg.S is a local XML �ile that contains a list of

connections, instances, and other information. CMS is intended to be a central place where

everyone can reference a list of all SQL Server instances in an organization. CMS works

only for connections to instances made with integrated authentication. Reg.S allows you

to de�ine connections using either SQL Authentication or integrated authentication. SQL

Authentication is when a username and password are provided to authenticate on the

server. Integrated authentication is when your Windows credentials are used to establish a

connection in SQL Server. In addition, CMS does not limit how many servers can be de�ined

as the “central” server, which can lead to confusion. Reg.S avoids this problem by being

locally hosted. If you want more than one database administrator to have the same list

of instances, just copy the Reg.S XML �ile using Copy-Item and distribute it. Of course,

once it is installed on an individual’s machine, there is no synchronization mechanism

between XML �iles.

c13.indd 366c13.indd 366 02/09/11 11:20 AM02/09/11 11:20 AM

367

Chapter 13: Managing SQL Server 2008 R2

The great news is that both CMS and Reg.S are accessible through Windows PowerShell

once you add the SQL Provider:

Add-PSSnapin SqlServerProviderSnapin100

After you add the snap-in, you have two options to access either the registered servers or

the centrally managed servers. The �irst option is to CD (Change Directory) to SQLServer:\
SQLRegistration and then examine the directory to see what instances are available:

CD SQLSERVER:\SQLRegistration
dir | Select PSChildName

One quirk to keep in mind is that names contain spaces, so you’ll always need to reference

them with single ticks, such as ‘Database Engine Server Group’ or ‘Central Management
Server’.

The second option for using Reg.S or CMS within Windows PowerShell is to stay within

whatever working directory you’re already in and query the SQLServer Provider using the

full path.

Note
When working with SSMS 2008 or 2008 R2, I tend to avoid navigating within the SQLSERVER Provider
because tab-expansion doesn’t function within the provider. The second option described, staying in the
filesystem provider and providing the path as part of the query, is the way I usually work with Reg.S or CMS.
If, by the time you are reading this, you have already installed the 2012 version of SSMS and are using that
provider, you likely will be able to disregard this technique. �

Regardless of the route your organization takes to manage and organize a group of

instances, you will be able to take advantage of this stored connection information through

Windows PowerShell. In the next two sections, you learn how to leverage Reg.S and CMS to

query multiple servers with a single Windows PowerShell script.

Caution
When you fire up the ISE or some other Windows PowerShell editor and load the SQL Provider snap-in,
Windows PowerShell loads and caches your registered servers file and CMS. Getting this list to refresh during
the session is inconsistent at best. I’ve seen it refresh intermittently, but do not know what triggers it. Usually,
just closing SSMS and reopening it does the trick. �

Leveraging Registrations to Query Multiple
Registered Servers
When working with registered servers, I spend the vast majority of my time leveraging

them to query multiple instances. Once the Reg.S �ile is created, I rarely add or modify an

instance as part of my daily routine. The best approach is to break your registrations down

c13.indd 367c13.indd 367 02/09/11 11:20 AM02/09/11 11:20 AM

368

Part IV: Server Applications

into a set of server groups that �it your querying pattern. Place instances into groups based

on how often they need to be queried together. For example, a Production group might

contain all of your Production instances, while a Development group might contain all of

your Development instances.

Note
You can organize your instances into server groups (folders). You can register the same instance multiple
times under different credentials. If you do this within the same folder, the instances must have different
names. However, if you create registrations to the same instance, with different credentials and under
different server groups, you can use the same name. This is mostly a blessing if you’re organized and
remember to leverage it. It will turn into a curse if you forget it or don’t organize well. Invest some thought
into how you organize your registered servers, and you’ll be able to reap the benefits of well-organized server
groups. �

In the following example, you interrogate the list of instances in a server group called

LocalInstances, grabbing any instances in the server group, while �iltering to exclude any

subgroup names, and placing those objects into a single variable called $InstanceList.

Next, you enter a foreach loop and iterate through the list of instances, placing each one

into a new variable called $instance. The query is then run against each instance as it is

handled by the foreach loop. One key point to note is that you supply the name property of

the $instance variable to the -ServerInstance parameter of Invoke-SQLCmd. This is easy

to forget when working with a parameterized instance name. With this particular example,

you will end up with a result set based on querying the sys.dm_os_sys_memory DMV in

each instance.

$InstanceList = dir -Recurse `
SQLSERVER:\SQLRegistration\’Database Engine Server Group’\LocalInstances\ |
Where {$_.Mode -ne “d”}

foreach($instance in $InstanceList)
{
 Invoke-SQLcmd -ServerInstance $instance.name -Database master -Query “
 SELECT * FROM sys.dm_os_sys_memory”
}

Taking the example a little further, you can run a query against every database within each

instance in your server group. This can be extremely useful when trying to deploy code or

trying to audit where particular user permissions have been deployed to.

$InstanceList = dir -Recurse `
SQLSERVER:\SQLRegistration\’Database Engine Server Group’\LocalInstances\ |
Where {$_.Mode -ne “d”}
foreach($instance in $InstanceList)
{
 $dbs = Invoke-SQLcmd -ServerInstance $instance.name -Database master -Query “
 SELECT * FROM sys.databases”

c13.indd 368c13.indd 368 02/09/11 11:20 AM02/09/11 11:20 AM

369

Chapter 13: Managing SQL Server 2008 R2

 foreach($db in $dbs)
 {
 Invoke-SQLcmd -ServerInstance $instance.name -Database $db.name -Query “
 SELECT @@SERVERNAME AS ‘InstanceName’,
 DB_NAME(DB_ID()) AS ‘DatabaseName’,
 name,
 principal_id,
 type,
 type_desc,
 default_schema_name
 is_fixed_role FROM sys.database_principals” | ft
 }
}

In addition to using registered servers within Windows PowerShell, you can modify

the registered server directly. One of the things registered servers allows you to do is

set a custom color to appear at the bottom of the query pane when a query window is

opened starting from a given registered server. In the following example, the color of the

registered server is changed in SSMS:

$AnInstance = dir -Recurse `
SQLSERVER:\SQLRegistration\’Database Engine Server Group’\LocalInstances\ |
Where {$_.Mode -ne “d”} | select -First 1

$AnInstance.CustomConnectionColorArgb
$AnInstance.CustomConnectionColorArgb = ‘-65536’
$AnInstance.Alter()

Leveraging Registrations to Query Multiple
Central Management Servers
Registered servers provide a great way to organize and categorize database instances

on your local machine. Central Management Servers (CMS) provides very similar

organizational capabilities, but the information is stored on a central server rather

than in a local XML �ile. To get some ideas on how to leverage CMS and Windows

PowerShell, check out the following article: http://johnsterrett.com/2011/05/12/
passed-my-sqluniversity-powershell-midterm/.

Summary
In this chapter, you learned how to leverage Windows PowerShell in a SQL Server

environment. You’ve learned ways to streamline and speed up common management and

monitoring tasks. In addition to Windows PowerShell cmdlets, you have learned about the

c13.indd 369c13.indd 369 02/09/11 11:20 AM02/09/11 11:20 AM

370

Part IV: Server Applications

CodePlex project SQLPSX and myriad options for interacting with SQL Server via Windows

PowerShell.

I recommend that you install the next version of SQL Server as soon as it is released.

There are huge advantages to the SMO updates included in this new release that will make

PowerShell an even better option for anyone managing SQL Server.

In the next chapter, you learn about managing Microsoft SharePoint. Key concepts include

accessing data, deploying SharePoint solutions, backing up and restoring data, and

managing the con�iguration of SharePoint.

c13.indd 370c13.indd 370 02/09/11 11:20 AM02/09/11 11:20 AM

371

C H A P T E R

IN THIS CHAPTER
Using the SharePoint object

model

Accessing data in SharePoint

Deploying SharePoint solutions

Managing workflows

Backing up and restoring data

Managing the configuration of
SharePoint

Managing Microsoft
SharePoint 2010
Server

The SharePoint product team at Microsoft made a huge

investment in Windows PowerShell. The SharePoint 2010

Management Shell and snap-in that are installed with Microsoft

SharePoint Server 2010 contain 531 cmdlets. That is more than

double what the core Windows PowerShell language has. This is yet

another statement from Microsoft that Windows PowerShell is the

future — and that future is now.

SharePoint has provided some level of command-line administration

with tools like stsadm.exe since Windows SharePoint Services 2.0.

However, with Windows PowerShell, the product team in Microsoft

was able to leverage the existing SharePoint .NET library to provide

access to components of SharePoint that have traditionally been

available only to developers. Requirements such as automating

tasks against document libraries and lists are now in the scope of a

SharePoint administrator’s work, along with the more traditional

tasks like backing up and restoring con�igurations and sites.

Installing and Using the Cmdlets
The cmdlets for SharePoint are included with Microsoft SharePoint

Server 2010. During an installation of SharePoint Server, the required

snap-in is automatically installed. In addition to the snap-in, there is

also a shortcut that is created in your Start menu for the SharePoint

2010 Management Shell that will load the snap-in for you.

c14.indd 371c14.indd 371 02/09/11 11:22 AM02/09/11 11:22 AM

372

Part IV: Server Applications

SharePoint 2010 Management Shell
After the installation of SharePoint, you can load the SharePoint 2010 Management Shell

by clicking Start � All Programs � Microsoft SharePoint 2010 Products � SharePoint

2010 Management Shell. Alternatively, you can load the cmdlets into an existing Windows

PowerShell session or script by running the following lines of code:

Add-PSSnapin Microsoft.SharePoint.PowerShell
$host.Runspace.ThreadOptions = “ReuseThread”

Note
$host.Runspace.ThreadOptions = “ReuseThread” is an option that is new in PowerShell Version 2. It
is suggested when using the SharePoint cmdlets, and it is loaded by default when you load the SharePoint
2010 Management Shell through the Start Menu. This option is configured by default if you are using the
PowerShell ISE. �

Before digging into how to use the shell, it is worth examining a couple of elements that are

unique to the SharePoint cmdlets.

PipeBind Parameters
When you use Get-Help on most of the cmdlets, you will see that many of the parameters

have a suf�ix called PipeBind:

Get-Help New-SPSite -Parameter Template
...
-Template <SPWebTemplatePipeBind>
...

These parameters are designed in a way either to allow you to pass the string name

for the value you would like to send to the cmdlet or it can optionally take an object of

the type speci�ied before the PipeBind suf�ix. For example, the Template parameter

in the preceding code can be passed an SPWebTemplate object that is retrieved from

a corresponding Get-SPWebTemplate cmdlet, or it can just be passed the name of the

template you would like to use.

SPAssignment
The SharePoint cmdlets that retrieve SPWeb, SPSite, or SPSiteAdministration objects

from the SharePoint server can use up large amounts of memory. Because of this, the

SharePoint cmdlets provide their own memory management that ensures that data in

memory is released immediately after they are called. This means that if you set a variable

to an object that is retrieved from SharePoint, the SharePoint system may be queried every

time you use the variable. This can be extremely inef�icient if you are doing something

like adding multiple document libraries or lists to an SPWeb object. You can override this

c14.indd 372c14.indd 372 02/09/11 11:22 AM02/09/11 11:22 AM

373

Chapter 14: Managing Microsoft SharePoint 2010 Server

behavior within a script by using the Start-SPAssignment cmdlet. When this cmdlet

is used with the Global switch, as shown below, it ensures that all of the objects are

retained in memory until the script closes or Stop-SPAssignment is called with the Global

switch.

Start-SPAssignment -Global

Caution
If you choose to use Start-SPAssignment, it is extremely important that you eventually call
Stop-SPAssignment or you may experience memory issues due to the improper disposal of the SharePoint
objects. �

Remoting with SharePoint
Many of the cmdlets built into the SharePoint snap-in revolve around using the SharePoint

object model that is built on .NET. This library requires you to access the underlying objects

from the server where SharePoint is installed. Because of this, the SharePoint snap-in is a

great candidate for PowerShell remoting.

Cross-Reference
Read more about remoting in Chapter 2, “What’s New in Windows PowerShell V2.” �

Limitations of the SharePoint Cmdlets
There is a slight problem, however, with using remoting to access the snap-in on a

SharePoint server. The problem is that the objects that are used by the SharePoint object

model require you to authenticate against them with your credentials. Unfortunately, this

is not possible with the default authentication because the WS-Man service does not have

the ability to pass your credentials by default to any other service. The solution is to enable

CredSSP authentication so that WS-Man can delegate your credentials through to the

SharePoint objects.

Memory Limits in WS-Man
Another WS-Man con�iguration you should be aware of when thinking about enabling

Windows PowerShell remoting on a SharePoint server is the memory limit. By default,

the memory limit is set to 150 MB. Some of the SharePoint cmdlets can use up much

more memory than this. You can con�igure WS-Man to use up to 1 gigabyte of memory by

running the following command on the server:

Set-Item WSMan:\localhost\Shell\MaxMemoryPerShellMB 1000

c14.indd 373c14.indd 373 02/09/11 11:22 AM02/09/11 11:22 AM

374

Part IV: Server Applications

Caution
Think the memory limits through carefully. You must be sure that this memory is available to use on the
server. Taking 1 gigabyte of RAM to use for remoting means that you have 1 gigabyte less RAM to use for
SharePoint. �

Automating Site Administration
SharePoint provides many services, but the most visible and the most tangible is the site.

You may be using sites for collaboration, meetings, as an internal portal, an externally

facing web presence, or as an application front end. Regardless of how you are using

SharePoint, it goes without saying that, as a SharePoint administrator, you have created

and con�igured at least one site. If you are in a large environment, it could be tens of

thousands. Either way, the SharePoint cmdlets provide you with an easy way to automate

the tasks of working with sites.

Creating Site Collections
Sites are created using the New-SPSite cmdlet. At a bare minimum, the cmdlet requires

a URL for the site as well as a primary owner for the site. You can use a series of optional

parameters that mirror the Central Administration page for creating new site collections.

The following code is a sample of the most common set of parameters used to automate the

task of creating a new site collection. This example makes use of the splatting technique you

learned about in Chapter 2 to pass a set of parameters de�ined in a hashtable to a cmdlet:

$template = Get-SPWebTemplate |where {$_.Title -eq ‘Team Site’}
$arguments = @{
 Url = ‘http://server1/sites/psbible’;
 OwnerAlias = ‘psbible\Tome’;
 SecondaryOwnerAlias = ‘psbible\JGoslin’;
 Template = $template;
 Name = ‘Author Team Site’;
}
New-SPSite @arguments

Note
If you’re unsure of the exact name of a template, you can use Get-SPWebTemplate on its own to see a list of
all the templates installed in your SharePoint server. �

Connecting to Sites
You can retrieve sites by using Get-SPSite. By itself, the command returns 20 sites. You

can use the Limit parameter to change this default behavior. The following returns all of

the sites in your environment:

 Get-SPSite -Limit All

c14.indd 374c14.indd 374 02/09/11 11:22 AM02/09/11 11:22 AM

375

Chapter 14: Managing Microsoft SharePoint 2010 Server

To retrieve a particular site, however, you must pass a value to the Identity parameter that

is either the site’s URL or its GUID. The Identity parameter is positional. This means that

the parameter name Identity does not need to be speci�ied when the cmdlet is used. For

example, to retrieve the team site created in the previous section, you could run the following:

Get-SPSite http://server1/sites/psbible

Removing Sites
You can remove sites in two ways. You can either invoke the Delete() method on an

SPSite object like this:

$site = Get-SPSite http://server1/sites/psbible
$site.Delete()

or you can use the Remove-SPSite cmdlet:

Remove-SPSite http://server1/sites/psbible

Using SharePoint Lists
SharePoint lists make up sets of data that are stored within SharePoint. It should be no

surprise that it is common for a script that works with SharePoint data to retrieve or

manipulate data in a SharePoint list.

SharePoint lists are managed through the SharePoint object model through the SPWeb

object. You can retrieve an SPWeb object for a site by using the Get-SPWeb cmdlet:

$web = Get-SPWeb http://server1/sites/psbible

Browsing Lists
With an SPWeb object in hand, you can access the lists contained within it by using the

Lists property of the object. For example, to see the name and description for each list in

an SPWeb object, you would run the following:

$web.Lists |select title, description

Caution
When you are viewing list data, by default, an enormous amount of content is returned if you do not specify
the exact properties you want to view with Select-Object. This can result in poor performance in your
SharePoint scripts. If you are unsure of which properties you need returned, you can always pipe the lists into
Get-Member to see what is available first. �

To gain access to a speci�ic list, you can use the following line to return the list based on its

name. This line returns the task list for the site:

$list = $web.Lists[Tasks]

c14.indd 375c14.indd 375 02/09/11 11:22 AM02/09/11 11:22 AM

376

Part IV: Server Applications

Viewing List Data
To look at the data within a list, you need to inspect the Items property of the list. For

example, if you wanted to see the items in the task list that was retrieved in the preceding

line of code, you would use the following code:

foreach ($item in $list.Items) {
 New-Object psobject -Property @{
 Title = $item.Item(“Title”);
 Status = $item.Item(“Status”);
 }
}
Status Title
------ -----
Not Started Finish the SharePoint chapter
Not Started Celebrate

Note
Lists can be strange to work with at times. In the preceding example, you would think that you could just do
$list.Items |select Title, Status. That will not work because the Status property is not exposed in
the base object. That is why you need to use the Item() method to expose the underlying fields.

If you are looking at code on the Web, you may also see the Item() method removed for something like
$item[“Status”]. Both of these do exactly the same thing.

One final caveat to be aware of is that the value passed to the Item() method is case-sensitive. �

Updating List Data
If you want to update an item in a list, it is a three-step process. First, set a variable to the

item you would like to update. Second, update the item’s values appropriately. Finally, call

the Update() method on the item. For example, if you wanted to set the �irst element in the

task list to a status of started, you would do the following:

$item = $list.Items[0]
$item.Item(“Status”) = “Started”
$item.Update()

Adding Items to a List
You can add an item to a list by invoking the Add() method on the Lists collection. This

returns an SPListItem object that you can modify. Once you have everything added with

the values you want, you invoke the Update() method on the item:

$item = $list.Items.Add()
$item[“Title”] = ‘Go Shopping’
$item.Update()

c14.indd 376c14.indd 376 02/09/11 11:22 AM02/09/11 11:22 AM

377

Chapter 14: Managing Microsoft SharePoint 2010 Server

Working with Views
You can access views in a list through the Views property of an SPList object. To see all of

the views in a list, you would run the following line of code:

$list.Views | select Title

Modifying Views
Changing a view uses a similar process to changing a list item. You must �irst retrieve the

view you would like to change, make the changes, and then invoke the Update() method.

For example, if you wanted to remove the priority column from the “All Tasks” view, you

would do the following:

$view = $list.views.Item(“All Tasks”)
$view.ViewFields.Delete(‘Priority’)
$view.Query = ‘<OrderBy><FieldRef Name=”Status” /></OrderBy>’
$view.Update()

This sample shows the two properties that are most commonly touched when you create

or modify a view. ViewFields contains the columns that are shown in the view, and Query

shows a Collaborative Application Markup Language (CAML) �ilter that is applied to the set of

data in the list.

Creating Views
You can create views by invoking the Add() method on the Views collection. This method

requires you to pass it a name, the list of columns in the view, the CAML query, the number

of rows to show in the view, and whether the view has the option to see more data on other

pages over the row limit.

$views = $list.views
$viewName = ‘Completed Tasks’
$viewFields = New-Object System.Collections.Specialized.StringCollection
$viewFields.Add(‘Title’)
$viewFields.Add(‘Assigned To’)
$query = @’
<Where>
 <Eq>
 <FieldRef Name=”Status” />
 <Value Type=”Text”>Completed</Value>
 </Eq>
</Where>
‘@
$rowlimit = 128
$paged = $true
$defaultView = $false
$views.Add($viewName,$viewFields,$query,$rowlimit,$paged,$defaultView)

c14.indd 377c14.indd 377 02/09/11 11:22 AM02/09/11 11:22 AM

378

Part IV: Server Applications

Creating Lists
You can create a list by invoking the Add() method on the Lists collection of an SPWeb object.

Creating a list requires you to specify one of the existing list templates to create the list from.

$template = [Microsoft.SharePoint.SPListTemplateType]::GenericList
$web = Get-SPWeb http://server1/sites/psbible
$lists = $web.Lists
$lists.Add(“Servers”,”List of servers and IPs”,$template)

List Settings
Once the list is created, you’ll want to modify its settings to meet your requirements. You

can modify any of the properties on the SPList object and then call the Update() method

when you are done. For example, the following adds two columns to the new list you

created and adds the list to the Quick Launch area of the site:

$list = $lists.Item(“Servers”)
$required = $true
$type = [Microsoft.SharePoint.SPFieldType]::Text
$list.Fields.Add(“ServerName”,$type,$required)
$list.Fields.Add(“IP Address”,$type,$required)
$list.OnQuickLaunch = $true
$list.update()

Managing Permissions
The process to con�igure permissions for a SharePoint list is a multistep procedure:

 1. Break inheritance on the SPList by invoking the BreakRoleInheritance()

method.

 2. Run the Update() method on the SPList to apply the changes to inheritance.

 3. Create an SPRoleAssignment object for a SiteUser or a SiteGroup object that

exists in the SPWeb object for the site.

 4. Add a role to the SPRoleAssignment object.

 5. Add the SPRoleAssignment object to the RoleAssignments collection of the

SPList.

 6. Run the Update() method on the SPList object to apply the changes.

The following illustrates this process:

$web = Get-SPWeb http://server1/sites/psbible
$list = $web.Lists.Item(“Servers”)

$copypermsfromparent = $false
$list.BreakRoleInheritance($copypermsfromparent)

c14.indd 378c14.indd 378 02/09/11 11:22 AM02/09/11 11:22 AM

379

Chapter 14: Managing Microsoft SharePoint 2010 Server

$list.Update()

$role = $web.RoleDefinitions.Item(“Full Control”)
$user = $web.SiteUsers.Item(“home\Administrator”)

$assignment = New-Object Microsoft.SharePoint.SPRoleAssignment ($user)
$assignment.RoleDefinitionBindings.Add($role)

$list.RoleAssignments.Add($assignment)
$list.Update()

Managing Document Libraries
Document libraries are a special type of list object that enable you to store �iles

within your SharePoint site. In addition to the standard list properties, they also may

contain a hierarchy of folders to allow you to categorize and store documents in a logical

structure.

Creating Libraries
You create a document library the same way that you create any list. The only difference is

that the SPListTemplateType you use to create the list should be DocumentLibrary.

$template = [Microsoft.SharePoint.SPListTemplateType]::DocumentLibrary
$web = Get-SPWeb http://server1/sites/psbible
$lists = $web.Lists
$lists.Add(“Windows PowerShell Scripts”,”Repository of scripts”,$template)

Navigating Folders
Folders exist within the Folders collection of an SPList object. These folders exist in this

single collection regardless of their depth within the document library. To understand

where the folder actually lives, you should inspect the Url property of the folder. The URL

will be a relative path that includes the name of the document library itself. For example,

this is the output of a document library named Windows PowerShell Scripts that has a

folder named SharePoint Scripts with two subfolders of its own:

$list.Folders |select Name, Url |Format-List
Name : SharePoint Scripts
Url : Windows PowerShell Scripts/SharePoint Scripts

Name : List Scripts
Url : Windows PowerShell Scripts/SharePoint Scripts/List Scripts

Name : Site Scripts
Url : Windows PowerShell Scripts/SharePoint Scripts/Site Scripts

c14.indd 379c14.indd 379 02/09/11 11:22 AM02/09/11 11:22 AM

380

Part IV: Server Applications

If you happen to know the relative path for a folder, you can access it directly by invoking

the GetFolder() method on the SPWeb object. For example, to retrieve the SharePoint
Scripts folder you saw in the preceding output, you would do this:

$folder = $web.GetFolder(‘Windows PowerShell Scripts/SharePoint Scripts’)

Creating Folders
You can create a folder by invoking the Add() method on the Folders collection of an

SPList object. For example, to add a folder named SharePoint Scripts to the Windows
PowerShell Scripts document library, you would do the following:

$web = Get-SPWeb http://server1/sites/psbible
$list = $web.Lists.Item(“Windows PowerShell Scripts”)

$type = [Microsoft.SharePoint.SPFileSystemObjectType]::Folder
$folder = $list.Folders.Add(“”, $type, “SharePoint Scripts”)
$folder.update()

Downloading Documents
Downloading documents from a document library requires you to open up a binary stream

of data from the �ile in the library. The technique used to convert that stream to a �ile

on disk involves using some of the .NET classes that are found in System.IO namespace.

Normally in Windows PowerShell, you can steer clear of these types of interactions with

.NET because so many good cmdlets exist to help you handle things like reading and

writing to disk. However, in this particular case, you must use them to save the binary

stream of data to disk.

To create the binary stream, you must �irst get the SPFile object for the �ile you would like

to download. The easiest way to do this is to supply the relative URL path to the GetFile()

method of the SPWeb object. The alternative is to �ind the �ile by traversing the Files

collection of an SPFolder object. Either way, after you have retrieved the SPFile object, you

can invoke the OpenBinary() method to create the binary stream. The following example

puts this all together for you by downloading a script named s1.ps1 in the Windows
PowerShell Scripts document library underneath the SharePoint Scripts folder:

$web = Get-SPWeb http://server1/sites/psbible

$file = $web.GetFile(‘Windows PowerShell Scripts/SharePoint Scripts/s1.ps1’)
$bytes = $file.OpenBinary()

$downloadpath = Join-Path c:\download $file.name
$filemode = [System.IO.FileMode]::Create
$filestream = New-Object System.IO.FileStream ($downloadpath, $filemode)

$filestream.Write($bytes, 0, $bytes.Count)
$filestream.Close()

c14.indd 380c14.indd 380 02/09/11 11:22 AM02/09/11 11:22 AM

381

Chapter 14: Managing Microsoft SharePoint 2010 Server

Uploading Documents
Files can be added to an SPFolder object by invoking the Add() method of the Files collection.

For example, to dump the contents of Get-Process to a text �ile and then upload it to the folder

named Data that exists within the Windows PowerShell folder, you would do the following:

Get-Process |Out-File processes.txt
$file = Get-ChildItem processes.txt

$web = Get-SPWeb http://server1/sites/psbible
$folder = $web.GetFolder(‘Windows PowerShell Scripts/Data’)

$folder.Files.Add($file.name, $file.OpenRead())

Creating a Web Application
You create a SharePoint web application by running New-SPWebApplication. The following

example shows how this cmdlet can be used with a common set of parameters:

$arguments = @{
 Name = ‘Dilbert’;
 Port = 80;
 URL = ‘http://dilbert’;
 ApplicationPool = ‘DilbertAppPool’;
 ApplicationPoolAccount = ‘NetworkService’;
}
New-SPWebApplication @arguments

Note
New-SPWebApplication has a number of parameters that you are not seeing in this example. Every option
you have when creating a web application through SharePoint Central Administration is available to the
Windows PowerShell cmdlet. If you require one of the options outside of the common ones listed in this
example, look through the Get-Help documentation for New-SPWebApplication. �

Deploying Developer Code
The SharePoint snap-in provides an administrator with a series of cmdlets to help install

and uninstall web parts and other types of solutions to and from a SharePoint farm.

Solution �iles need to be added to SharePoint with Add-SPSolution:

Add-SPSolution c:\webparts\Cal.wsp

Once the solution is added, it can be installed to a web application with Install-
SPSolution:

Install-SPSolution Cal.wsp -WebApplication http://server1 -GacDeployment

c14.indd 381c14.indd 381 02/09/11 11:22 AM02/09/11 11:22 AM

382

Part IV: Server Applications

If a solution is no longer needed, it can be uninstalled with Uninstall-SPSolution:

Uninstall-SPSolution Cal.wsp -WebApplication http://server1

Once the solution is uninstalled from every web application it was installed on, it can

be removed by retrieving the solution with Get-SPSolution and then piping it into

Remove-SPSolution:

Get-SPSolution Cal.wsp |Remove-SPSolution

Administering Workflows
The work�low engine in SharePoint Server 2010 may be leveraged by developers,

administrators, or power users of SharePoint. The SharePoint cmdlets provide a way to

automate or interactively work with work�lows.

Manually Kicking Off Workflows
Some work�lows need to be manually started on an item in order for them to launch. Or

perhaps you have an automatic work�low that was stopped and needs to be restarted.

Work�lows are started by using the WorkflowManager object that exists in an SPSite

object. There is a StartWorkflow() method you can invoke to manually start a work�low.

The method takes three arguments: a work�low association that exists on the list where

the item exists, the SPItem object, and any string arguments that need to be passed to the

work�low. Here’s an example of how you can create an item in a list named Tasks and then

start a work�low named ApproveTasks:

$web = Get-SPWeb http://server1/sites/psbible
$list = $web.Lists.Item(“Tasks”)
$item = $list.Items.Add()
$item[“Title”] = ‘Take a break’
$item.Update()

$wf = $item.ParentList.WorkflowAssociations |where{$_.Name -eq ‘ApproveTasks’}
$wfarguments = “”
$site = $web.Site
$workflowmanager = $site.WorkflowManager
$workflowmanager.StartWorkflow($item,$wf,$wfarguments)

Monitoring Workflows
The WorkFlowManager object contains an overall view from the site level of all of the

work�lows on your system. Listing 14-1 shows a function called Get-SPRunningWorkflows

that accepts an SPList. It returns the SPWorkflowObjects for the items that have active

work�lows.

c14.indd 382c14.indd 382 02/09/11 11:22 AM02/09/11 11:22 AM

383

Chapter 14: Managing Microsoft SharePoint 2010 Server

LISTING 14-1

Get-SPRunningWorkflows — Retrieves All Active Workflows on Items in a List

function Get-SPRunningWorkflows {
 param(
 [Parameter(Mandatory=$true,Position=0,ValueFromPipeline=$true)]
 [Microsoft.SharePoint.SPList]$List
)
 $web = $list.ParentWeb
 $site = $web.Site
 $workflowmanager = $site.WorkflowManager
 if ($workflowmanager.CountWorkflows($list)) {
 $items = $list.Items |where {$_.Workflows}
 foreach ($item in $items) {
 $workflowmanager.GetItemActiveWorkflows($item)
 }
 }
}

The function in Listing 14-1 can be called with the following code to retrieve information

about the Tasks list in the psbible site:

$web = Get-SPWeb http://server1/sites/psbible
$list = $web.Lists.Item(‘Tasks’)
$list |Get-SPRunningWorkflows |select ItemName,InternalState, Created

ItemName InternalState Created
-------- ------------- -------
Trip to Tahiti Running 7/4/2011 12:12:32 AM
Amex Bill Payment Running 7/1/2011 10:32:54 PM

Cancelling Workflows
To cancel a work�low, you must invoke the RemoveWorkflowFromListItem() method of

the WorkFlowManager object. This method accepts an SPWorkflowObject. This is the same

type of object that is returned by the Get-SPRunningWorkflows function created in Listing

14-1. Because of this, you can run the following code to remove all of the active work�lows

on the Tasks list:

$web = Get-SPWeb http://server1/sites/psbible
$list = $web.Lists.Item(‘Tasks’)
$site = $web.Site
$workflowmanager = $site.WorkflowManager
foreach ($workflow in ($list |Get-SPRunningWorkflows)) {
 $workflowmanager.RemoveWorkflowFromListItem($workflow)
}

c14.indd 383c14.indd 383 02/09/11 11:22 AM02/09/11 11:22 AM

384

Part IV: Server Applications

Backing Up and Restoring
Backing up and restoring SharePoint data has traditionally been a bit convoluted. Ask

anyone who has ever had to manually restore a SharePoint 2003 site from a set of SQL

backups, and you will understand after an hour-long discussion on the topic. Fortunately,

SharePoint has come a long way, and the cmdlets that allow you to interact with the

backups empower you to easily manage your SharePoint backup strategy. In this section,

you learn how you can back up and restore the con�iguration database, SharePoint farms,

site collections, lists, and libraries.

The Configuration Database
You can back up the con�iguration database using the Backup-SPConfigurationDatabase

cmdlet with the Directory parameter pointing to the location in which you would like to store

the backup �iles. If SharePoint’s instance of SQL is on its own server, you must specify a UNC

path to a share that your service accounts for both SQL and SharePoint have write access to.

Backup-SPConfigurationDatabase can be run multiple times to the same backup directory;

it creates a new folder named sbrxxxx each time it is run with an incremented value for xxxx.

Backup-SPConfigurationDatabase -Directory \\server1\backups

You can query the history of all backups in a directory by using the Get-SPBackupHistory

cmdlet. The ID for the backups is stored in the SelfID property. This property is required

to restore the con�iguration.

Get-SPBackupHistory -Directory \\server1\backups -ShowBackup |
 select SelfId,ConfigurationOnly
SelfId ConfigurationOnly
------ -----------------
931dffbb-ad69-4cb8-ac41-6d55b17d70f2 True

Note
Get-SPBackupHistory contains data about both backups and restorations. You can optionally use either the
ShowBackup or ShowRestore switch to retrieve only one or the other. �

The con�iguration database can be restored using Restore-SPFarm with the

ConfigurationOnly switch. This cmdlet also requires the directory where the backup is

stored along with the backup ID of the backup you wish to restore from. For example, to

restore the backup that was retrieved in the preceding example, you would do the following:

$arguments = @{
 BackupID = ‘931dffbb-ad69-4cb8-ac41-6d55b17d70f2’;
 Dir = ‘\\server1\backups’;
 ConfigurationOnly = $true;
 RestoreMethod = ‘OverWrite’
}
Restore-SPFarm @arguments

c14.indd 384c14.indd 384 02/09/11 11:22 AM02/09/11 11:22 AM

385

Chapter 14: Managing Microsoft SharePoint 2010 Server

Farms
Backup-SPFarm is used to back up a SharePoint farm. It requires a Directory parameter

to specify the location where the backup �iles will be created. If SharePoint’s instance of

SQL is on its own server, you must specify a UNC path to a share that your service accounts

for both SQL and SharePoint have write access to. You must also specify a value for the

BackupMethod parameter. This parameter accepts either Full or Differential to indicate

the type of backup that should be performed.

Backup-SPFarm -Directory \\server1\backups -BackupMethod Full

If Backup-SPFarm is run with the ShowTree switch parameter, it lists out all of the

components that will be backed up by the command:

Backup-SPFarm -ShowTree

You can specify which components within the farm you would like to back up by using the

Item parameter. For example, to perform a differential backup on WSS_Administration,

you would run the following:

$item = ‘Farm\WSS_Administration’
$dir = ‘\\server1\backups’
Backup-SPFarm -Directory $dir -BackupMethod Differential -Item $item

Restoring a farm is a nearly identical process to how a SharePoint con�iguration is

restored. The only difference is that during the restoration of a farm, you should not

use the ConfigurationOnly switch parameter when using Restore-SPFarm. Here is an

example of what a restoration command might look like:

$arguments = @{
 BackupID = ‘a698ed30-d0e3-43a1-909e-cdf23e9418a6’;
 Dir = ‘\\server1\backups’;
 RestoreMethod = ‘OverWrite’
}
Restore-SPFarm @arguments

Site Collections
Sites can be backed up by using the Backup-SPSite cmdlet. This cmdlet takes an SPSite

object or the URL for the site as the positional parameter. It requires you to specify a path

with the Path parameter, and it can, alternatively, use a switch named UseSqlSnapshot

if your database server supports SQL snapshots. When using a snapshot, the backup will

occur without any danger of locking out users during the backup. When the backup is

completed, the snapshot is deleted. If this switch is not used, the site will become read-only

for the duration of the backup. Alternatively, you can use the NoSiteLock switch parameter

to ensure that the site stays in read-write mode for the duration of the backup. This,

however, is not recommended by Microsoft if the site is being used during the backup.

c14.indd 385c14.indd 385 02/09/11 11:22 AM02/09/11 11:22 AM

386

Part IV: Server Applications

$site = Get-SPSite http://server1/sites/psbible
$datestamp = (Get-Date).tostring(‘yyyyMMdd’)
$path = “c:\backups\psbible.$datestamp.bak”

Backup-SPSite $site -Path $pathSites can be restored by using the Restore-SPSite

cmdlet:

$site = Get-SPSite http://server1/sites/psbible
Restore-SPSite $site -Path c:\backups\psbible.20110703.bak

Lists and Libraries
Lists and document libraries can be backed up using the Export-SPWeb cmdlet. The cmdlet

requires the URL or the GUID for the SPWeb object as well as a relative path where the list

exists in SharePoint.

$weburl = “http://server1/sites/psbible”
$datestamp = (Get-Date).tostring(‘yyyyMMdd’)
$path = “c:\backups\tasklist.$datestamp.bak”
$taskurl = “/sites/psbible/Lists/Tasks”
Export-SPWeb $weburl -Path $path -ItemUrl $taskurl

A few optional parameters are worth mentioning with Export-SPWeb:

� NoFileCompression: Leaves the data uncompressed in the backup location.

� IncludeVersion: Accepts the values LastMajor (default), CurrentVersion,

LastMajorandMinor, or All.

� IncludeUsersSecurity: Copies the security permissions for the list into the

backup.

� UseSqlSnapshot: Uses a SQL snapshot to create the backup. This is identical to the

process that occurs when this parameter is used with Backup-SPSite.

The backup �iles created by Export-SPWeb can be restored to a website using

Import-SPWeb:

$web = Get-SPWeb http://server1/sites/psbible
$path = “C:\backups\tasklist.20110704.bak”
Import-SPWeb $web -Path $path

Search and Timer Jobs
The SharePoint cmdlets give you interfaces to manage many aspects of search. This section

looks speci�ically at how you can manage the search crawls that index the data within a

SharePoint server.

c14.indd 386c14.indd 386 02/09/11 11:22 AM02/09/11 11:22 AM

387

Chapter 14: Managing Microsoft SharePoint 2010 Server

Modifying Crawls
To retrieve the information about the crawls that are con�igured, you must �irst get the

object that represents the search service itself. The cmdlet used to retrieve this object is

Get-SPEnterpriseSearchServiceApplication:

$searchapp = Get-SPEnterpriseSearchServiceApplication

The crawls that are con�igured are retrieved by piping the search service application into

Get-SPEnterpriseSearchCrawlContentSource:

$searchapp |Get-SPEnterpriseSearchCrawlContentSource

Name Id Type CrawlState CrawlCompleted
---- -- ---- ---------- --------------
Local SharePo... 2 SharePoint Idle 7/4/2011 12:27:32 AM

To modify a crawl, you �irst need to get the crawl you are looking for. The Identity

parameter of Get-SPEnterpriseSearchCrawlContent enables you to specify the crawl

name you are looking to retrieve:

$name = ‘Local SharePoint Sites’
$crawl = $searchapp |Get-SPEnterpriseSearchCrawlContentSource -Identity $name

When modifying a crawl, you will generally need to modify either the addresses

you are crawling or the schedule. Both of these can be modi�ied and updated with a

SharePointContentSource object that is returned from the Get-
SPEnterpriseSearchCrawlContentSource cmdlet. The following adds a new root site to

the crawl:

$crawl.StartAddresses.Add(“http://server1/sites/psbible”)
$crawl.Update()

To change the interval at which an incremental crawl occurs, you can use the following:

$crawl.IncrementalCrawlSchedule.RepeatInterval = 40
$crawl.Update()

Kicking Off Crawls
In addition to retrieving information about a crawl and changing its behavior, you can also

perform a few methods to control the status of a crawl:

� PauseCrawl()

� ResumeCrawl()

� StopCrawl()

� StartFullCrawl()

� StartIncrementalCrawl()

c14.indd 387c14.indd 387 02/09/11 11:22 AM02/09/11 11:22 AM

388

Part IV: Server Applications

Each of these methods can be called on a crawl object like this:

$crawl.StartFullCrawl()

Summary
This chapter has only scratched the surface of what is possible when using Windows

PowerShell to manage Microsoft SharePoint Server 2010. You’ve seen a set of tasks that

are extremely useful to administrators, but you haven’t even seen one-�ifth of the cmdlets

released by Microsoft. If only one thing is certain, it is that SharePoint server will be

running on Windows PowerShell for many years to come.

In the next chapter, you continue the exploration of Windows PowerShell on Microsoft’s

web platform as you explore how you can automate deployments and tasks on Internet

Information Services 7.

c14.indd 388c14.indd 388 02/09/11 11:22 AM02/09/11 11:22 AM

389

C H A P T E R

Internet Information Services (IIS) is the collection of web, FTP, and

SMTP services that is shipped with Microsoft’s Windows server

and desktop operating systems. IIS 7.0 was shipped with Windows

Server 2008 and Windows Vista. IIS 7.5 is being shipped with

Windows Server 2008 R2 and Windows 7. The Windows PowerShell

cmdlets and provider that are used with IIS 7 give you complete

control over the web and FTP services available in IIS.

The Windows PowerShell provider and cmdlets give you a robust way

of managing web services. Automating management and deployment

tasks for IIS is useful for a variety of reasons:

� Controlling the con�iguration of IIS through scripts allows

for less administrator error when moving changes made in

development into testing and production environments.

� Using Windows PowerShell as a deployment method for

websites means that your code can easily extend to any IIS

7 server. This technique, along with virtualization and cloud

technologies, can be used to spin up new servers on demand

to meet your processing and bandwidth needs.

� IIS 7 is one of the roles available to Windows Server Core

(the stripped-down command line–only version of Windows

2008). Windows Server 2008 R2 added the ability to host

.NET code and Windows PowerShell. Although you can use

the IIS management tools to manage an IIS server remotely,

the fact that the server itself can only be managed via

command line at the console makes Windows PowerShell

very attractive.

Managing Internet
Information
Services 7

C H A P T E R

IN THIS CHAPTER
Installing the necessary

components

Browsing IIS

Scripting deployments

Managing IIS

Digesting log files

Extending Windows PowerShell
to manage IIS 7 script
deployments and changes

Managing services and
configuration backups

Working with IIS logs

c15.indd 389c15.indd 389 02/09/11 11:23 AM02/09/11 11:23 AM

390

Part IV: Server Applications

Installing the Necessary Components
The cmdlets that are used to manage IIS 7 come in both snap-in and module form. Starting

with Windows Server 2008 R2 and Windows 7, the WebAdministration module is

installed automatically when you install IIS 7.5. Windows Server 2008 and Windows Vista

(SP1 and higher) require you to install the WebAdministration snap-in that is available

on Microsoft’s website (in both x86 and x64 formats) in order to manage IIS 7.0.

Note
You can download the WebAdministration snap-in from www.iis.net/download/PowerShell. �

Installing the Snap-in
If you are using Windows Vista or Windows Server 2008 (not R2), you will need to install

the WebAdministration snap-in in order to use the cmdlets. The snap-in is installed with a

standard .msi installation package that you must run as an administrator. The installation

registers the appropriate DLLs for you. The snap-in works with both Windows PowerShell

1.0 and Windows PowerShell 2.0.

Installing the Web Server Role
The method used to install the web server role varies depending on whether you are

running the Server or Desktop version of Windows.

Microsoft Windows Server 2008
If you are using Windows Server 2008 R2, the WebAdministration module is installed

automatically when installing IIS. IIS 7 can be installed through the Server Manager GUI

on Windows Server 2008 and Windows Server 2008 R2:

 1. Click Start ➪ All Programs ➪ Administrative Tools ➪ Server Manager.
Server Manager opens up with a connection to the local server.

 2. Right-click Roles and select Add Role. The Add Roles Wizard opens up to the

Before You Begin page.

 3. Click Next. You are brought to the Web Server (IIS) page in the wizard.

 4. Click Next. You are brought to the Select Role Services page.

 5. Select the options you would like to install. As long as you select any of the

IIS components, the WebAdministration module will be installed if you are

installing IIS on a Windows Server 2008 R2 server.

 6. Click Next. You see the Con�irm Installation Selections screen, where you can

review your choices.

 7. Click Install. Then wait for the installation to be completed.

 8. Click Close.

c15.indd 390c15.indd 390 02/09/11 11:23 AM02/09/11 11:23 AM

391

Chapter 15: Managing Internet Information Services 7

In addition to the GUI method, you can also install the Web Server role with the

Add-WindowsFeature cmdlet that comes with the ServerManager module discussed in

Chapter 7. The following line installs the minimal amount of IIS features required to

install the WebAdministration module:

Add-WindowsFeature Web-Server

Note
All of the Windows features that can be installed for the Web Server (IIS) role begin with the prefix
Web. You can get a complete listing by using Get-WindowsFeature Web*. �

Microsoft Windows Desktop Operating System
If you are using Windows 7, the WebAdministration module is installed with IIS. IIS is installed

on Windows 7 and Windows Vista by turning on the Internet Information Services feature:

 1. Click Start ➪ Control Panel. The Control Panel window opens.

 2. Click Programs.
 3. Click Turn Windows Features On or Off. The Windows Features dialog

box opens up.

 4. Select Internet Information Services and click OK.

Loading the WebAdministration
Cmdlets and Provider
The technique for loading the cmdlets depends on whether you are using the IIS 7.0

snap-in or the IIS 7.5 module.

Using the IIS 7.0 Snap-in
You can load the WebAdministration snap-in with:

Add-PSSnapin WebAdministration

Using the IIS 7.5 Module
You can load the WebAdministration module with:

Import-Module WebAdministration

Making Your Scripts Generic
If you are unsure whether the computer that is running your script will have the module

or snap-in installed, you can use the following snippet of code to ensure that the proper

version is loaded at the beginning of your IIS scripts.

if (Get-Module -ListAvailable WebAdministration) {
 Import-Module WebAdministration
} elseif (Get-PSSnapin -Registered -EA SilentlyContinue WebAdministration) {

c15.indd 391c15.indd 391 02/09/11 11:23 AM02/09/11 11:23 AM

392

Part IV: Server Applications

 Add-PSSnapin WebAdministration
} else {
 Write-Error “Cannot find the WebAdministration cmdlets”
 exit
}
Add your IIS code here

Note
When you use WebAdministration to manage IIS on Windows Vista and Windows 7, you are required to
run an elevated Windows PowerShell session by right-clicking the Windows PowerShell icon and selecting
Run as Administrator. �

Installing the WMI Provider
IIS 7 also has a method to manage IIS via Windows Management Instrumentation (WMI).

To use the WMI classes, you must install the IIS Management Scripts and Tools feature from

either Server Manager (Windows Server 2008) or the Add/Remove Windows Features

functionality in Windows Vista and Windows 7. You can install this feature with

Add-WindowsFeature as follows:

Add-WindowsFeature Web-ScriptingTools

Note
The WebAdministration cmdlets and provider are so simple that the chances are very high that you will
never install the WMI provider. That is, unless you expect to script against SMTP. The WebAdministration
cmdlets do not give interfaces to managing SMTP, whereas the WMI provider does. The SMTP service
is not integrated into IIS 7; SMTP continues to use IIS 6 as its foundation. This internal design is hidden
from you, but it explains why there are no Windows PowerShell interfaces to working with SMTP in the
WebAdministration provider and cmdlets. �

The WMI provider is created within its own namespace in WMI. To use the Get-WmiObject

cmdlet, you will need to specify root\WebAdministration with the -Namespace

parameter. For example, to look at the VirtualDirectory class, you would use the

following command:

Get-WmiObject -Namespace root\WebAdministration VirtualDirectory

The WebAdministration namespace contains more than 400 classes. You can view them all

with the following command:

Get-WmiObject -Namespace root\WebAdministration -List

Note
Although it is possible to manage IIS via WMI via Windows PowerShell, this chapter does not go into those
details. This chapter focuses on managing IIS 7 with the Windows PowerShell provider and cmdlets. �

c15.indd 392c15.indd 392 02/09/11 11:23 AM02/09/11 11:23 AM

393

Chapter 15: Managing Internet Information Services 7

Browsing IIS:\
The WebAdministration module and snap-in come with a Windows PowerShell provider

called WebAdministration that can be used to browse, create, modify, and delete items

within IIS. When the module or snap-in is loaded, a default WebAdministration drive is

created called IIS:\.

You can browse to the IIS:\ drive by using either Set-Location or its alias cd. The root

of IIS:\ has three folders, which are visible when using Get-ChildItem or dir:

� AppPools: Application Pools

� Sites: Web and FTP Sites

� SSLBindings: A collection of sites that are con�igured with certi�icates to use SSL

cd IIS:
dir

Name

AppPools
Sites
SslBindings

Get-ChildItem .\Sites

Name ID State Physical Path Bindings
---- -- ----- ------------- --------
Web Site 1 Started %SystemDrive%\inetpub\wwwroot http *:80:
 https *:443:

cd .\AppPools
dir

Name State Applications
---- ----- ------------
Classic .NET AppPool Started
DefaultAppPool Started Default Web Site
 /CertSrv

dir IIS:\SslBindings

IP Address Port Store Sites
---------- ---- ----- -----
192.168.1.100 443 MY Default Web Site

c15.indd 393c15.indd 393 02/09/11 11:23 AM02/09/11 11:23 AM

394

Part IV: Server Applications

Scripting Deployments and Changes
Scripting new deployments within IIS becomes a breeze with Windows PowerShell. Once

you work out all of the requirements for an application, you can automate the process to

build web farms or testing environments for your sites.

Scripting con�iguration changes is an excellent technique you can use to reduce the risk of

making changes to production web servers. You can work out your script in a development

environment, test it in a QA environment, and then push that change to production.

Using New-Item
The New-Item cmdlet enables you to create the following types of items within IIS:\ via

the WebApplication provider:

� AppPool: This is an object that represents an application pool. It is the default type

that is created when New-Item is used within IIS:\AppPools\.

� Site: This is a website item. It is the default type for New-Item within IIS:\
Sites\. Within websites, you can create the following types using New-Item:

� Application: A directory in a website that is speci�ied to run an application,

for example, .NET-enabled directories.

� VirtualDirectory: A directory in a website that is a virtual directory.

� SslBinding: This item represents the collection of properties that make up

an SSL binding. This is the default type for IIS:\SslBindings\.

To create items of the type Application or VirtualDirectory, you must use the

dynamic parameter Type that is available only when New-Item is called within

the WebAdministration provider.

New-Item also has two additional dynamic parameters when used with this provider. These

parameters only exist for New-Item when they are used within the IIS provider.

� PhysicalPath: Used to specify the physical path for a website, virtual directory,

or application.

� Bindings: Used to specify the protocol, address, port, and host headers associated

with a website. The Bindings property takes a hash or collection of hashes with

two name/value pairs:

� Protocol: The web protocol for the binding, for example, HTTP or HTTPS.

� BindingInformation: This is three bits of information separated by colons:

� IP Address: The IP address to bind to. Asterisks can be used as a wildcard to

specify a range of addresses. A single asterisk represents any IP address.

� Port: The port the site should use.

c15.indd 394c15.indd 394 02/09/11 11:23 AM02/09/11 11:23 AM

395

Chapter 15: Managing Internet Information Services 7

� Host header: A host header that signi�ies that the site should respond to

requests when a speci�ic hostname is used. This value can be left blank to asso-

ciate the site with any hostname.

Creating Sites
Websites and FTP sites can be created very easily with the WebAdministration snap-in or

module. As you will see throughout this chapter, there is often both a provider and direct

cmdlet way of performing these tasks.

Using the Provider
The following example illustrates how you can create a website using New-Item. Prior to

using the New-Item cmdlet, it will create the underlying directory structure if it does not

already exist. It also shows you how to use the Bindings parameter to add two bindings

to the site.

$dir = ‘C:\inetpub\wwwroot\PowerShellBible’
if (!(Test-Path $dir)) {
 md $dir
}
$bindings = @()
$bindings += @{protocol=’http’;bindinginformation=’192.168.1.100:8080:’}
$bindings += @{protocol=’https’;bindinginformation=’*:443:’}

New-Item IIS:\Sites\PowerShellBible -PhysicalPath $dir -Bindings $bindings

Using New-Website
The WebAdministration module also provides a cmdlet called New-Website that creates

a site without needing to use the provider. New-Website has the following parameters

worth noting:

� Name: Name of the website.

� ID: Optional parameter that allows you to specify a unique ID for the site.

� Port: The port that will be used for the site.

� IPAddress: The IP address for the site.

� HostHeader: The hostname that the site will respond to.

� ApplicationPool: The application pool that the site will use.

� Ssl: This is a switch that enables https as the protocol for the site.

The following example illustrates how this cmdlet is used:

$dir = ‘C:\inetpub\wwwroot\PSBible’
if (!(Test-Path $dir)) {
 md $dir
}

c15.indd 395c15.indd 395 02/09/11 11:23 AM02/09/11 11:23 AM

396

Part IV: Server Applications

$params = @{
 Name=’PowerShellBible’
 Port=443
 IPAddress=’*’
 HostHeader = ’powertoe.wordpress.com’
 PhysicalPath=$dir
 ApplicationPool=’AppPool1’
 SSL=$true
}
New-Website @params

Note
When using the New-Website cmdlet to create a website, you cannot specify multiple bindings. When using
the SSL switch, the website will be created with an HTTPS binding only. This can easily be addressed after the
website has been created, but you should be aware of the differences between New-Item and New-Website
if you expect to script deployments of IIS sites. �

Using New-WebFTPSite
FTP sites are created with New-WebFtpSite. This cmdlet is identical to New-WebSite

except that it does not have an ApplicationPool or SSL parameter.

Creating Virtual Directories
Virtual directories are web folders within a site that point to a folder that is outside of a

site’s normal directory structure. They are used to point a site directory to another folder

on the server, including those that exist on separate disks.

Using the Provider
Here is an example of how to use New-Item in the WebAdministration provider to create

a virtual directory. The example creates a directory in the PowerShellBible website that

is pointing to the D drive of the server.

cd IIS:\Sites\PowerShellBible\
New-Item Data -Type VirtualDirectory -PhysicalPath d:\

Using New-WebVirtualDirectory
Virtual directories can also be created with the New-WebVirtualDirectory cmdlet.

The relevant parameters are:

� Name: Name of the virtual directory.

� Application: If the application is omitted, the virtual directory will be created

at the root of the site.

� PhysicalPath: The directory must already exist on the �ilesystem.

� Site

c15.indd 396c15.indd 396 02/09/11 11:23 AM02/09/11 11:23 AM

397

Chapter 15: Managing Internet Information Services 7

Here is an example of how this cmdlet can be used.

$dir = ‘C:\virtualdir1’
if (!(Test-Path $dir)) {
 md $dir
}
$params = @{
 Name=’VirtualDir1’
 Site=’PowerShellBible’
 PhysicalPath = $dir
}
New-WebVirtualDirectory @params

Caution
Even though many of the parameters are optional in the WebAdministration cmdlets, omitting certain
parameters may cause you problems. For example, creating a virtual directory without specifying a physical
path will make IIS Manager think you have a corrupted configuration when you try to browse to the virtual
directory. A good rule of thumb is to supply parameters for each item of information that you normally supply
to the GUI when you perform the same function manually. �

Creating Web Applications
Creating a web application directory is a very simple process whether you use the provider

or the cmdlet. The cmdlet methods within IIS are generally more robust and easier to read

and modify in scripts, but it is really just personal preference.

Using the Provider
The following example converts a directory in the PowerShellBible website into an

application folder via the WebAdministration provider.

cd IIS:\Sites\PowerShellBible
md App #Creates the App directory on the file system
New-Item App -Type Application -PhysicalPath (Get-Item .\App).fullname

Note
The function mkdir and its alias md is one of the only FileSystem functions that work in the WebAdministration
provider. You cannot copy, delete, or write to files using the IIS:\ drive. If you need to access the files within the
websites, you will need to run Get-Item to return the underlying object (as illustrated in the previous example) or
use the FileSystem drives that you normally use to manage files on disk. �

Using New-WebApplication
Application folders can also be created with the New-WebApplication cmdlet. The

parameters of importance are:

� Name: Name of the application directory.

� PhysicalPath: The path on the �ilesystem to the directory that will contain the

web application. The directory must already exist.

c15.indd 397c15.indd 397 02/09/11 11:23 AM02/09/11 11:23 AM

398

Part IV: Server Applications

� Site: The site where the application folder will be created.

� ApplicationPool: The application pool that the web application will use.

The following shows an example of how to use this cmdlet:

$dir = ‘C:\inetpub\wwwroot\PSBible\app1’
if (!(Test-Path $dir)) {
 md $dir
}
$params = @{
 Name=’App1’
 Site=’PowerShellBible’
 PhysicalPath = $dir
 ApplicationPool=’AppPool1’
}
New-WebApplication @params

Creating Application Pools
Application pools encapsulate applications and sites into groups of worker processes.

Whether you are creating these application pools via the provider or the cmdlet, only

one line of code is required.

Using the Provider
Creating application pools is very straightforward using New-Item.

New-Item IIS:\AppPools\PowerShellBible

Using New-WebAppPool
This method is also very straightforward. The cmdlet takes a positional parameter

that represents the name of the new application pool.

New-WebAppPool PowerShellBible

Configuring SSL
Setting up SSL is a multistep process:

 1. You must have a certi�icate installed that you can use for the binding.

 2. You must create a web binding on a website using New-WebBinding that uses the

HTTPS protocol.

 3. You create an SSL binding in IIS:\SslBindings specifying the allowed IP

addresses and the certi�icate you would like to use.

The following example shows how to perform the above steps.

c15.indd 398c15.indd 398 02/09/11 11:23 AM02/09/11 11:23 AM

399

Chapter 15: Managing Internet Information Services 7

New-WebBinding -Name ‘PSBible’ -Protocol https -Port 443 -IPAddress 0.0.0.0
cd IIS:\SslBindings
$cert = Get-Item cert:\LocalMachine\My\734A6B9F621496813276A7134D64BFEFA5FF5C11
$cert |New-Item 0.0.0.0!443

Note
This example uses the IP address 0.0.0.0 for both the SSL and web binding. The 0.0.0.0 address is used to
specify all IP addresses for this server. �

Using the Provider to Make Changes
Once items have been created, you can use the cmdlets that you use with any Windows

PowerShell provider to get information and remove and modify the underlying objects:

Get-Item, Remove-Item, Get-ItemProperty, Set-ItemProperty, New-ItemProperty,

and Clear-ItemProperty. It’s worth highlighting a few examples of how you can modify

items in the provider.

In order to bind a site to an application pool, you can use Set-Item as follows:

$website = Get-Item IIS:\Sites\PSBible
$website |Set-ItemProperty-Name ApplicationPool-Value PSBible

Here is an example of how you can remove all of the existing web bindings and then create

a new one.

$website |Clear-ItemProperty -Name bindings
$binding = @{protocol=’http’;bindinginformation=’*:80:www.wiley.com’}
$website |Set-ItemProperty -Name bindings -Value $bindings

This example modi�ies the queue length for an application pool and then recycles that pool.

$pool = Get-Item IIS:\AppPools\PSBible
$pool.queueLength = 3000
$pool.Recycle()

Here is an example of how you can grab one of the properties returned by

Get-ItemProperty:

Get-ItemProperty .\DefaultAppPool |Select -ExpandProperty processmodel

This example shows how you can use Set-ItemProperty to modify the properties of

an application pool. The following two lines of code set a username and password for the

application pool to run as:

$properties = @{userName=’domain\IIS_pool’; password=’password’;identitytype=3}
Set-ItemProperty IIS:\AppPools\PSBible -name processmodel -value $properties

c15.indd 399c15.indd 399 02/09/11 11:23 AM02/09/11 11:23 AM

400

Part IV: Server Applications

The following line of code is a useful one that moves the location where log �iles are stored

from a site to a new directory:

Set-ItemProperty IIS:\Sites\PSBible -Name LogFile.Directory -Value ‘d:\Logs’

Finally, here is an example of using Remove-Item. The following code deletes a website:

Remove-Item IIS:\Sites\PSBible

Removing IIS Objects with the Cmdlets
In addition to using Remove-Item to delete IIS objects within the IIS:\ drive, each

New-WebIISObject cmdlet also has a corresponding Remove-WebIISObject that can be

used. For example, the cmdlet used to create websites is New-Website and the cmdlet used

to delete a website is Remove-Website.

Advanced WebConfiguration Settings
Not all con�igurations are exposed to the WebAdministration provider. Some settings

require you to use the WebConfiguration cmdlets. These cmdlets work with the provider

to expose more information about the IIS objects.

To understand how these cmdlets work, it’s important to realize that these settings

are maintained within XML �iles in a series of layers. For example, a website will get its

con�iguration from a combination of the machine.config, the global web.config, the

applicationHost.config, and �inally through the web.config that belongs to the site.

The cmdlets use XPath queries to �ind the locations you are looking to view and change.

To view these settings, you use Get-WebConfiguration and Get-WebConfigurationProperty.

Viewing Web Configuration Settings
Get-WebConfiguration uses the following important parameters:

� PSPath: This is the location you would like to get information from. It can be a

location in the IIS:\ drive or you can use webroot, apphost, or computer name.

� Filter: This is the XPath query �ilter. Wildcards (*) are supported.

� Location: This speci�ies the delegation level you are looking at. This is important

only when pushing changes back into the con�iguration because it allows you to

override a con�iguration that is locked from a parent con�iguration �ile.

The following is a snippet of XML that is taken from a machine.config:

 <configProtectedData defaultProvider=”RsaProtectedConfigurationProvider”>
 <providers>
 <add name=”RsaProtectedConfigurationProvider”
type=”System.Configuration.RsaProtectedConfigurationProvider,i
System.Configuration,

c15.indd 400c15.indd 400 02/09/11 11:23 AM02/09/11 11:23 AM

401

Chapter 15: Managing Internet Information Services 7

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”i
description=”Uses
RsaCryptoServiceProvider to encrypt and decrypt”
keyContainerName=”NetFrameworkConfigurationKey” cspProviderName=””
useMachineContainer=”true” useOAEP=”false”/>

 <add name=”DataProtectionConfigurationProvider”
type=”System.Configuration.DpapiProtectedConfigurationProvider,i
System.Configuration,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”i
description=”Uses
CryptProt ectData and CryptUnProtectData Windows APIs to encrypt and decrypt”
useMachineProtection=”true” keyEntropy=””/>
 </providers>
</configProtectedData>

To view the configProtectedData section for the PowerShellBible website, you would use

the following code:

cd IIS:\Sites\PowerShellBible
Get-WebConfiguration -Filter /configProtectedData |select *

defaultProvider : RsaProtectedConfigurationProvider
providers : Microsoft.IIs.PowerShell.Framework.ConfigurationElement
PSPath : MACHINE/WEBROOT/APPHOST/Default Web Site
Location :
ConfigurationPathType : Location
ItemXPath : /configProtectedData
IsLocked : True
OverrideMode : Inherit
OverrideModeEffective : Allow
SectionPath : /configProtectedData
Attributes : {defaultProvider}
ChildElements : {providers}
ElementTagName : configProtectedData
Methods :
Schema :
Microsoft.IIs.PowerShell.Framework.ConfigurationElementSchema

According to the output, there are ChildElements that refer to the <providers> section

of the XML. There is also an attribute called defaultProvider. To browse all of the <add>

elements within <providers>, you could use a �ilter like this:

Get-WebConfiguration -Filter /configProtectedData/providers/*

Caution
Looking at the preceding filter, you would think that using a filter like /* would return all configurations.
Unfortunately, it does not. Due to the way the XPath queries work, you will need to look at the /* and /*/*
filters to see everything that is available. �

c15.indd 401c15.indd 401 02/09/11 11:23 AM02/09/11 11:23 AM

402

Part IV: Server Applications

To look at the defaultProvider attribute, you can inspect what is returned from

Get-WebConfiguration using:

(Get-WebConfiguration /configProtectedData).defaultprovider

As an alternative, you can also use the Get-WebConfigurationProperty cmdlet.

Get-WebConfigurationProperty has the same parameters as Get-WebConfiguration

with the addition of a -Name parameter to specify the property you would like to view:

Get-WebConfigurationProperty /configProtectedData i
-Name defaultprovider|
 Select Value

Modifying Configuration Settings
Sections are added to a con�iguration using Add-WebConfiguration and

Add-WebConfigurationProperty. For example, if you wanted to add a new �ilename to

the default �iles for the site, you could do the following.

$filter = ‘/system.webServer/defaultDocument/files’
Add-WebConfiguration $filter -AtIndex 0 -value @{value=”default.html”}

Caution
You must be mindful of case-sensitivity when working with these XML configuration files. The filter listed in
this example is very specific. �

Sections are modi�ied using Set-WebConfiguration and Set-WebConfigurationProperty.

The following example shows how you can use Set-WebConfiguration. The snippet

redirects the PowerShellBible site to wiley.com.

cd IIS:\Sites\PowerShellBible
Set-WebConfiguration system.webServer/httpRedirect -Value @{
 enabled=$true
 destination=”http://wiley.com”
 exactDestination=$true
 httpResponseStatus=”Permanent”
}

This �inal example shows how to use the Set-WebConfigurationProperty. Speci�ically, it

shows you how to change the CGI timeout value for the PowerShellBible site.

cd IIS:\Sites
$filter = ‘/system.webserver/cgi’
Set-WebConfigurationProperty $filter -name timeout -Value ‘00:20:00’ `
 -Location ‘PowerShellBible’

Caution
In the last example, if you run the Set-WebConfigurationProperty cmdlet from IIS:\Sites\PowerShellBible,
you will receive the following error: “This configuration section cannot be used at this path. This happens when the

c15.indd 402c15.indd 402 02/09/11 11:23 AM02/09/11 11:23 AM

403

Chapter 15: Managing Internet Information Services 7

section is locked at a parent level.” By executing this one level up, IIS:\Sites\, and specifying the -Location
parameter, you are able to explicitly override this locked setting. �

Working with IIS Modules
In addition to the WebConfiguration cmdlets, there are a few cmdlets that are designed to

work with IIS 7 modules:

� Disable-WebGlobalModule

� Enable-WebGlobalModule

� Get-WebGlobalModule

� Get-WebManagedModule

� New-WebGlobalModule

� New-WebManagedModule

� Remove-WebGlobalModule

� Remove-WebManagedModule

� Set-WebGlobalModule

� Set-WebManagedModule

The cmdlets that refer to the global modules have a module type of Managed when looking

at the modules with IIS Manager. The cmdlets are very straightforward in their usage.

For example, the Get cmdlets will retrieve all of the modules, or you can specify a module

name you would like to view information about. All the cmdlets take the name of the

module by using the Name positional parameter. For example, the following will disable the

AnonymousAuthenticationModule:

Disable-WebGlobalModule AnonymousAuthenticationModule

There are not many properties you can set when creating or modifying a module. Typically,

the managed modules can point to a new type or precondition while the global modules can

be pointed to a new DLL by using the Image property. The following example shows how

you can modify a global and managed module:

Set-WebManagedModule UrlMappingsModule -Type PSBible.Mappings
Set-WebGlobalModule IsapiModule -Image c:\customisapi.dll

Managing IIS
In addition to scripting deployments and changes to sites, Windows PowerShell can

also be used to perform administrative tasks for IIS. This may be something as simple

as controlling the state of IIS services or performing backups or restorations of

con�iguration settings.

c15.indd 403c15.indd 403 02/09/11 11:23 AM02/09/11 11:23 AM

404

Part IV: Server Applications

Controlling IIS Services
Application pools, websites, and the underlying Windows services of IIS can all be

controlled via Windows PowerShell.

Starting and Stopping Pools and Sites
You have already seen that the provider exposes methods on application pools to allow

things like stopping, starting, and recycling. You can also use the Stop() and Start()

methods on the objects returned by Get-Item when using the cmdlet against items in the

IIS:\Sites container:

(Get-Item IIS:\sites\PowerShellBible).Stop()
(Get-Item IIS:\sites\PowerShellBible).Start()

In addition to the preceding technique, there are six cmdlets to help you start and stop sites

and application pools:

� Stop-WebSite

� Start-WebSite

� Stop-AppPool

� Start-AppPool

� Stop-WebItem

� Start-WebItem

You can use the cmdlets by themselves:

Stop-WebSite PowerShellBible
Start-WebSite PowerShellBible

Or you can pipe the provider objects into the cmdlets:

Get-ChildItem IIS:\sites\ |Stop-WebSite
Get-Item IIS:\sites\PowerShellBible |Start-WebSite

The Start-WebItem and Stop-WebItem cmdlets can be used with either an application pool

or a site.

Note
Actually, the AppPool and WebSite stop and start cmdlets are just wrappers to Start-WebItem and
Stop-WebItem. When you call Start-WebSite, it looks for an item in IIS:\sites with the name you are
passing it, and then it pipes it into Start-WebItem. Similarly, the Start-AppPool cmdlet does the same
thing, but it looks in IIS:\AppPools. �

Starting and Stopping IIS Services
While discussing starting and stopping items, it’s also important to note that no

WebAdministration cmdlets stop and start IIS because the cmdlets built into Windows

c15.indd 404c15.indd 404 02/09/11 11:23 AM02/09/11 11:23 AM

405

Chapter 15: Managing Internet Information Services 7

PowerShell V2 already have cmdlets that do this for you. The only problem is that there

is more than one service controlled via iisreset in IIS 7: W3WSVC, WAS, and IISADMIN

(installed only if you are using components of IIS 6). You could write a set of functions that

would handle this natively in Windows PowerShell, but there’s really no reason to because

IISReset.exe works �ine from within Windows PowerShell — even within a remoting session.

Caution
There is a small issue with IISReset in Windows 7. If you run IISReset from a Windows PowerShell ISE
window, it will work without problem, but if you run it from a regular Windows PowerShell window, it will
return unsuccessfully without an error. The workaround is to use start iisreset instead. �

Determining the State of a Site or Pool
The cmdlets and methods you can use to stop and start sites and application pools work

regardless of the state the item is in prior to you calling the start or stop methods. In other

words, if you call Start-WebSite on a site that is already running, it will not do anything,

but it will not fail, either. Even though this logic is built into the cmdlets, you may still be

interested in looking at the state for veri�ication or reporting purposes within your script.

As with stopping and starting, you can do this in multiple ways with the WebAdminstration

provider and cmdlets. You can use the cmdlets Get-WebSiteState, Get-WebAppPoolState,

or Get-WebItemState the same way you use the stop and start cmdlets. You also have the

ability to inspect the state property of a website or app pool item returned from the

Get-Item cmdlet. For example, each of these will show you the same thing:

Get-WebAppPoolState PowerShellBible

(Get-Item IIS:\AppPools\PowerShellBible).State

$pool = Get-Item IIS:\AppPools\PowerShellBible
$pool.state

$pool = Get-Item IIS:\AppPools\PowerShellBible
$pool | Get-WebAppPoolState

$pool = Get-Item IIS:\AppPools\PowerShellBible
$pool | Get-WebItemState

If you would like to retrieve the state of all of the app pools, you can use either of the following

lines of code:

Get-ChildItem IIS:\AppPools\ |Get-WebItemState
Get-WebAppPoolState

Backing Up and Restoring Configurations
If you would like to back up your entire IIS con�iguration, you can do so with

Backup-WebConfiguration BackupName. This creates a folder in $env:windir

c15.indd 405c15.indd 405 02/09/11 11:23 AM02/09/11 11:23 AM

406

Part IV: Server Applications

\System32\inetsrv\backup with the name you supplied to the cmdlet. The data in the

backup directory can be restored with Restore-WebConfiguration BackupName. You

should ensure that IIS is stopped prior to running the restoration or you will get errors.

Digesting Log Files
Reading IIS log �iles can be a cumbersome task if it needs to be done manually. Though a lot

of tools are available to help you make sense of IIS logs, it’s important to note that Windows

PowerShell truly excels at this type of data manipulation. There is a slight trick to the technique

in order to get the header information, but once that is determined, the process is very simple.

ConvertFrom-Csv
To let ConvertFrom-Csv turn each line of the log �ile into a Windows PowerShell object, you

must �irst determine the header of the log from the line that begins with #Fields:. Once

that is obtained, you can pass a single space character to the -Delimiter property of the

cmdlet. Listing 15-1 is a complete script that uses this technique to parse the log �ile into

Windows PowerShell objects.

LISTING 15-1

Parsing an IIS Log File

$site = ‘IIS:\sites\PowerShellBible’

#The logfile.directory configuration usually has an environment variable
#Passing it to cmd will get the full path
$log = cmd /c echo (Get-Item $site).logfile.directory

#Get the log file path
$log = Join-Path $log (“W3SVC” + (Get-Item $site).id)

#Get the full path to the log file
$log = Join-Path $log “u_ex$yesterday.log”

$header = @()
$logentries = get-content $log |foreach {
 #Read the log file and look for the first line that has Fields#
 if ($header.count -eq 0 -and $_ -match ‘\#Fields: ([\s\S]+)’) {
 #Split the line by a single space to get the header properties
 #for the log file
 $header = $matches[1] -split ‘\s’
 }
 else {
 #Make sure the line does not begin with a comment symbol

c15.indd 406c15.indd 406 02/09/11 11:23 AM02/09/11 11:23 AM

407

Chapter 15: Managing Internet Information Services 7

 if ($_ -notmatch ‘^#’) {
 #Convert the line into PowerShell objects from a
 #space delimited file
 $_ |ConvertFrom-Csv -Header $header -Delimiter ‘ ‘
 }
 }
}
#Display the entries to the screen
$logentries

Filtering Tips
Once you have the log entries as Windows PowerShell objects, you can use the �iltering,

sorting, and formatting cmdlets you are familiar with. For example, if you wanted to �ilter

for a list of 404 errors, you could use Where-Object or its alias where:

$logentries |where {$_.$(“sc-status”) -eq 404}

 Sorting can be done by using the Sort-Object cmdlet or its alias sort:

$logentries |sort time-taken

You could just as easily use Export-CSV or ConvertTo-HTML. For example, the following

creates an HTML report that shows the date/time along with the client’s IP address and

browser type. It uses Out-GridView so that you can more easily sort or �ilter the entries

manually:

$logentries |Out-GridView
$logentries |select date,time, ‘cs(User-Agent)’, c-ip |
 ConvertTo-Html |
 Out-File c:\report.html
Start c:\report.html

Summary
As is the case with most things in Windows PowerShell, there are often multiple ways to

accomplish tasks with the WebAdministration module and snap-in. The path you choose

doesn’t really matter. The important thing to realize is that you have everything you need

to automate, manage, and report on your IIS servers directly within Windows PowerShell.

The next chapter looks at how you can use PowerShell to help manage System Center

Operations Manager.

c15.indd 407c15.indd 407 02/09/11 11:23 AM02/09/11 11:23 AM

c15.indd 408c15.indd 408 02/09/11 11:23 AM02/09/11 11:23 AM

409

C H A P T E R

The command shell that comes with System Center Operations

Manager 2007 R2 (OpsMgr) provides the means to perform

many tasks you might normally perform in the OpsMgr

Operations console from the command line instead. It also provides

a convenient way to perform bulk administration and recurring

tasks that would be labor-intensive or simply not possible from the

console user interface. To successfully launch the command shell,

you must be a member of an Active Directory security group with

membership in the Operations Manager Administrators user role.

All OpsMgr command shell instances connect directly to the OpsMgr

Root Management Server (RMS), and the connection will fail without

OpsMgr Administrator privileges.

Exploring the Available Cmdlets
The OpsMgr command shell contains 87 product-speci�ic cmdlets for

managing an Operations Manager 2007 (OpsMgr) deployment. The �irst

cmdlet you may want to try is Get-OperationsManagerCommand, which

returns a list of all the cmdlets contained in the OpsMgr Windows

PowerShell snap-in. Once you have the list of cmdlets for OpsMgr in

hand, you can use Get-Help (with the –Full, -Detailed, or –Examples

switch parameters) to retrieve syntax and examples to help you get

started writing your own command shell scripts when no sample exists.

By loading the OpsMgr Windows PowerShell snap-in, you can access

any of these cmdlets in a Windows PowerShell script. In fact, one

of the most common uses of the OpsMgr command shell is for bulk

administrative tasks that cannot be easily performed in the Operations

Managing System
Center Operations
Manager 2007 R2

C H A P T E R

IN THIS CHAPTER
Exploring Operations Manager

cmdlets

Processing alerts in bulk

Automating maintenance mode

Discovering, deploying, and
managing agents and network
devices

Exploring discovered inventory

Working with overrides

Creating monitoring scripts in
Windows PowerShell

Where to find and share
Windows PowerShell scripts
for Operations Manager

c16.indd 409c16.indd 409 03/09/11 11:00 AM03/09/11 11:00 AM

410

Part IV: Server Applications

console. Such scripts are often con�igured as part of a scheduled task to run on a recurring

basis. To connect to an OpsMgr management group from a Windows PowerShell script, you

must �irst load the OpsMgr Windows PowerShell snap-in, specify the root management

server, and set the working location to OperationsManagerMonitoring using the

Set-Location cmdlet. Inserting the following code snippet at the beginning of any OpsMgr

Windows PowerShell script enables you to run the script from any Windows PowerShell

session or as part of a scheduled task. Just replace the name of the root management server

(RMS) assigned to the $rootMS variable with the name of your RMS.

$RootMS = “myrms.contoso.com”
Add-PSSnapin “Microsoft.EnterpriseManagement.OperationsManager.Client” `
-ErrorVariable errSnapin;
Set-Location “OperationsManagerMonitoring::” -ErrorVariable errSnapin;
New-ManagementGroupConnection -ConnectionString:$rootMS -ErrorVariable `
errSnapin;
Set-Location $rootMS -ErrorVariable errSnapin;

When con�iguring a script to run as a scheduled task, make sure the user account used to

run the script has Administrator rights in the target OpsMgr environment.

Working with Alerts
Alerts are the basis for most of your daily administrative effort in OpsMgr. When an

alert is raised, it has to be determined if the alert is actionable; in other words, “Does

this alert represent a real problem?” If so, the next step is to review the product knowledge

contained in the alert to determine the root cause and identify an appropriate resolution.

Sometimes, error conditions may occur repeatedly over an extended period of time.

Occasionally, interruptions in network connectivity or application failures can result in a

large number of non-actionable alerts called an alert storm. In these last two situations, the

OpsMgr cmdlets provide a way to easily identify which alerts are occurring most often in

your OpsMgr deployment, as well as how to process alerts in bulk. In this section, you learn

how to work with OpsMgr alerts using the Windows PowerShell cmdlets that come with

the OpsMgr command shell.

Processing Alerts in Bulk
Because many thousands of alerts can be generated in large environments (or any environment

under the wrong circumstances), bulk processing of alerts is one of the most common uses of

the OpsMgr command shell. Because the number of objects you are working with can be so

large, the syntax you use to query OpsMgr is very important. For example, the following query

for alerts will be successful only if there are no more than a few thousand alerts:

get-alert | where-object {($_.Name –like ”File group*”) –and `
($_.ResolutionState –eq 0)}

c16.indd 410c16.indd 410 03/09/11 11:00 AM03/09/11 11:00 AM

411

Chapter 16: Managing System Center Operations Manager 2007 R2

This next example performs the same task as the previous line of code, but in a way that will run

much faster in larger environments, even when tens of thousands of open alerts are present:

Get-Alert -Criteria “Name Like ‘File group%’ AND ResolutionState=0”

Note
When using the –Criteria parameter, bear in the mind that, unlike a string comparison using
Where-Object, the Criteriavalue is case-sensitive. �

The reason behind the performance difference is that when the -Criteria parameter

is used, the value passed is provided directly to the SQL Server database, and only the

relevant data is returned. This reduces the objects that must be passed all the way back to

the Windows PowerShell console. A Where-Object clause is the equivalent of a select *

statement in SQL — all the results are returned and then sorted. The –Criteria statement

is equivalent to a select * … where statement in SQL, returning only the data of interest.

When coupled with the Resolve-Alert cmdlet, you can close alerts in bulk as well. This

following code offers an easy way to remove open alerts based on the criteria of your choice:

Get-Alert -Criteria “Name Like ‘Script%’ AND ResolutionState=0” `
 | Resolve-Alert

This method is commonly used to close aging non-actionable alerts (like the common “script

or executable failed to run” error) or alerts generated in an alert storm (such as when

network connectivity results in large numbers of alerts due to the transient condition).

Depending on your requirements, you can schedule this script in Task Scheduler to

run automatically.

A common question from OpsMgr administrators is, “How can I retrieve a list of the most

common alerts in my environment?” Retrieving a list of the most commonly occurring

alerts may seem like a simple task, but it can be quite challenging due to the differences

between the way rules and monitors function. Rules that generate alerts typically generate

a single alert, and until that alert is closed, no additional alerts are created. Instead,

the RepeatCount property of the alert is incremented. Retrieving the most commonly

occurring alerts based on their RepeatCount property in reality presents the most

commonly occurring rule-generated alerts, as shown in this example, which returns the

10 most common alerts:

Get-Alert | Sort-Object -Property RepeatCount -Descending | Select-Object `
-Property Name,RepeatCount,MonitoringObjectPath -First 10

Monitors work much differently. Because monitors are state-aware, monitor-generated

alerts for a single monitor do not repeat — they are in a resolution state of New (when the

error condition occurs) or Resolved (when the error condition is improved and the alert is

closed). The RepeatCount for monitor-generated alerts is always zero.

Creating a single combined report to present top alerts across rules or monitors requires

tabulating repeated occurrences in a consistent manner by counting occurrences grouping

c16.indd 411c16.indd 411 03/09/11 11:00 AM03/09/11 11:00 AM

412

Part IV: Server Applications

them on alert ID. The sample script in Listing 16-1 (written by Andreas Zuckerhut) uses an

in-memory DataTable for storage and tabulation of both rule and monitor-generated alerts.

The results are written to a comma-separated value �ile c:\TopAlerts.csv.

Note
You can find the original source and related information at www.systemcentercentral.com/
BlogDetails/tabid/143/IndexId/50372/Default.aspx. �

LISTING 16-1

TopAlerts.ps1 Script

#Create Datatable

$AlertTable = New-Object System.Data.DataTable “AlertTable”
$AlertTable.Columns.Add((New-Object System.Data.DataColumn ID,([string])))
$AlertTable.Columns.Add((New-Object System.Data.DataColumn Name,([string])))
$AlertTable.Columns.Add((New-Object System.Data.DataColumn AlertCount,([int])))
$AlertTable.Columns.Add((New-Object System.Data.DataColumn IsMonitorAlert,`
([string])))
foreach ($Alert in (Get-Alert))

{

 #Check if Alert exists already.

 $AlertExists = $False

 foreach ($Row in $AlertTable.Rows)

 {

 if ($Row.ID -eq $Alert.MonitoringRuleId.ToString())

 {

 $AlertExists = $True

 #In case it does, we just merge the Repeatcount
 $Row.AlertCount = $Row.AlertCount + ($Alert.RepeatCount + 1)

 }
 }

 if ($AlertExists)

c16.indd 412c16.indd 412 03/09/11 11:00 AM03/09/11 11:00 AM

413

Chapter 16: Managing System Center Operations Manager 2007 R2

 {

 }

 else

 {

 #If the Alert doesn’t exist, add it to the DataTable.
 $NewRow = $AlertTable.NewRow()
 $NewRow.ID = $Alert.MonitoringRuleId.ToString()
 $NewRow.Name = $Alert.Name
 $NewRow.AlertCount = ($Alert.RepeatCount + 1)
 $NewRow.IsMonitorAlert = $Alert.IsMonitorAlert
 $AlertTable.Rows.Add($NewRow)

 }
}

$AlertTable = ($AlertTable | Sort-Object -Property AlertCount -Descending)

$AlertTable | Select-Object -First 10 | Export-Csv –path c:\TopAlerts.csv`
 –NoTypeInformation

The output of this script, a “Top 10 Alerts Report,” is shown in Figure 16-1.

FIGURE 16-1

Default troubleshooting packs

Updating Custom Fields in Alert Properties in Bulk
OpsMgr alerts include a number of read-write �ields, including Owner, TicketId,

ResolutionState, and 10 custom �ields, named CustomField1 through CustomField10.

c16.indd 413c16.indd 413 03/09/11 11:00 AM03/09/11 11:00 AM

414

Part IV: Server Applications

OpsMgr administrators routinely use these to store values to support a number of

integration scenarios, such as result status of an Opalis Integration Server work�low to

correct an error condition, or to store categorization information for alert forwarding

through the OpsMgr Connector Framework.

Although it is not always convenient to update these �ields from an existing OpsMgr work�low

(rule, monitor, or discovery), you can use Windows PowerShell to update these �ields on a

schedule or on demand when the situation warrants. The following sample script writes the

computer principal name to CustomField1 and the name of the management pack containing

the work�low that generated the alert in CustomField2. The Update() method at the end

of the script writes the user-de�ined reason for the update presented on the History tab in

alert properties.

#Retrieve open alerts
foreach ($alert in Get-Alert -Criteria ‘PrincipalName is not null `
and ResolutionState = 0’)

{
 #Update custom fields
 $alert.CustomField1 = $alert.PrincipalName
 $alert.ResolutionState = 1
 if ($alert.IsMonitorAlert -eq $False) { $alert.CustomField2 = `
((Get-Rule $alert.MonitoringRuleId).GetManagementPack()).DisplayName
 }
 else {
 $alert.CustomField2 = (Get-Monitor
$alert.ProblemId).GetManagementPack().DisplayName
 }
 $alert.Update(“Alert update via Windows PowerShell”)
}

The output of this script is shown in Figures 16-2 and 16-3.

FIGURE 16-2

Updated Alert Properties (Custom Fields tab)

c16.indd 414c16.indd 414 03/09/11 11:00 AM03/09/11 11:00 AM

415

Chapter 16: Managing System Center Operations Manager 2007 R2

FIGURE 16-3

Updated Alert Properties (History tab)

Automating Maintenance Mode
Placing a computer or other objects into maintenance mode instructs OpsMgr to stop

monitoring and stop alerts for these objects for the duration indicated. Among recurring

administrative tasks that require automation, maintenance mode is perhaps the most common.

Fortunately, you can make short work of this using the OpsMgr cmdlets for PowerShell.

Adding and Removing Objects and Groups
When you place an object into maintenance mode in OpsMgr 2007, the object you specify

“and all contained objects” are placed into maintenance mode by default. When you put a

group object into maintenance mode, this means that OpsMgr automatically places all the

objects contained in the group into maintenance mode as well.

When executing group maintenance mode, you are not restricted to groups of computers.

You can place groups of objects of any type(s) into maintenance mode (health service,

SQL databases, IIS websites, and so on) to avoid alerts being raised during scheduled

application maintenance.

The script shown in Listing 16-2 places a group and all contained objects into maintenance

mode. Download this script from the book’s website and run it from a command prompt

using the following syntax specifying the target group and root management server:

.\StartMaint.ps1 –GroupName ‘Test Group’ –rootMS ‘myrms.contoso.com’

LISTING 16-2

StartMaint.ps1 Script

param ($groupName, $rootMS, $MMLength)

#Load OpsMgr snap-in and connect to RMS
Add-PSSnapin “Microsoft.EnterpriseManagement.OperationsManager.Client”

continues

c16.indd 415c16.indd 415 03/09/11 11:00 AM03/09/11 11:00 AM

416

Part IV: Server Applications

LISTING 16-2 (continued)

Set-Location “OperationsManagerMonitoring::”
$MG = New-ManagementGroupConnection -ConnectionString $rootMS
if($MG -eq $null)
{
Write-Host “Failed to connect to $rootMS”
return
}

Set-Location $rootMS

$startTime = Get-Date
$endTime = $startTime.AddHours($MMLength)
$GroupName = Get-MonitoringClass | Where-Object {$_.DisplayName -eq $groupName}
$GroupID = Get-MonitoringObject $GroupName.Id

New-MaintenanceWindow -StartTime $startTime -EndTime $endTime `
-Reason”ApplicationInstallation” -Comment none -MonitoringObject $GroupID

If you need to remove a group from maintenance mode earlier than expected, you can

do so on demand, using the StopMaintenanceMode() method. However, to end

maintenance mode, you have to explicitly specify in the script that maintenance mode

should be ended for all contained objects as well by specifying a TraversalDepth

of recursive.

The script in Listing 16-3 removes a group and all contained objects from maintenance mode.

Download this script from the book’s website. Run it from a command prompt using the

following syntax and specifying the target group and root management server:

.\StopMaint.ps1 –GroupName ‘Test Group’ –rootMS ‘myrms.contoso.com’

LISTING 16-3

StopMaint.ps1 Script

 param ($groupName, $rootMS)

#Load the Operations Manager snapin and connect to the Root Management Server
add-pssnapin “Microsoft.EnterpriseManagement.OperationsManager.Client”;
Set-Location “OperationsManagerMonitoring::”;
$mgConn = New-ManagementGroupConnection -connectionString:$rootMS;
if($mgConn -eq $null)

c16.indd 416c16.indd 416 03/09/11 11:00 AM03/09/11 11:00 AM

417

Chapter 16: Managing System Center Operations Manager 2007 R2

{
[String]::Format(“Failed to connect to RMS on ‘{0}’”,$rootMS)
return
}

Set-Location $rootMS

$MonitoringClassCG = Get-MonitoringClass | `
Where-Object {$_.DisplayName -eq $groupName}
$MonitoringGUID = Get-MonitoringObject $MonitoringClassCG.Id

$MonitoringGUID.StopMaintenanceMode([DateTime]::Now.ToUniversalTime(),`
[Microsoft.EnterpriseManagement.Common.TraversalDepth]::Recursive)

Tip
A very common mistake in group maintenance mode scripts is a lot of extra code to enumerate the members of
the group and to put each of these objects into maintenance mode explicitly. Because the default behavior
of maintenance mode is to include “object and all contained objects,” this is unnecessary and places
additional performance overhead on the RMS. �

Automating Client-Side (Remote) Maintenance Mode
A common complaint of about maintenance mode in OpsMgr is that it requires server

administrators to have some knowledge of OpsMgr, because maintenance mode is initiated

either through the OpsMgr console UI or through the command shell.

Client-side maintenance mode (sometimes called remote maintenance mode) solutions

eliminate this requirement. Client-side maintenance mode refers to a custom solution that

allows server administrators to place servers into maintenance mode directly from the

Windows computer on which they are about to perform maintenance without opening the

Operations console or running a Windows PowerShell script directly. Though multiple methods

exist to achieve this objective, all versions have some high-level components in common:

� A custom management pack that installs a small application (usually an HTML

application) on the desktop. The application allows the server administrator to

start or end maintenance mode for the server, as well as set maintenance mode

duration. When the server administrator requests to start or end maintenance

mode, the requested maintenance settings are written to a Windows event in the

Operations Manager Event Log.

� Rules running on the agent that detect the “Maintenance Mode ON” and

“Maintenance Mode OFF” events and trigger a response on the RMS.

� A Windows PowerShell maintenance mode script (hosted on the RMS) that places the

computer, health service, and health service watcher in maintenance mode when trig-

gered by the rule (running on the server) that detects the maintenance mode request.

c16.indd 417c16.indd 417 03/09/11 11:00 AM03/09/11 11:00 AM

418

Part IV: Server Applications

Tip
To prevent any alerts from being raised during maintenance mode on a computer, three objects must be
placed into maintenance mode in OpsMgr: the computer object, the health service, and the health service
watcher. In the R2 release of OpsMgr 2007, a change was introduced in the maintenance mode feature. Now,
when a computer is placed into maintenance mode, the health service and health service watcher objects for
the computer are placed into maintenance mode automatically. �

The following simple Windows PowerShell script is used to place a computer (and thus

health service and health service watcher) into maintenance mode. With some simple

modi�ications, it can be extended to facilitate client-side maintenance mode.

param($rootMS,$urlName,$minutes,$comment,$reason)
Add-PSSnapin “Microsoft.EnterpriseManagement.OperationsManager.Client” `
-ErrorVariable errSnapin

Set-Location “OperationsManagerMonitoring::” -ErrorVariable errSnapin
New-ManagementGroupConnection -ConnectionString $rootMS -ErrorVariable errSnapin
Set-Location $rootMS -ErrorVariable errSnapin

$ComputerName = (Get-MonitoringClass -Name Microsoft.Windows.Computer) | `
Get-MonitoringObject | Where-Object {$_.DisplayName -eq $urlName}

$startTime = Get-Date
$endTime = $startTime.AddMinutes($minutes)

“Putting URL into maintenance mode”
New-MaintenanceWindow -StartTime $startTime -endTime $endTime `
-MonitoringObject $ComputerName -comment$comment -Reason $reason

Note
You can download a working example of client-side maintenance mode from Derek Harkin’s OpsMgr blog at
http://derekhar.blogspot.com/2009/11/new-agent-maintenance-mode.html. �

Deploying and Configuring OpsMgr
Agents and Network Devices
Agent installation and con�iguration are tasks generally associated with the OpsMgr

Operations console UI. However, many recurring tasks are associated with agent

deployment con�iguration. The good news is, whether you want to con�igure heartbeat,

agent proxy, agent failover settings, or even agent deployment, these tasks can all be

automated with Windows PowerShell.

c16.indd 418c16.indd 418 03/09/11 11:00 AM03/09/11 11:00 AM

419

Chapter 16: Managing System Center Operations Manager 2007 R2

Configuring Agent Failover Without AD Integration
The Active Directory integration feature, which is used to assign agent failover settings in

OpsMgr, provides a means to control primary and failover management server assignments

for agent-managed computers. However, some organizations require granularity in agent

failover assignment that is not easily achieved through an Active Directory–integrated

assignment. With a little help from the Get-Agent, Get-ManagementServer, and

Set-ManagementServer cmdlets, agent failover settings can be updated in bulk on demand.

The sample script shown next sets the primary and failover management servers for

the speci�ied agent(s). To run this script, update the $rootMS variable with the name of

your RMS, and update $PriMS and $SecMS with the names of the primary and failover

management servers. To specify which agents will be updated, change the value of the

query criteria assigned to the $agent variable.

$rootMS= “opsmgr.contoso.com”
#Initializing the OpsMgr Powershell provider and Connecting to Mgmt Group
Add-PSSnapin “Microsoft.EnterpriseManagement.OperationsManager.Client” `
-ErrorVariable errSnapin
Set-Location “OperationsManagerMonitoring::” -ErrorVariable errSnapin
New-ManagementGroupConnection -ConnectionString $rootMS -ErrorVariable errSnapin
Set-Location $rootMS -ErrorVariable errSnapin

Retrieve a list of agents and assign to variable $agent
In this example, all servers with server name starting with ‘FS’
$agents = Get-Agent -Criteria “Name LIKE ‘FS%’” # set variables for primary `
and secondary management servers.
make sure the WHERE clause in each one-liner below matches only 1 MS!
$PriMS = Get-ManagementServer | Where-Object {$_.Name -eq ‘ms1.contoso.com’}
$SecMS = Get-ManagementServer | Where-Object {$_.Name -eq ‘ms2.contoso.com’}

#Loop through list of agents and update primary and failover MS settings
ForEach ($agent in $agents) {
Set-ManagementServer -PrimaryManagementServer $PriMS `
-AgentManagedComputer $agent -FailoverServer $SecMS | Out-Null
}

Managing SNMP Device Failover
In OpsMgr, Simple Network Management Protocol (SNMP)–enabled devices are monitored

through an SNMP GET for the SysName property issued from a proxy agent every 2 minutes.

If the proxy agent responsible for monitoring the network device goes down, the SNMP

devices polled by this agent will not be assigned to a new proxy agent automatically.

Because this proxy agent can be simply an agent on a managed computer or from a

management server, how you assign new proxy agent settings depends on whether the

proxy agent is a managed computer or a management server.

c16.indd 419c16.indd 419 03/09/11 11:00 AM03/09/11 11:00 AM

420

Part IV: Server Applications

If the proxy agent is a managed computer, the following script changes the proxy agent for

the network device of your choice to a new agent-managed computer you designate:

param($rootMS,$proxyAgent, $deviceName)

#connect to mgmt group

Add-PSSnapin Microsoft.EnterpriseManagement.OperationsManager.Client
Set-Location OperationsManagerMonitoring::
New-ManagementGroupConnection -ConnectionString $serverName
Set-Location $ServerName

#Retrieve all our monitored network devices
$netDevices = Get-RemotelyManagedDevice | Where-Object {$_.Name `
-like $deviceName}

#Retrieve agent that will serve as proxy agent
$proxy = Get-Agent | Where-Object {$_.PrincipalName -like $proxyAgent }

#Sets the proxy of all network devices to the specified proxy server
Set-ProxyAgent -ProxyAgent $proxy -Device $netDevices

Download this script from the book’s website, run it from a Windows PowerShell prompt

on a computer with the OpsMgr command shell installed, and pass the needed parameters

from any Windows PowerShell prompt as shown here:

.\snmpproxy.ps1 –RootMS “opsmgr.contoso.com” –ProxyAgent “svr1.contoso.com” `
–DeviceName ’10.1.1.1’

If the proxy agent you want to assign is a management server or gateway server, the

syntax you use to retrieve the proxy agent details must be updated to retrieve the correct

computer. The syntax to run the script is the same as the previous script, but the method

within the script used to retrieve the proxy agent has been modi�ied to retrieve the

designated management server rather than a managed computer.

param($rootMS,$proxyAgent, $deviceName)

#connect to mgmt group
$ServerName=$rootMS
Add-PSSnapin Microsoft.EnterpriseManagement.OperationsManager.Client
Set-Location OperationsManagerMonitoring::
New-ManagementGroupConnection -ConnectionString:$serverName;
Set-Location $ServerName

#Retrieve all our monitored network devices
$netDevices = Get-RemotelyManagedDevice | Where {$_.Name -like $deviceName}

#Retrieve agent that will serve as proxy agent

c16.indd 420c16.indd 420 03/09/11 11:00 AM03/09/11 11:00 AM

421

Chapter 16: Managing System Center Operations Manager 2007 R2

$mea=” Microsoft.EnterpriseManagement.Administration”
$crit=New-Object -Type “${mea}.ManagementServerCriteria(“Name = ‘$proxyagent’”)”

#Sets the proxy of all network devices to the specified proxy server
Set-ProxyAgent -ProxyAgent $proxy -Device $netDevices

Caution
When updating primary and failover settings for OpsMgr agents, be absolutely certain the management
server and/or gateways specified in the script are in fact reachable from the network segments where agents
reside. If you specify a management server that is inaccessible due to firewall or routing restrictions, you
can leave agents in an orphaned state. Reversing this condition requires updating settings locally on all
affected agents. �

Automating Agent Discovery and Deployment
Though System Center Essentials 2010 (SCE) has a scheduled discovery feature to enable

automated daily discovery of new computers on the network, this feature is not available

in OpsMgr due to the other enterprise deployment options available. However, if you would

like to discover new servers on your network on a scheduled basis, this is entirely possible

with Windows PowerShell. In fact, by using LDAP queries to scope the search, you can

�ilter the discovery within Active Directory to ensure agents are deployed only to the

desired computers.

Automating discovery and agent deployment for Windows computers in Windows

PowerShell involves the following high-level steps:

 1. De�ine an LDAP query to scope the computer discovery (using the

New-LdapQueryDiscoveryCriteria cmdlet  and  LDAP query language).

 2. Start the discovery of the target computer from the speci�ied management server

(using Start-Discovery, taking the LDAP query as input).

 3. Upon successful discovery, perform a push-install of the agent from the speci�ied

management server to target computer (using Install-Agent).

The script shown in Listing 16-4 discovers the speci�ied computer (represented

by $targetAgent) in the speci�ied domain using the speci�ied management server

(represented by $targetMS). Upon successful discovery, the agent binaries are pushed

from the management server to the target computer and installed.

Running the script in Listing 16-4 discovers computer webserver1 in the contoso domain

using management server mgmtsvr1.contoso.com and deploys the agent using the push

deployment method:

.\WindowsDiscovery.ps1 –RootMS ‘rms.contoso.com’ –Domain ‘contoso’ `
–TargetMS ‘mgmtsvr1.contoso.com’ -TargetAgent webserver1

c16.indd 421c16.indd 421 03/09/11 11:00 AM03/09/11 11:00 AM

422

Part IV: Server Applications

LISTING 16-4

WindowsDiscovery.ps1 Script

Param ($rootMS,$Domain,$targetMS,$targetAgent)

#Initialize the OpsMgr Provider
Add-PSSnapin Microsoft.EnterpriseManagement.OperationsManager.Client

Set the location to the root of the provider namespace.
Set-location OperationsManagerMonitoring::

#create a connection to the Management Group
New-ManagementGroupConnection $rootMS

#change the path
Set-location $rootMS

#configure LDAP query setting
$ldap_query = New-LdapQueryDiscoveryCriteria -Domain $Domain `
 - LdapQuery “(sAMAccountType=805306369)(name=$targetAgent*)”

#configure discovery setting
$windows_discovery_cfg = New-WindowsDiscoveryConfiguration `
- LdapQuery $ldap_query

discoveryresults
$discovery_results = Start-Discovery -ManagementServer (Get-ManagementServer | `
where {$_.Name -eq “$targetMS”}) -WindowsDiscoveryConfiguration `
$windows_discovery_cfg

#install agents based on the criteria of your search in the -targetMS parameter
Install-Agent -ManagementServer (Get-ManagementServer | Where-Object `
{$_.Name -eq “$targetMS”}) `
-AgentManagedComputer $discovery_results.CustomMonitoringObjects

This script can be extended to accept a list of computers as input to perform discovery in

batch. However, be careful not to perform more than a few computers at a time to avoid

overloading your management group.

Verifying Agent Load Balance Across
Management Servers
Balancing the agent load across management servers is an important factor in ensuring

server utilization is optimized. However, agent load-balancing across management

c16.indd 422c16.indd 422 03/09/11 11:00 AM03/09/11 11:00 AM

423

Chapter 16: Managing System Center Operations Manager 2007 R2

groups is not performed automatically, so periodically checking the agent count across all

management servers can shed light on disparities in agent load.

The following example retrieves a count of agents grouped by the primary management

server to which they report. Download this script from the book’s website, and run the script

from any Windows PowerShell prompt on a server with the OpsMgr Windows PowerShell

snap-in installed. Before you do, change the value of $rootMS to the name of your RMS.

$rootMS = “nyc-omcm.contoso.com”
#Initialize the OpsMgr Provider
Add-PSSnapin “Microsoft.EnterpriseManagement.OperationsManager.Client”
Set-Location “OperationsManagerMonitoring::”

#set Management Group context to the provided RMS
New-ManagementGroupConnection -ConnectionString $rootMS
Set-Location $rootMS

#Retrieve list of agents
$agent = Get-Agent | Sort-Object -Property Name

#Output a list of management servers and agent count for each
$agent | Group PrimaryManagementServerName -NoElement | Sort Name `
| Select-Object Name, Count | Export-Csv -NoTypeInformation `
-Path c:\agents.csv

Exploring Discovered Inventory Data
You can explore the objects discovered by OpsMgr using the Operations console. However,

you can also explore the discovered inventory in your OpsMgr deployment using Windows

PowerShell and learn a few things about object types (classes), their base classes, and

any relationships that cannot be viewed in the graphical user interface (GUI). Exploring

discovered inventory via Windows PowerShell will give you insight into management pack

internals you cannot gain from the console GUI.

Enumerating Classes and Discovered Instances
You can explore the discovered inventory in your OpsMgr deployment from the command

shell. You can retrieve a class or classes with the Get-MonitoringClass cmdlet:

Get-MonitoringClass | Where-Object {$_.Name -eq `
“Microsoft.Windows.Server.Computer”}

To retrieve instances of the class that have already been discovered by OpsMgr, simply pipe

the output to Get-MonitoringObject:

Get-MonitoringClass -Name “Microsoft.Windows.Server.Computer” |
Get-MonitoringObject

c16.indd 423c16.indd 423 03/09/11 11:00 AM03/09/11 11:00 AM

424

Part IV: Server Applications

Much like classes in the .NET world, every class in OpsMgr is derived from a base class

and inherits all the properties of the base class. For example, the Windows Server class

(Microsoft.Windows.Server.Computer) is derived from the base class Windows Computer

(Microsoft.Windows.Server.Computer). The following script enumerates all the classes

derived from a speci�ied class using the GetDerivedMonitoringClass() method:

#Replace Microsoft.Windows.Computer with the class of your choice
$Class = ‘Microsoft.Windows.Computer’

$DerivedClasses = (get-monitoringclass | where {$_.Name –eq `
“$Class”}).GetDerivedMonitoringClasses()

 Write-Host “The following are derived classes of $Class “
 Write-Host “ “

foreach ($DerivedClass in $DerivedClasses) {
 Write-Host “Class Name:” $DerivedClass.DisplayName “(“ $DerivedClass.Name “)”
}

Figure 16-4 displays the output of the sample, enumerating classes of the Microsoft
.Windows.Computer (Windows Computer) class.

FIGURE 16-4

Enumeration of derived classes

With a couple of small changes, you can enumerate the derived classes recursively, meaning

that the derived classes of derived classes will be enumerated as well, all the way down the

class hierarchy. The output will be multiple collections of derived classes, grouped by the

base class from which they are derived.

#Replace system.entity with the class of your choice
$Class = ‘Microsoft.Windows.Server.Computer’

Write-Host Report for derived classes of $Class
Write-Host “==”

$DerivedClasses = (get-monitoringclass | where {$_.Name –eq `
“$Class”}).GetDerivedMonitoringClasses()

c16.indd 424c16.indd 424 03/09/11 11:00 AM03/09/11 11:00 AM

425

Chapter 16: Managing System Center Operations Manager 2007 R2

foreach ($DerivedClass in $DerivedClasses) {
 Write-Host “ “
 Write-Host “Derived classes based on “ $DerivedClass.DisplayName “(“ `
$DerivedClass.Name “)”
 Write-Host “The following classes are derived from “ `
$DerivedClass.DisplayName “:”
 (get-monitoringclass -Name $DerivedClass).GetDerivedMonitoringClasses() | `
select DisplayName, Name
}

Figure 16-5 displays the output of the sample, enumerating classes of the Microsoft
.Windows.Computer (Windows Computer) class.

FIGURE 16-5

Recursive enumeration of derived classes

Tip
Classes are sometimes referred to as object types or targets, depending on where you look in the OpsMgr UI
and product documentation. Just remember that no matter which is used, they all have the same meaning in
OpsMgr terms. �

Enumerating Monitored Objects and Relationships
You can use the GetMonitoringRelationshipClasses() method to explore the

relationships between classes in Operations Manager. Given a target class, this method

returns all the relationships for which the target class is either the source or the target.

Again, nothing fancy, but this simple function does provide an easy way to enumerate

relationships without opening multiple management packs in the MPViewer utility or the

Management Pack (MP) Authoring console.

c16.indd 425c16.indd 425 03/09/11 11:00 AM03/09/11 11:00 AM

426

Part IV: Server Applications

As with enumeration of derived classes, you can extend this function to enumerate all child

classes and their relationships recursively.

function GetRelationships {
 param ($Class)
 (Get-MonitoringClass | -Name $Class).GetMonitoringRelationshipClasses()| `
 Format-List DisplayName,Description
 #call the function specifying target class in quotes

}
GetRelationships “Microsoft.SQLServer.DBEngine” | Select-Object DisplayName,Name

Figure 16-6 displays the output of the sample, enumerating classes of the Microsoft
.Windows.Computer (Windows Computer) class.

FIGURE 16-6

Enumeration of class relationships

Windows PowerShell and the
Command Notification Channel
OpsMgr noti�ication capabilities include a command noti�ication channel that can be used

to launch batch �iles, scripts, and command-line utilities. Though this is one of the less

commonly used noti�ication channels, it can be very useful when email noti�ication is not

your desired delivery format. This section explores how to use the command channel to

extend the off-the-shelf noti�ication functionality in OpsMgr using Windows PowerShell in

the command noti�ication channel.

c16.indd 426c16.indd 426 03/09/11 11:00 AM03/09/11 11:00 AM

427

Chapter 16: Managing System Center Operations Manager 2007 R2

Performing Simple Event and Log File Creation
from the Command Channel
For test environments or auditing purposes, you can use Windows PowerShell in the

OpsMgr command channel to log alert details of your choosing to a text �ile — a noti�ication

log of sorts. The script in Listing 16-5 logs key details of an OpsMgr alert to a text �ile

when called from a command noti�ication channel. You can download this script from the

book’s website.

LISTING 16-5

NotificationEventLog.ps1 Script

#Verify log file exists...if not, create it
if(Test-Path -Path c:\scripts\mylog.txt -PathType Leaf)
{
 “File c:\scripts\mylog.txt already exists.”
}
else
{
 $file = New-Item -ItemType file ‘c:\scripts\mylog.txt’

 $info = “----Alert generated at $DateTime----”
 $info += “$AlertName`n$AlertDesc`n$MngdEntity`n$Severity “
 $info += “----End of alert----”

 $info | Out-File -FilePath $file
}

Implementing this script as part of an OpsMgr command noti�ication channel and

subscription requires completing the following con�iguration tasks:

 1. Download this script from the book’s website and save to a directory on the

RMS (c:\scripts is used in this example) as PoshLog.ps1.

 2. Con�igure a command noti�ication channel in the OpsMgr Operations console.

 3. Con�igure a noti�ication subscription that utilizes the command noti�ication

channel.

Once you have completed step 1, the command noti�ication subscription should be

con�igured similar to the image in Figure 16-7, using the values shown here.

c16.indd 427c16.indd 427 03/09/11 11:00 AM03/09/11 11:00 AM

428

Part IV: Server Applications

FIGURE 16-7

Command channel configuration for Windows PowerShell

Full path of the command �ile:

c:\windows\system32\windowspowershell\v1.0\powershell.exe

Command-line parameters:

-Command “& C:\Scripts\PoshLog.ps1” `
-DateTime $Data/Context/DataItem/DataItemCreateTimeLocal$ `
-AlertName $Data/Context/DataItem/AlertName$ `
-AlertDesc $Data/Context/DataItem/AlertDescription$ `
-MngdEntity $Data/Context/DataItem/ManagedEntityFullName$ `
-Severity $Data/Context/DataItem/Severity$ `

Startup directory:

C:\Scripts

Once you have entered these values and saved your changes, con�igure a noti�ication

subscription for the alert sources, resolution states, severities, and priorities of your choice.

c16.indd 428c16.indd 428 03/09/11 11:00 AM03/09/11 11:00 AM

429

Chapter 16: Managing System Center Operations Manager 2007 R2

Note
For detailed steps on how to create a notification command channel in OpsMgr, see http://technet
.microsoft.com/en-us/library/dd440871.aspx.

For detailed steps on how to configure an OpsMgr notification subscription, see http://technet
.microsoft.com/en-us/library/dd440889.aspx. �

To test your work, create an error condition to trigger an alert on one of the monitored

computers in your test environment.

Forwarding SNMP Traps with Windows PowerShell
The SNMP trap-forwarding functionality present in Microsoft Operations Manager 2005

(MOM) was not carried forward to OpsMgr 2007. Though this was not a widely used

feature, it is one that is de�initely missed by more than a few organizations relying on

OpsMgr to deliver alert data to other monitoring and reporting systems.

Fortunately, this problem can be resolved using the command noti�ication channel, a

command-line trap generator (like trapgen.exe, available at http://www.ncomtech.
com/trapgen.html), and Windows PowerShell. The script shown in Listing 16-6 forwards

OpsMgr alert details to the SNMP trap receiver. You can download this script from

www.wiley.com/go/WindowsPowerShellBible. You will need to update the IP addresses

of the RMS and remote trap receiver to which traps should be sent.

LISTING 16-6

TrapForward.ps1 Script

Param($DateTime, $AlertName, $AlertDesc, $MngdEntity, $Severity)

#===
#Retrieve the monitoring object
#===
$object = Get-MonitoringObject -Id $Param0

#===
#Assign XPath replacements to variables (for later trap construction)
#===

#Target Trap Catcher (Destination for the trap)
$Param0 = “-s 7 -d 192.168.1.50”

#RMS IP Address (Source of the trap)
$Param1 = “-i 192.168.1.20”

#SNMP Community String
continues

c16.indd 429c16.indd 429 03/09/11 11:00 AM03/09/11 11:00 AM

430

Part IV: Server Applications

LISTING 16-6 (continued)

$Param2 = “-c public”

#Notification Timestamp
$Param3 = “$DateTime”

#RMS Server Name
$Param4 = “rms.contoso.com”

#Alert Name
$Param6 = “$AlertName”

#Class Name...Full Display Name (ManagedEntity)
$Param7 = “$MngdEntity”

#Alert Description
$Param8 = “$AlertDesc”

#Severity
$Param9 = “$Severity”

#==
#Construct the trapgen command line and send trap
#==

#The following two lines are actually one single line
$cmdLine = “c:\tools\trapgen.exe $Param1 $Param2 $Param3 `
$Param4 $Param5 $Param6 $Param7 $Param8 $Param9”

#Run TrapGen.exe with parameters created above
Invoke-Expression -Command $cmdLine | Out-Null

Implementing this script as part of an OpsMgr command noti�ication channel and

subscription requires completing the following con�iguration tasks:

 1. Download this script from the book’s website and save to a directory on the RMS

(c:\scripts is used in this example) as TrapForward.ps1. Be sure to update the

IP addresses of RMS and remote trap receiver as mentioned previously.

 2. Copy trapgen.exe to a directory on the RMS (c:\tools is used in this example).

 3. Con�igure a command noti�ication channel in the OpsMgr Operations console.

 4. Con�igure a noti�ication subscription that utilizes the command noti�ication

channel, using the following settings:

c16.indd 430c16.indd 430 03/09/11 11:00 AM03/09/11 11:00 AM

431

Chapter 16: Managing System Center Operations Manager 2007 R2

Full path of the command �ile:

c:\windows\system32\windowspowershell\v1.0\powershell.exe

Command-line parameters:

-Command “& C:\Scripts\TrapForward.ps1” `
-DateTime $Data/Context/DataItem/DataItemCreateTimeLocal$ `
-AlertName $Data/Context/DataItem/AlertName$ `
-AlertDesc $Data/Context/DataItem/AlertDescription$ `
-MngdEntity $Data/Context/DataItem/ManagedEntityFullName$ `
-Severity $Data/Context/DataItem/Severity$ `

Startup directory:

C:\Scripts

Once you have entered these values and saved your changes, con�igure a noti�ication

subscription for the alert sources, resolution states, severities, and priorities of your choice.

To test your work, create an error condition to trigger an alert on one of the monitored

computers in your test environment.

Overrides
Work�lows (rules, monitors, overrides, and so on) in OpsMgr can be modi�ied (tuned)

through overrides. The parameters made available for modi�ication by the management

pack author (the overridable parameters) can be modi�ied for a speci�ic object (instance),

a group of objects, or all instances of the class targeted by the work�low. Over time, the

creation of overrides can make determining the source of the settings tedious for OpsMgr

administrators. In the most dynamic OpsMgr environments (such as those of service

providers and hosters), the need often arises to create overrides programmatically to keep

up with new monitored objects being introduced to the environment. Fortunately, the

OpsMgr cmdlets make all of this possible.

Retrieving and Converting Overrides into Readable
Reporting Format
When troubleshooting unexpected behavior or an unhealthy environment, OpsMgr

administrators may want to see which work�lows have overrides applied, and the settings

of each. You can retrieve the existing overrides for all management packs in an

OpsMgr environment by retrieving all management packs and passing the list to the

Get-Override cmdlet:

Get-ManagementPack | Get-Override

c16.indd 431c16.indd 431 03/09/11 11:00 AM03/09/11 11:00 AM

432

Part IV: Server Applications

With a Where-Object clause, you can target the query to overrides for a speci�ic

management pack:

Get-ManagementPack -Name ‘Microsoft.SQLServer.2008.Monitoring’ | `
Get-Override

Unfortunately, the Context and ContextInstance of the override (at minimum) are not

clear when overrides are retrieved in this way, making it impossible to determine the

target object type and instance to which the override was applied.

If you would like to export all overrides from multiple management packs into a single

report including all the details of the override (property, target, value), Windows

PowerShell requires a couple of extra steps to match a name to the GUIDs presented in the

default output. The sample script in Listing 16-7, written by Daniele Muscetta (Microsoft)

and enhanced by MVP Pete Zerger, goes beyond the available cmdlets to retrieve the

Display Name of the Context and ContextInstance to provide a user-friendly report of

the overrides present in an OpsMgr environment.

LISTING 16-7

Export Overrides into an Overrides Report

#define the path you want to export the CSV files to
$exportpath = “c:\scripts\export\”

#gets all UNSEALED MAnagement PAcks
$mps = Get-ManagementPack | Where-Object {$_.Sealed -eq $false}

#loops thru them
foreach ($mp in $mps)
{
 $mpname = $mp.Name
 Write-Host “Exporting Overrides info for Management Pack: $mpname”

 #array to hold all overrides for this MP
 $MPRows = @()

 #Gets the actual override objects
 $overrides = $mp | Get-Override

 #loops thru those overrides in order to extract information from them
 foreach ($override in $overrides)
 {

 #Prepares an object to hold the result
 $obj = New-Object System.Management.Automation.PSObject

 #clear up variables from previous cycles.

c16.indd 432c16.indd 432 03/09/11 11:00 AM03/09/11 11:00 AM

433

Chapter 16: Managing System Center Operations Manager 2007 R2

 $overrideName = $null
 $overrideProperty = $null
 $overrideValue = $null
 $overrideContext = $null
 $overrideContextInstance = $null
 $overrideRuleMonitor = $null

 # give proper values to variables for this cycle for output.
 $name = $mp.Name
 $overrideName = $override.Name
 $overrideProperty = $override.Property
 $overrideValue = $override.Value
 trap { $overrideContext = “”; continue } $overrideContext = `
 $override.Context.GetElement().DisplayName
 trap {$overrideContextInstance=””; continue} $overrideContextInstance `
 = (Get-MonitoringObject -Id $override.ContextInstance).DisplayName

 if ($override.Monitor -ne $null){
 $overrideRuleMonitor = $override.Monitor.GetElement().DisplayName
 } elseif ($override.Discovery -ne $null){
 $overrideRuleMonitor = $override.Discovery.GetElement().DisplayName
 } else {
 $overrideRuleMonitor = $override.Rule.GetElement().DisplayName
 }

 #fills the current object with those properties
 #$obj = $obj | Add-Member -MemberType NoteProperty `
- Name overrideName - Value $overrideName - PassThru
 $obj = $obj | Add-Member -MemberType NoteProperty `
- Name overrideProperty - Value $overrideProperty - PassThru
 $obj = $obj | Add-Member -MemberType NoteProperty `
- Name overrideValue - Value $overrideValue - PassThru
 $obj = $obj | Add-Member -MemberType NoteProperty `
- Name overrideContext - Value $overrideContext - PassThru
 $obj = $obj | Add-Member -MemberType NoteProperty `
- Name overrideContextInstance - Value $overrideContextInstance - PassThru
 $obj = $obj | Add-Member -MemberType NoteProperty `
- Name overrideRuleMonitor - Value $overrideRuleMonitor - PassThru
 $obj = $obj | Add-Member -MemberType NoteProperty `
- Name MPName - Value $name - PassThru
 $obj = $obj | Add-Member -MemberType NoteProperty `
- Name overrideName - Value $overrideName - PassThru

 #adds this current override to the array
 $MPRows = $MPRows + $obj
 }

 #Store up the overrides for all packs to a single variable

continues

c16.indd 433c16.indd 433 03/09/11 11:00 AM03/09/11 11:00 AM

434

Part IV: Server Applications

LISTING 16-7 (continued)

 $MPRpt = $MPRpt + $MPRows

}
 #exports cumulative list of overrides to a single CSV

 $filename = $exportpath + “overrides.csv”
 $MPRpt | Export-CSV -path $filename -NoTypeInformation

Creating Overrides Programmatically
In large and active environments, you may want to create overrides programmatically

when a rule is found to be causing large numbers of alerts. The sample script in Listing

16-8 creates an override that sets the Enabled property of the matching rule name

assigned to the $rule variable to False (which disables the rule). By specifying an

unsealed management pack in the $mp variable, you can save the override to a dedicated

overrides management pack rather than to the Default Management Pack.

Download this script from the book’s website and run from an Operations Manager

command shell prompt.

LISTING 16-8

Rule Override Creation Script

$SourceMP = Get-ManagementPack | Where-Object { $_.Name –match `
‘Microsoft.SQLServer.2008.Monitoring’ }
$mp = Get- ManagementPack | Where-Object {$_.FriendlyName -match ‘SQL 2008 `
Overrides’ }
#This does successfully retrieve the MP.
$rule = Get-Rule -ManagementPack $SourceMP | Where-Object { $_.Name -match `
‘Microsoft.SQLServer.2008.NumberDeadlocksPerSecond’ }
$Target = Get-MonitoringClass | Where-Object { $_.Name -match `
‘Microsoft.SQLServer.2008.DBEngine’ }

$override = New-Object `
Microsoft.EnterpriseManagement.Configuration.Management`
PackRulePropertyOverride($mp,’DeadlockOverride’)

Casting some of the generic types needed by the monitor override properties `
using reflection (::op_Implicit())

$Rule = [Microsoft.EnterpriseManagement.Configuration.ManagementPackElement

c16.indd 434c16.indd 434 03/09/11 11:00 AM03/09/11 11:00 AM

435

Chapter 16: Managing System Center Operations Manager 2007 R2

Reference``1[Microsoft.EnterpriseManagement.Configuration.ManagementPackRu
le]]::op_Implicit($Rule);

$override.Rule = $Rule
$Override.Property = ‘Enabled’
$override.Value = ‘false’
$override.Context = $Target
$override.DisplayName = ‘Disable deadlock monitoring for SQL 2008’
$mp.Verify()
$mp.AcceptChanges()

Notifications
You can do some reporting and bulk processing on noti�ication subscriptions with relative

ease by using the command shell. With the Get-Notification cmdlet, reporting on

noti�ication subscription con�iguration is possible, and with Enable-Notification and

Disable-Notification, you can enable or disable noti�ication subscriptions without

launching the Operations console.

Enabling and Disabling Notifications
When maintenance operations are being undertaken for your network infrastructure, you

may want to disable the noti�ication subscriptions used to send email noti�ications of alert

conditions to avoid �illing your Inbox with non-actionable alerts. To disable all enabled

noti�ication subscriptions, use the following code:

Get-NotificationSubscription | Where-Object {$_.Enabled -eq $true} |
Disable-NotificationSubscription

When the event is complete and you are ready re-enable noti�ication, you can do so with

the Enable-NotificationSubscription cmdlet. To enable all disabled noti�ication

subscriptions, use the following code (which looks very similar to the code used to disable

the subscriptions):

Get-NotificationSubscription | Where-Object {$_.Enabled -eq $false} |
Enable-NotificationSubscription

Working with Notification Recipients
With the Get-NotificationSubscription cmdlet, you can specify the recipients on a

noti�ication subscription:

Get- NotificationSubscription | Format-List DisplayName,`
@{Label=”Criteria”;Expression={$_.Configuration.Criteria}}

c16.indd 435c16.indd 435 03/09/11 11:00 AM03/09/11 11:00 AM

436

Part IV: Server Applications

Note
You can also use Windows PowerShell to update the recipients in an OpsMgr notification subscription, as
shown in the blog post “Operations Manager - Set email address for a notification device” at http://
cornasdf.blogspot.com/2009/06/operations-manager-set-email-address.html. �

Monitoring Scripts in Windows PowerShell
OpsMgr uses modules in management packs to de�ine work�lows. Originally, with the

release of OpsMgr 2007 R2, Microsoft introduced a new module that made using Windows

PowerShell much more ef�icient. The new ef�iciency comes from the fact that a single

Windows PowerShell instance is opened on the agent and is shared by all monitored

scripts, rather than a unique instance being launched for each. Since the introduction of

this feature, the use of Windows PowerShell for monitoring functions (rather than just

administration) in OpsMgr management packs has become commonplace.

You can create custom two-state and three-state monitors for OpsMgr in Windows

PowerShell to support a variety of custom monitoring scenarios where no native

management pack exists. The sample script in Listing 16-9 veri�ies availability of a remote

FTP site. Replace the username and password with a read-only user account in order to

safely implement this script for a live site.

LISTING 16-9

Two-State FTP Site Availability Monitor Script

#Instantiate OpsMgr Scripting API and create a Property Bag
$api = New-Object -ComObject ‘MOM.ScriptAPI’
$bag = $api.CreatePropertyBag()

Get the object used to communicate with the server.
$Request = [System.Net.WebRequest]::Create(“ftp://ftp.mydomain.com/mydir/”)
$Request.Method = [System.Net.WebRequestMethods+Ftp]::ListDirectoryDetails

This example assumes the FTP site uses anonymous logon.
Username/password not real
$Request.Credentials = New-Object System.Net.NetworkCredential “myuser”,`
“MyPassword”

$Response = $Request.GetResponse()
$ResponseStream = $Response.GetResponseStream()

Read and display the text in the file
$Reader = New-Object System.Io.StreamReader $Responsestream

c16.indd 436c16.indd 436 03/09/11 11:00 AM03/09/11 11:00 AM

437

Chapter 16: Managing System Center Operations Manager 2007 R2

[System.Console]::Writeline($Reader.ReadToEnd())

Display Status
“Download Complete, status:”
$response.StatusDescription

if ($response.StatusDescription -match ‘226’){
 #Write-Host “We hit a TRUE match”
 $bag.AddValue(“State”,”GOOD”)
 #Submit Property Bag
 $bag
 }
else {
 #If not exists STATE=BAD
 #Write-Host “We hit a False match”
 $bag.AddValue(“State”,”BAD”)

 #Submit Property Bag
 $bag
 }

Close Reader and Response objects
$Reader.Close()
$Response.Close()

Note
A few management pack authoring tutorials on the Internet demonstrate how to incorporate a Windows
PowerShell-based monitoring script into a unit monitor using the OpsMgr Management Pack Authoring
Console. The two most comprehensive are shown here.

For detailed steps on how to implement a two-state unit monitor for OpsMgr containing a Windows
PowerShell script, see “How to create a monitor based on a Windows PowerShell script” on the Microsoft
TechNet website at http://technet.microsoft.com/en-us/library/ff381420.aspx.

OpsMgr MVP Stefan Koell wrote a four-part series on how to implement a two-state unit monitor in
Windows PowerShell at www.systemcentercentral.com/BlogDetails/tabid/143/IndexId/50085/
Default.aspx. �

Sample OpsMgr Scripts and Other
Community Resources
A handful of sites on the Internet have sizable collections of Windows PowerShell scripts

for OpsMgr, as well as sources of free assistance as you write and customize scripts for

your own environment.

c16.indd 437c16.indd 437 03/09/11 11:00 AM03/09/11 11:00 AM

438

Part IV: Server Applications

Where to Find and Share Samples on the Web
By using the examples of experienced PowerShell scripters as a starting point, you can

reuse and customize existing scripts to suit your speci�ic need. A couple of great sources of

Windows PowerShell scripts for OpsMgr are available on the Internet.

The �irst is the community website System Center Central (www.systemcentercentral
.com). One of the community members maintains a list of all the OpsMgr-related Windows

PowerShell scripts he can �ind on his “Master collection of PowerShell scripts” page at
www.systemcentercentral.com/BlogDetails/tabid/143/IndexID/60930/Default.aspx.

You can also �ind a number of scripts directly from the OpsMgr Product Team at Microsoft,

but these are spread out in a couple of different places. Good starting points include the

following TechNet blog sites:

� Boris Yanushpolsky’s blog at http://blogs.msdn.com/b/boris_yanushpolsky/

� Jonathan Almquist’s blog at http://blogs.technet.com/b/jonathanalmquist/

Finally, the community code repository Poshcode.org has a few scripts under the “SCOM”

and “OpsMgr” categories at www.poshcode.org.

Good sources for Windows PowerShell scripts are popping up all the time, so keep an eye

out for new sources on OpsMgr-related blogs and Twitter.

Where to Find Free Support on Authoring
Windows PowerShell Scripts for OpsMgr
Sometimes, sample scripts just are not enough and you need an expert. When you need a

helping hand, a number of great support forums exist where you can get free help with

your script authoring efforts. The most active locations for discussions speci�ic to OpsMgr

2007 R2 are shown here.

The Extensibility forum on the OpsMgr TechNet Forums is well-tended by OpsMgr scripting

experts from Microsoft and the community. You can �ind it at http://social.technet
.microsoft.com/Forums/en-US/operationsmanagerextensibility/threads.

You can always �ind help from the PowerShell TechNet Forums, which is perhaps the

most active support forum in the world for Windows PowerShell assistance. You can �ind

it at http://social.technet.microsoft.com/Forums/en-US/winserverpowershell/
threads. Be mindful that these scripting experts may not be OpsMgr experts, so be patient

when posting here!

Finally, System Center Central (www.systemcentercentral.com/tabid/60/tag/
Forums+Operations_Manager/Default.aspx) is a community site well-tended by OpsMgr

specialists with advanced Windows PowerShell scripting skills, so you can generally get

ample assistance there as well.

c16.indd 438c16.indd 438 03/09/11 11:00 AM03/09/11 11:00 AM

439

Chapter 16: Managing System Center Operations Manager 2007 R2

Please be mindful of forum etiquette when posting to these sources. Participants are

generally supporting the community for free on a best-effort basis, so response time,

verbosity, and accuracy of the answers you receive may vary.

Summary
In this chapter, you explored the available OpsMgr cmdlets to automate recurring and bulk

administrative tasks in OpsMgr 2007 R2.

You learned how to report on the top alerts in your OpsMgr deployment. You also explored

how to parse and update alerts in bulk, with due attention to performance optimization in

your Windows PowerShell scripts.

You explored the options for automating maintenance mode in OpsMgr, including

maintenance mode for agents, maintenance mode for groups, and even maintenance mode

remotely from agent-managed computers.

You learned how to fully automate the discovery of Windows computers and then automate

deployment of the OpsMgr agent to discovered computers. You also investigated the

options for determining the load distribution of agents in your OpsMgr environment, as

well as how to redistribute the load of Windows agents and monitored network devices

across multiple management servers.

You worked with Windows PowerShell scripts to explore discovered inventory in your

OpsMgr environments to provide greater visibility into the monitored objects and how

these objects are related. You then explored how to report on the overrides present in

your OpsMgr deployment, as well as how to automate the creation of new overrides using

Windows PowerShell.

Finally, you learned how to write monitoring scripts for OpsMgr in Windows PowerShell

and where to go for sample scripts and online support when you need a helping hand.

Next, you learn to leverage Windows PowerShell in your Microsoft Deployment Toolkit

2010 (MDT) task sequences to enhance your deployment capabilities.

c16.indd 439c16.indd 439 03/09/11 11:00 AM03/09/11 11:00 AM

c16.indd 440c16.indd 440 03/09/11 11:00 AM03/09/11 11:00 AM

441

C H A P T E R

Microsoft Deployment Toolkit (MDT) is Microsoft’s solution

for automating the delivery of Windows 7 and Windows

Server 2008 R2. MDT is actually a “Solution Accelerator”

from Microsoft. Solution Accelerators are tools that are provided by

Microsoft for free and are fully supported. This chapter covers MDT

2010 Update 1.

Installing and Using the Cmdlets
The MDT PowerShell snap-in is installed as part of the overall MDT

installation and does not require any special installation procedure.

The snap-in is certi�ied to work with both Windows PowerShell and

Windows PowerShell V2.

To enable remote management, install MDT on a workstation to

install the snap-in. You can then add the remote Deployment Share by

specifying the UNC path to the remote Deployment Share folder.

MDT does not create a shortcut for launching the snap-in, so you will

need to load it manually:

Add-PSSnapIn -Name Microsoft.BDD.PSSnapIn

If you use the snap-in often, you can create a console �ile to load

it from a shortcut, or you can add it to your pro�ile to have it

always loaded.

Managing Microsoft
Deployment
Toolkit 2010

C H A P T E R

IN THIS CHAPTER
Creating deployment shares

Adding applications

Adding drivers

Creating task sequences

Generating media

c17.indd 441c17.indd 441 03/09/11 11:01 AM03/09/11 11:01 AM

442

Part IV: Server Applications

Cross-Reference
Read more about adding items to your profile in “Customizing Windows PowerShell with Profiles” in Chapter 1,
“Introduction to Windows PowerShell.” �

Exploring the MDT Windows PowerShell Provider
The MDT snap-in includes a Windows PowerShell provider called MDTProvider that is

used to present the Deployment Share as a Windows PowerShell drive. It enables you

to navigate the Deployment Share as you would a �ile system or registry. The following

code snippet demonstrates the ability to change to the Applications directory and list the

contents as you would a folder on your �ile system.

Set-Location DS001:\
Get-ChildItem
Name

Applications
Operating Systems
Out-of-Box Drivers
Packages
Task Sequences
Selection Profiles
Linked Deployment Shares
Media

Set-Location .\Applications
Get-ChildItem

Name

Microsoft Security Essentials 2.0.657.0

Each object in this Provider has its own corresponding properties. Just as a �ile has a

length property that indicates its size, an MDT application has a version property that

indicates the version of the software. The properties are covered in more detail in other

chapters, but it is important to remember that they exist, because in certain cases, the

Provider is the only way to change the properties.

Using the GUI to Create Your Scripts
The Deployment Workbench, MDT’s graphical console, has an excellent facility built into it that

helps you develop automated solutions against MDT. At the end of most of the wizards,

there will be a button labeled View Script. If you click this button, Notepad opens with the

actual Windows PowerShell script needed to duplicate the action you just completed with

the wizard. You can use this to duplicate the con�iguration on another system or use it as a

base to explore different options.

c17.indd 442c17.indd 442 03/09/11 11:01 AM03/09/11 11:01 AM

443

Chapter 17: Managing Microsoft Deployment Toolkit 2010

Creating and Populating the
Deployment Share
In MDT, the deployment share is the physical repository for all the media and con�iguration

information for the deployment environment. The deployment share is a folder, usually on a

server, that MDT and clients use to deploy operating systems and software.

Initializing the Deployment Share
In Listing 17-1, you create the folder in which you are going to store the Deployment Share.

Then, you use New-PSDrive to create the Deployment Share using the MDTProvider.

Instead of a specialized cmdlet for creating a Deployment Share, the developers of the

cmdlets chose to use the Provider framework.

LISTING 17-1

Creating the Deployment Share

Mkdir “S:\Shared\MDTDeploymentShare”
New-PSDrive -Name “DS001” `
 -PSProvider “MDTProvider” `
 -Root “S:\Shared\MDTDeploymentShare” `
 -Description “MDT Deployment Share” `
 -NetworkPath “\\Procyon\MDTDeploymentShare$” `
 -Verbose |
 Add-MDTPersistentDrive -Verbose

New-PSDrive is the built-in command for creating Windows PowerShell drives. Normally,

this command just creates a shortcut to a �ile system or a registry location. In this case, it

not only creates a shortcut to a Deployment Share, but it also creates the share. When you

call New-PSDrive specifying the PSProvider parameter with MDTProvider and there is

not an existing Deployment Share at that location, it proceeds with the code to initialize the

Deployment Share. This includes setting up the basic structure of the Deployment Share.

The NetworkPath parameter is a custom parameter that allows you to specify the share

path that clients will use to connect to the Deployment Share. The cmdlet creates this

network share so that it is available to clients. To connect to a remote Deployment Share,

simply use the UNC path to the share.

Note
The NetworkPath parameter is a custom parameter that is specific to the MDT Provider type. It is not
discoverable with Get-Help or Get-Command. �

The Add-MDTPersistentDrive cmdlet registers the new Deployment Share into your pro�ile

so that it is automatically reopened either by the Deployment Workbench or by issuing

c17.indd 443c17.indd 443 03/09/11 11:01 AM03/09/11 11:01 AM

444

Part IV: Server Applications

the Restore-MDTPersistentDrive cmdlet in Windows PowerShell. When you reopen

Windows PowerShell at a later time, you can simply load the module and execute Restore-
MDTPersistentDrive to restore all of the Deployment Shares that you had opened.

To permanently remove a Deployment Share so that it should not be opened again, the

Remove-MDTPersistentDrive is the command you want.

Creating the MDT Database
MDT also includes the ability to utilize a database for con�iguration settings that can be

used in various deployment scenarios. The database is essentially a centralized version of

the CustomSettings.ini �ile used to store con�iguration information.

Before creating the database, you have to create a share on your SQL Server system. This

is required to make a Windows integrated security connection from Windows PE. The

Windows PE image �irst needs to establish a secure connection to the server and uses this

share access to accomplish that.

To create the database, you use the New-MDTDatabase cmdlet, specifying the SQL Server,

database, and share name. Other parameters can be used to specify connection details such

as port and connection method. The relevant parameters are as follows:

� Path: Path to the deployment share.

� SQLServer: Name of the SQL Server.
� Instance: Name of the SQL Server instance.

� Port: The TCP/IP port number for the SQL Server instance.

� NetLib: The network library that is used for communication. “DBNMPNTW” for

Named Pipes and “DBMSSOCN” for TCP/IP Sockets.

� Database: The name of the database that will be created.

� SQLShare: The �ile share that will be used for authentication by Windows PE.

The following command shows an example of the cmdlet accepting some of the default

values for parameters, which are not speci�ied:

New-MDTDatabase -Path “DS001:\” `
 -SQLServer SQLServer `
 -Database MDT `
 -SQLShare MDTShare

Importing Operating Systems
What good would a deployment solution be if you didn’t have any operating systems to deploy?

Your next step is to add the operating systems to the Deployment Share. In Listing 17-2,

you see two different types of operating systems that can be imported into your Deployment

Share. Although not shown in this example, you can also import images from a Windows

c17.indd 444c17.indd 444 03/09/11 11:01 AM03/09/11 11:01 AM

445

Chapter 17: Managing Microsoft Deployment Toolkit 2010

Deployment Services (WDS) server. The �irst line of the listing imports the Windows 2008

R2 operating system from the expanded DVD source �iles, and the second example imports a

custom Windows 7 image �ile in the Windows Imaging Format (WIM).

Note
When you import the Windows 7 and Windows 2008 R2 operating systems, you will notice numerous entries
in the Operating Systems tab in the Deployment Workbench. This is because Microsoft puts every edition of a
product on a single DVD. When you import the operating systems, you will have an entry for each edition. �

LISTING 17-2

Adding Operating Systems

Import-MDTOperatingSystem -Path “DS001:\Operating Systems” `
 -SourcePath “S:\Software\Operating Systems\2008R2” `
 -DestinationFolder “Windows Server 2008 R2” `
 -Verbose
Import-MDTOperatingSystem -Path “DS001:\Operating Systems” `
 -SourceFile “S:\Software\Operating Systems\custom.wim” `
 -DestinationFolder “Windows 7 x64 (Custom)” `
 -Verbose

For this cmdlet, you should note the following relevant parameters:

� Path: Path to the deployment share

� SourcePath: Path to the operating system source �iles

� DestinationFolder: Name of the folder that should be created in the Deployment

Share for the operating system

� Move: Switch indicating that the �iles should be moved instead of copied

When you execute this cmdlet, MDT pulls the operating system �iles and extracts and copies

them to the Deployment Share. During this process, you will see a progress bar indicating

the current status of the task.

The operating system entries in the Provider do not contain any properties you can set,

but you can retrieve properties of the operating systems like Size, Build, and Language

for reporting.

Importing Device Drivers
After importing the operating systems, you now need to import drivers to make all of that

hardware work properly. Listing 17-3 shows how to add drivers to the Deployment Share.

This listing adds the drivers from our company’s driver repository.

c17.indd 445c17.indd 445 03/09/11 11:01 AM03/09/11 11:01 AM

446

Part IV: Server Applications

LISTING 17-3

Adding Drivers

Mkdir “DS001:\Out-of-Box Drivers\Laptops”
Import-MDTDriver -Path “DS001:\Out-of-Box Drivers\Laptops” `
 -SourcePath “\\Server\Drivers\” -Verbose

MDT starts at the speci�ied path and navigates through it and every child folder, searching

for drivers, including ones located within .cab �iles. It then imports each driver into the

Deployment Share. This saves time because you don’t have to add each driver individually.

MDT detects the driver type and what hardware it is applicable to.

Although you could easily add all drivers into a single folder, that could end up unwieldy.

By separating the drivers into manageable folders, you can separate the drivers, which

will be immensely helpful when you need to create media and limit the driver detection to

speed up the build process. You could even create targeted driver folders that only contain

drivers for targeted hardware platforms.

The Driver entries do not contain any settable properties, but you can retrieve properties

of the drivers like Manufacturer, Version, Platform, and Plug-And-Play IDs.

Importing Applications
In MDT, there are three basic types of applications that are available to your deployed

operating systems, with source �iles, without source �iles, and bundles. Each of these types

is explored within this section, and you learn how to use Windows PowerShell to add them

to your deployment share.

With Source Files
Now, you will add the applications. For this step, you use the Import-MDTApplication

cmdlet. In Listing 17-4, you add the Microsoft Security Essentials antivirus software.

For the cmdlet, you specify the information identifying the software as well as

the command line to install the software and where to get the source �iles from. The

DestinationFolder indicates where on the disk the package will exist. The Path is what

node the application will exist in within the Deployment Workbench.

The relevant parameters for this example are:

� Path: Path to the deployment share.

� Enable: Whether the application is available to deployment wizards.

� Name: Name of the application.

� ShortName: Name of the folder in which the application resides.

� Version: Version number of the application.

� Publisher: Publisher of the application.

c17.indd 446c17.indd 446 03/09/11 11:01 AM03/09/11 11:01 AM

447

Chapter 17: Managing Microsoft Deployment Toolkit 2010

� Language: Language of the application.

� CommandLine: The complete command line that is used to install the application.

� WorkingDirectory: The relative directory to perform the installation from.

� ApplicationSourcePath: The folder containing the source �iles for the application

you are importing.

� DestinationFolder: This is the physical folder on the �ile system where the source

�iles should be placed. This is not the same as what is shown in the Deployment Share.

LISTING 17-4

Adding Software with Source Files

$MDTApplication = @{
 Path = “DS001:\Applications”
 Enable = “True”
 Name = “Microsoft Security Essentials 2.0.657.0”
 ShortName = “Microsoft Security Essentials”
 Version = “2.0.657.0”
 Publisher = “Microsoft”
 CommandLine = “mseinstall.exe /s /runwgacheck”
 WorkingDirectory = “.\Applications\Microsoft Security Essentials 2.0.657.0”
 ApplicationSourcePath = “\\DFS\Share\Microsoft\Security Essentials”
 DestinationFolder = “Microsoft Microsoft Security Essentials 2.0.657.0”
 Verbose = $True
}
Import-MDTApplication @MDTApplication

The interesting thing to note with this example is that some of these properties such as

Version, Publisher, and Language are not actually parameters of the cmdlet. They are

the properties of the application object itself as demonstrated in the following code:

Get-ItemProperty ‘.\Microsoft Microsoft Security Essentials 2.0.657.0’

PSPath : Microsoft.BDD.PSSnapIn\MDTProvider::DS001:\Applications\
 Microsoft Microsoft Security Essentials 2.0.657.0
PSParentPath : Microsoft.BDD.PSSnapIn\MDTProvider::DS001:\Applications
PSChildName : Microsoft Microsoft Security Essentials 2.0.657.0
PSDrive : DS001
PSProvider : Microsoft.BDD.PSSnapIn\MDTProvider
guid : {3d569334-a0e5-4b9b-84a4-1fa1c952f4fc}
hide : False
enable : True
Comments :
CreatedTime : 1/17/2011 10:20:42 PM
CreatedBy : MILKYWAY\Meson
LastModifiedTime : 1/22/2011 12:48:08 PM

c17.indd 447c17.indd 447 03/09/11 11:01 AM03/09/11 11:01 AM

448

Part IV: Server Applications

LastModifiedBy : MILKYWAY\Meson
DisplayName : Microsoft Security Essentials
ShortName : Microsoft Security Essentials
Version : 2.0.657.0_biteme
Publisher : Microsoft
Language :
Source : .\Applications\Microsoft Microsoft Security Essential
CommandLine : mseinstall.exe /s /runwgacheck
WorkingDirectory : .\Applications\Microsoft Security Essentials 2.0.657
UninstallKey :
Reboot : True
SupportedPlatform : {}
Dependency : {}

To modify the parameters after creation, you use Set-ItemProperty like this:

Set-ItemProperty -Path “.\Microsoft Microsoft Security Essentials 2.0.657.0” `
 -Name Version `
 -Value “2.0.657.01”

In this example, you set the Version property of the application object.

Without Source Files
If you maintain a central storage repository and don’t want to copy all of your �iles into

the Deployment Share, you can add the link to the software without actually copying the

software. The difference between Listing 17-5 and Listing 17-4 is the addition of the NoSource

parameter. This tells MDT not to copy the software and to leave it in its current location.

LISTING 17-5

Adding Software Without Source Files

$MDTApplication = @{
 Import = $True
 MDTApplication = $True
 Path = “DS001:\Applications\Required”
 Enable = $true
 Name = “Citrix ICA Client”
 ShortName = “ICA Client”
 Version = “12.0”
 Publisher = “Citrix”
 Language = “English”
 CommandLine = “\\DFS\Share\Citrix\CitrixOnlinePluginWeb.exe /silent”
 WorkingDirectory = “”\\DFS\Share\Citrix”
 NoSource = $true
 Verbose = $true
}
import-MDTApplication @MDTApplication

c17.indd 448c17.indd 448 03/09/11 11:01 AM03/09/11 11:01 AM

449

Chapter 17: Managing Microsoft Deployment Toolkit 2010

Caution
If you add the software without copying the source files, you must guarantee that the account used for the
installation has the required permissions to access the software. �

Bundles
The third application type that can be added is a bundle. Bundles are not actually software that

is installed on a system, but merely a collection of software. For example, Listing 17-6 creates

a bundle that represents all of the required software packages for your environment. Envision

this as all the software that must be loaded on each and every computer in your environment.

You could add each individual component, but it is much easier to add a single bundle.

LISTING 17-6

Adding a Bundle

Import-MDTApplication -Name “Required Software” `
 -ShortName Required `
 -Bundle `
 -Dependency “{3d569334-a0e5-4b9b-84a4-1fa1c952f4fc}”

Dependency indicates which software in the deployment share is contained in the bundle.

In this case, the value listed here is the GUID of the Microsoft Security Essentials software

that added to the Deployment Share in Listing 17-4. You could just as easily have used a

script to dynamically populate the GUID(s).

Creating Task Sequences
Now, you have all of the components required to deploy your operating system in your MDT

environment. You just need to give it the instructions so that everything can be connected.

You do this with Task Sequences. Task Sequences are the steps or instructions for deploying

the operating systems and applications, and performing whatever custom scripts are needed.

In Listing 17-7 you create a Task Sequence for deploying a Windows 7 operating system. You

specify the required parameters for the sequence, including the operating system.

LISTING 17-7

Creating a Task Sequence

$MDTTaskSequence = @{
Path = “DS001:\Task Sequences”
Name = “Windows 7 Ultimate Base Build”
Template = “Client.xml”
Comments = “”
ID = “Win7_Build”

continues

c17.indd 449c17.indd 449 03/09/11 11:01 AM03/09/11 11:01 AM

450

Part IV: Server Applications

LISTING 17-7 (continued)

Version = “1.0”
OperatingSystemPath = “DS001:\Operating Systems\i
 Windows 7 ULTIMATE in Windows 7 x64 install.wim”
FullName = “Windows User”
OrgName = “Windows Org”
HomePage = “about:blank”
ProductKey = “XXXXX-XXXXX-XXXXX-XXXXX-XXXXX”
AdminPassword = “password”
Verbose = $true
}
Import-MDTTaskSequence @MDTTaskSequence

The template �ield is used to specify the deployment template for the task sequence.

Templates are XML �iles that describe all of the steps required to complete the task sequence.

Some templates are included with the product and are described in Table 17-1.

TABLE 17-1

Task Sequence Template

Name File Description

Sysprep and Capture CaptureOnly.xml Captures only an image of the reference computer

Standard Client Task
Sequence

Client.xml Creates the default task sequence for deploying
operating system images to client computers,
including desktop and portable computers

Standard Client
Replace Task
Sequence

ClientReplace.xml Backs up the system entirely, backs up the user
state, and wipes the disk

Custom Task
Sequence

Custom.xml Creates a customized task sequence that does not
install an operating system

Standard Server Task
Sequence

Server.xml Creates the default task sequence for deploying
operating system images to server computers

Litetouch OEM Task
Sequence

LTIOEM.xml Preloads operating system images on computers
in a staging environment prior to deploying the
target computers in the production environment
(typically by a computer OEM)

Post OS Installation
Task Sequence

StateRestore.xml Performs installation tasks after the operating
system has been deployed to the target computer

c17.indd 450c17.indd 450 03/09/11 11:01 AM03/09/11 11:01 AM

451

Chapter 17: Managing Microsoft Deployment Toolkit 2010

Most of these templates can be used as is for system deployment. However, as you progress,

you will want to de�ine custom templates to perform such tasks as installing software. If you

use any of the provided templates, you only need to specify the �ilename to the Template

property. For custom templates, you will need to specify the full path to the template �ile.

Managing the Deployment Share
Now that you have created the deployment share and have added operating systems and

applications, you need to be able to perform maintenance on your deployment share.

Configuring the Deployment Share
Once you have created your Deployment Share, you then need to con�igure it. If you have

been looking around, you might have noticed that there is no cmdlet for con�iguring the

Deployment Share, or any component for that matter. This is where the MDT custom

Windows PowerShell Provider comes in.

For each component in the MDT Deployment Share, custom properties are exposed

via the Windows PowerShell Provider. For example, to see all of the Deployment Share

properties, execute:

Get-ItemProperty DS001:\

When you execute the command, you will get a listing similar to Figure 17-1.

FIGURE 17-1

Deployment share properties

c17.indd 451c17.indd 451 03/09/11 11:01 AM03/09/11 11:01 AM

452

Part IV: Server Applications

Each property listed is associated with the Deployment Share and corresponds to a property

that is accessible from the Deployment Toolkit. For example, there is a property, Boot.x86
.BackgroundFile, which corresponds to the image that is used for the background in the

Windows PE image. Your company wants to use a customized image instead of the default

image. You can simply use the following command to make the change:

Set-ItemProperty -Path DS001:\ `
 -Name Boot.x86.BackgroundFile `
 -Value “\\Server\Images\Custom.bmp”

The change is made immediately; however, you may have to close and reopen the

Deployment Toolbox console if you have it open in order for it to recognize the changes.

There is also no documentation provided for each property. If you want to know more, you

will have to match the property to the corresponding entry in the Deployment Toolbox and

then use the help to get the information.

Note
If you receive the message “The MDT Drive is being opened” when you open the drive or try and set a property,
make sure you opened the PowerShell console as an administrator. The following code snippet can be used to verify:

$User = [Security.Principal.WindowsIdentity]::GetCurrent()
$UserPrincipal = New-Object Security.Principal.WindowsPrincipal $user
$UserPrincipal.IsInRole([Security.Principal.WindowsBuiltinRole]::Administrator) �

Updating the Deployment Share
When you update the deployment tool �iles, such as those included from the Windows

Automated Installation Kit (AIK), you need to update your Deployment Share to include

those �iles. Also, if you tweak any of the Windows PE �iles, you need to regenerate the boot

�iles. To accomplish this, use the Update-MDTDeploymentShare cmdlet, specifying the

Windows PowerShell Provider path to the Deployment Share:

Update-MDTDeploymentShare -Path DS001:\

Note
The boot media is not created when you create the Deployment Share, so you have to update the Deployment
Share at least once before you can deploy any operating systems. �

Managing Media
Once the deployment share has been created and populated, you need to create the media.

The media will contain the bootable image that will build your target systems.

Creating Media
MDT enables you to generate media images that contain all or a subset of the Deployment

Share contents so that you can perform stand-alone deployments from removable media

when access to the Deployment Share does not exist or is very poor.

c17.indd 452c17.indd 452 03/09/11 11:01 AM03/09/11 11:01 AM

453

Chapter 17: Managing Microsoft Deployment Toolkit 2010

The �irst step is to create the media entry in the Deployment Share as demonstrated in

Listing 17-8. The relevant parameters for this example are:

� Path: The location within the Deployment Share’s logical structure.

� Name: Name you want to give to your media location.

� SelectionProfile: The content you want copied to the media when you generate.

Possible values are Everything, Nothing, Sample, All Packages, All Drivers, All

Drivers and Packages.

� SupportX86: Whether or not you want to generate 32-bit boot image.

� SupportX64: Whether or not you want to generate 64-bit boot image.

� GenerateISO: Whether or not you want to generate the boot ISO. If you didn’t

make any changes that need to be updated, excluding this step can shorten the

update process.

� ISOName: If you chose to generate the ISO, this is the name that you want given

to the ISO.

LISTING 17-8

Creating the Deployment Media

$item = @{
Path = “DS001:\Media”
Name = “MEDIA001”
Comments = “”
Root = “S:\Media”
SelectionProfile = “Everything”
SupportX86 = “True”
SupportX64 = “True”
GenerateISO = “True”
ISOName = “LiteTouchMedia.iso”
Verbose = $True
}
New-Item @item

Generating Media
When you “create media,” the boot images aren’t actually created. You are essentially just

creating a record of the media location and its properties in the deployment share as well

as creating a blank folder structure. To actually generate the media, you need to perform

another step:

Update-MDTMedia -Path “DS001:\Media\Media001”

c17.indd 453c17.indd 453 03/09/11 11:01 AM03/09/11 11:01 AM

454

Part IV: Server Applications

Update-MDTMedia performs the work of copying all of the data and generating boot

images as described when you created the media. Once you complete this step, the

media is ready to be burned to removable media.

When you add applications, drivers, or any other content to your Deployment Share, you

are going to want to update your media to make sure those updates get pushed out. The

following line iterates through all of the media in the Deployment Share and updates each

of the media locations:

Get-ChildItem -Path DS001:\Media |
 ForEach-Object { Update-MDTMedia -Path DS001:\Media\$($_.Name) }

Depending on your environment, this is probably a good line to add to your scripts

whenever you update the Deployment Share so that you can be assured that at least the

media share is up-to-date. You still have to burn new media, of course.

Summary
In this chapter, you explored the Microsoft Deployment Toolkit and how to manage it with

Windows PowerShell. Starting with creating a deployment share, you progressed through

adding operating systems and applications. Finally, you generated the media to build your

target systems.

In the next chapter, you learn about the Citrix XenApp 6 platform. XenApp is Citrix’s

solution for server-based computing and provides enhancement to Microsoft’s

Remote Desktop Services.

c17.indd 454c17.indd 454 03/09/11 11:01 AM03/09/11 11:01 AM

455

C H A P T E R

IN THIS CHAPTER
Managing administrators

Creating and modifying
published resources

Gathering information from
users’ sessions

Controlling servers

Managing Citrix
XenApp 6

The Citrix XenApp product line has undergone many name

changes over the years, but at its core, it has remained the same.

XenApp is still the leader in the server-based computing arena.

In XenApp 6, the original programming interface (MFCOM) was

discarded in favor of Windows PowerShell. Now, any automation

performed is done with Windows PowerShell.

Installing and Using the Cmdlets
Citrix XenApp 6 comes with three snap-ins that are used to manage

the product:

� Citrix.Common.Commands

� Citrix.Common.GroupPolicy

� Citrix.XenApp.Commands

Citrix.Common.Commands is a generic snap-in that is supplied with

several Citrix products. It contains cmdlets for working with various

aspects of the environment, but not speci�ically targeted at XenApp.

For example, the majority of the cmdlets interact with the Citrix

tracing facility. These cmdlets would be extremely useful if you

interact with the diagnostics facility in your environment.

Citrix.Common.GroupPolicy is different from the other snap-ins

because it does not actually contain any cmdlets at all. Its sole purpose

is to provide a Windows PowerShell Provider that represents the Citrix

Group Policy con�iguration. It essentially represents the policies like

�iles and folders on a �ilesystem.

c18.indd 455c18.indd 455 02/09/11 11:42 AM02/09/11 11:42 AM

456

Part IV: Server Applications

Citrix.XenApp.Commands is the workhorse of the snap-ins. It contains all of the cmdlets

for interacting with XenApp and is the snap-in that you will work with the most.

What’s New in XenApp 6
XenApp 6 is the latest version of the XenApp product line. XenApp 6, which is available only for

Windows Server 2008 R2, is a revolutionary new version. For the �irst time since the product’s

inception, MFCOM, the XenApp API, is no longer present. Instead, Windows PowerShell has

been promoted to the task of providing an interface for programming against XenApp.

If you have developed custom scripts and code for previous versions of XenApp, you have

become all too familiar with MFCOM. For those who haven’t, MFCOM or MetaFrame COM

is a COM-based API for interacting with XenApp. It has done its job of providing methods

for automating XenApp components. But it required the use of COM objects, wasn’t very

intuitive, and required you to deal with interfaces for the different versions.

Beginning natively in XenApp 6 and retroactively for XenApp 5, Citrix introduced Windows

PowerShell cmdlets for managing XenApp. In XenApp 6, MFCOM no longer exists, and

Windows PowerShell is the of�icial method for managing XenApp components.

Note
You should always download the latest version of the XenApp Windows PowerShell cmdlets from the Citrix
Developer network at http://community.citrix.com/display/xa/XenApp+6+PowerShell+SDK. �

Working with Administrators
In the XenApp environment, three types of administrators exist:

� Full: Administrators with full administrative rights over the entire XenApp farm.

� ViewOnly: Administrators with read-only rights over the entire XenApp farm.

� Custom: Administrators with custom permissions set for individual components

of the XenApp farm.

When you add an administrator to the XenApp farm, you make them one of these three

types of administrator. Full and ViewOnly are built-in types that grant a particular right to

all components of the XenApp farm. Custom, on the other hand, gives you granular control

over what actions the administrator can do and on what objects.

Retrieving Administrators
To retrieve the administrators in your XenApp farm, you use the Get-XAAdministrator

cmdlet. As illustrated in the following code, this cmdlet, executed with no options, lists all

the administrators in your farm.

c18.indd 456c18.indd 456 02/09/11 11:42 AM02/09/11 11:42 AM

457

Chapter 18: Managing Citrix XenApp 6

Get-XAAdministrator
AdministratorName : MILKYWAY\Meson
AdministratorType : Full
Enabled : True
FarmPrivileges :
FolderPrivileges :

AdministratorName : MILKYWAY\domain users
AdministratorType : ViewOnly
Enabled : True
FarmPrivileges :
FolderPrivileges :

AdministratorName : MILKYWAY\Domain Admins
AdministratorType : Custom
Enabled : True
FarmPrivileges : {LogOnConsole}
FolderPrivileges : {}

The privileges are explained later in this chapter, but you can see the three types of

administrators. Another useful function of this cmdlet is that you can retrieve the

permissions for the currently logged-in user by using the Current parameter. In the

following code, execution of this line returns the administrator account for the user

running the command. This is useful in determining whether the person running the script

has the necessary permissions to perform the tasks de�ined in the script.

Get-XAAdministrator -Current
AdministratorName : MILKYWAY\Meson
AdministratorType : Full
Enabled :
FarmPrivileges :
FolderPrivileges :

Adding and Removing Administrators
To add a new administrator, you must use the New-XAAdministrator cmdlet, which accepts

the following relevant parameters:

� AdministratorName: The name of the administrator that you are adding.

� AdministratorType: The type of the administrator. Possible values are Full,

ViewOnly, and Custom.

� Enabled: Whether the administrator account should be enabled when added.

� FarmPrivileges: The farm privileges speci�ied for the administrator account.

Only the AdministratorName is required by the cmdlet. If you just specify the cmdlet with

that parameter, it creates a ViewOnly administrator:

New-XAAdministrator -AdministratorName “MilkyWay\Domain Users”

c18.indd 457c18.indd 457 02/09/11 11:42 AM02/09/11 11:42 AM

458

Part IV: Server Applications

This command set up the Domain Users group for the domain as administrators with

read-only rights to the farm. To create a full administrator, add the AdministratorType

parameter with the Full value:

New-XAAdministrator -AdministratorName “MilkyWay\Domain Admins” `
 -AdministratorType Full

Now you have an administrator group that is full of administrators of your farm. Privileges

are discussed in the “Modifying Privileges” section, but for clarity, I include an example for

adding a custom administrator.

For this example, you want to create an administrator that has the ability to log on to the

console and view general farm information:

New-XAAdministrator -AdministratorName “MilkWay\Domain Users” `
 -AdministratorType Custom `
 -FarmPrivileges ViewFarm, LogOnConsole

Removing administrators from a XenApp farm could not be any easier. Executing the

Remove-XAAdministrator cmdlet with the name of the administrator is all that is needed:

Remove-XAAdministrator -AdministratorName “MilkyWay\Domain Users”

With this command, you have removed the Domain Users group from the administrators of

the farm.

Enabling and Disabling Administrators
There will be some instances when you want to grant and revoke administrator permissions

in certain circumstances. For example, you might need to have an administrator account

ready for a support organization that can be used only during engagements. To facilitate this

type of activity, you can enable and disable administrator accounts.

When you disable an account, you prevent it from being used, but it is still de�ined so you

don’t have to rede�ine it when you need it again. Say that you have a support organization

coming in to look at your farm and you need to re-enable their administrator account,

which allows them to look at all of your farm details. Use the following line of code:

Enable-XAAdministrator “MilkyWay\CitrixSupportOrganization”

Now, their account can be utilized to access your farm information. When they are done

with the engagement, you need to disable the account so neither they nor anyone else will

be able to use it to gain access to your information. Simply call Disable-XAAdministrator

the same way you called Enable-XAAdministrator:

Disable-XAAdministrator “MilkyWay\CitrixSupportOrganization”

c18.indd 458c18.indd 458 02/09/11 11:42 AM02/09/11 11:42 AM

459

Chapter 18: Managing Citrix XenApp 6

Modifying Privileges
Privileges exist in two forms in XenApp 6. You have farm privileges and folder privileges.

Farm privileges are privileges whose scope is the entire XenApp farm. Folder privileges,

however, are privileges that are scoped on certain folders within the XenApp farm.

First, look at farm privileges. Table 18-1 shows the available options for privileges and the

corresponding de�inition. Probably the most important one is the LogOnConsole privilege

because your administrator will need that just to open the console to do anything else.

TABLE 18-1

Farm Privilege

Property Privilege

ViewFarm View Farm Management

EditZone Edit Zone Settings

EditConfigurationLog Edit Configuration Logging Settings

EditFarmOther Edit All Other Farm Settings

ViewAdmins View Administrators

LogOnConsole Log on to the Management Console

LogOnWIConsole Edit Centrally Configured Web Interface Sites

ViewLoadEvaluators View Load Evaluators

AssignLoadEvaluators Assign Load Evaluators

EditLoadEvaluators Edit Load Evaluators

ViewLoadBalancingPolicies View Load Balancing Policies

EditLoadBalancingPolicies Edit Load Balancing Policies

ViewPrinterDrivers View Printer and Printer Drivers

ReplicatePrinterDrivers Replicate Printer Drivers

The next type of privilege is folder privileges. These are privileges that are assigned to

folders within. They can be assigned to the root of each of three folders — Applications,

Servers, and Worker Groups — or they can be applied to subfolders of the respective root

folder. Tables 18-2, 18-3, and 18-4 list the privileges for the Applications folder, Servers

folder, and Worker Groups folder, respectively.

c18.indd 459c18.indd 459 02/09/11 11:42 AM02/09/11 11:42 AM

460

Part IV: Server Applications

TABLE 18-2

Applications Folder Privileges

Property Privilege

ViewApplications View Published Applications and Content

EditApplications Publish Applications and Edit Properties

TerminateProcess Terminate Processes

ViewSessions View Session Management

ConnectSessions Connect Sessions

DisconnectSessions Disconnect Users

LogOffSessions Log Off Users

ResetSessions Reset Sessions

SendMessages Send Messages

TABLE 18-3

Servers Folder Privileges

Property Privilege

AssignApplicationsToServers Assign Applications to Servers

ViewServers View Server Information

EditOtherServerSettings Edit Other Server Settings

RemoveServer Move and Remove Servers

TerminateProcess Terminate Processes

ViewSessions View Session Management

ConnectSessions Connect Sessions

DisconnectSessions Disconnect Users

LogOffSessions Log Off Users

ResetSessions Reset Sessions

SendMessages Send Messages

c18.indd 460c18.indd 460 02/09/11 11:42 AM02/09/11 11:42 AM

461

Chapter 18: Managing Citrix XenApp 6

TABLE 18-4

Worker Groups Folder Privileges

Property Privilege

ViewWorkerGroups View Worker Groups

AssignApplicationsToWorkerGroups Assign Applications to Worker Groups

To illustrate adding privileges, I will use a real-world example. Your organization has a

helpdesk and you want to give them the ability to manage user sessions so they can assist

users. Listing 18-1 indicates the steps you follow to grant them the necessary rights.

In the �irst step, you create the administrator account for the Helpdesk Support

group, which in this case is the group of users that are in the helpdesk. You may

remember from the section on adding administrators that you could specify folder

privileges when the account is created. In this example, it is divided into separate

statements for clarity.

The second command utilizes Add-XAAdministratorPrivilege to add the ability to

log on to the management console. The third command speci�ies the folder privileges.

You could have combined the second and third commands, but they were separated

for clarity.

In the third command, you again use the Add-XAAdministratorPrivilege command

to add permissions. This time, because you are specifying a folder permission, you must

specify a folder path. In this case, you are specifying the Applications folder. For the

privileges you are granting the administrator the ability to view sessions, log off users’

sessions, reset their sessions, and send messages to users.

LISTING 18-1

Adding Privileges

New-XAAdministrator “MilkyWay\HelpDesk Support” -AdministratorType Custom
Add-XAAdministratorPrivilege -AdministratorName “MilkyWay\HelpDesk Support” `
 -FarmPrivileges LogonConsole
Add-XAAdministratorPrivilege -AdministratorName “MilkyWay\HelpDesk Support” `
 -FolderPath “Applications” `
 -FolderPrivileges ViewSessions, LogOffSessions, ResetSessions, SendMessages

c18.indd 461c18.indd 461 02/09/11 11:42 AM02/09/11 11:42 AM

462

Part IV: Server Applications

Note
Folder privileges in XenApp are set up such that they only apply to the folders themselves and not subfolders.
In Listing 18-1, you added privileges to the Applications folder. However, those privileges would not
propagate to child folders. If you add the following code, the privileges will apply to all child folders within
the Applications folder:

$AdminPriv = @{
 AdministratorName = “MilkyWay\HelpDesk Support”
 FolderPrivileges = “ViewSessions,
 LogOffSessions,
 ResetSessions,
 SendMessages”
}

Get-XAFolder -FolderPath “Applications” -Recurse | ForEach-Object {
 Add-XAAdministratorPrivilege @AdminPriv -FolderPath $_
}

The privileges will not, however, apply to the Applications folder itself, so you still need the statement for
the root folder. �

Providing Applications
Published applications are the central components to any XenApp farm. Without them,

there would be no need for any other component. Three primary types of published

applications exist in a XenApp farm:

� Server installed applications

� Content

� Desktops

If you include streamed applications, that adds a couple more Published Application types,

but those are beyond the scope of this book.

Retrieving Applications
Retrieving the published applications in your XenApp farm is a very important task, but it

is an extremely simple task. Within the Citrix XenApp cmdlets, this is accomplished with

the Get-XAApplication cmdlet. Simply executing this cmdlet without any parameters

returns all details of all the applications in the list. Most of the time, this is way too much

information, so you want to retrieve only the properties you want.

Get-XAApplication |
 Select-Object DisplayName, Enabled |
 Format-Table -AutoSize

c18.indd 462c18.indd 462 02/09/11 11:42 AM02/09/11 11:42 AM

463

Chapter 18: Managing Citrix XenApp 6

This example returns the display name of the application and whether or not it is enabled.

You can supply a few options to the Get-XAApplication cmdlet to retrieve a subset of

applications. Currently, you can specify browser name, folder path, server name, Worker

Group, �ile type name, account, and Load Evaluator name. For other properties, you would

use Select-Object to �ilter the results.

Publishing New Applications
To create new published applications of any type, you use the New-XAApplication cmdlet.

However, each of the different types uses different parameters of the cmdlet so each type is

covered in a separate section.

Server Installed Applications
Server installed applications are the published applications that XenApp administrators

are most familiar with. In fact, server installed applications are why they are called

published applications. Server installed applications are the applications that are installed

on the XenApp servers and presented to the users of the farm.

To create a new published application you use New-XAApplication with ApplicationType

speci�ied as ServerInstalled. This tells the cmdlet that you are going to create

a published application that points to a server installed application. DisplayName

speci�ies the name that is displayed for the application. The last required parameter is

the CommandLineExecutable, which speci�ies which application to launch. With these

parameters speci�ied, you can now create the published application:

New-XAApplication -DisplayName “Microsoft Notepad” `
 -ApplicationType ServerInstalled `
 -CommandLineExecutable ‘C:\WIndows\System32\notepad.exe’

This creates a published application that references Microsoft Notepad. However, this

application isn’t very useful. You didn’t specify where to publish the application from or to

whom you want to display the application. Without these items, the published application is

disabled. For those options, you use the ServerNames and Accounts properties:

 -ServerNames Server1, Server2 `
 -Accounts “Domain\Domain Users”

One last important parameter is FolderPath. FolderPath indicates in which folder

the application should be placed. As you saw earlier, folders are important in assigning

privileges, but they also offer much-needed organization to the environment. In this case,

you want to place the application into the Windows Applications folder:

 -FolderPath “Applications\Windows Applications”

When you place all of this code together, you end up with Listing 18-2.

c18.indd 463c18.indd 463 02/09/11 11:42 AM02/09/11 11:42 AM

464

Part IV: Server Applications

LISTING 18-2

Adding a Server Installed Application

New-XAApplication -DisplayName “Windows Notepad” `
 -ApplicationType ServerInstalled `
 -CommandLineExecutable ‘C:\WIndows\System32\notepad.exe’ `
 -ServerNames Server1, Server2 `
 -Accounts “Domain\Domain Users” `
 -FolderPath “Applications\Windows Applications”

More than a dozen more parameters are available that allow you to specify everything

from the size of the application to audio settings to encryption. If you don’t specify these

parameters, the application will accept the default setting de�ined for them.

Note
If you want granular control over each of the settings or want to override the default value for one, check out
the help file for New-XAApplication for additional information. �

Content
Content is not actually an application, but it is content that users access with applications

installed on their client workstations. Published content can be documents, websites, or

video presentations.

To publish content, you use the New-XAApplication cmdlet, specifying Content as the

ApplicationType. For this example, you want to publish a link to your company’s intranet site:

New-XAApplication -DisplayName “Intranet Website” `
 -ApplicationType Content `
 -ContentAddress “http://intranet.company.com”
 -Accounts “Domain\Domain Users” `

You specify the DisplayName and Accounts parameter as you did in the previous

example. Unlike the previous example, you don’t need to specify ServerNames because

nothing is actually launched from any servers. The new parameter in this example is the

ContentAddress parameter, which speci�ies the location of the content you want to publish.

If you want to publish a document to users, you can do so by using a Universal Naming

Convention (UNC) path as the ContentAddress.

Desktops
When you want to provide users with a full desktop experience where they can launch

their own applications, you create a desktop published application. Listing 18-3 adds a

server desktop. In my environment, I always add a published desktop for each server in my

farm for administrators.

c18.indd 464c18.indd 464 02/09/11 11:42 AM02/09/11 11:42 AM

465

Chapter 18: Managing Citrix XenApp 6

LISTING 18-3

Creating Published Desktops

$ServerName = “Server01”
 New-XAApplication -ApplicationType ServerDesktop `
 -DisplayName “$ServerName Desktop” `
 -FolderPath “Applications/Admin/Desktops” `
 -Description “Admin Desktop for Remote Administration” `
 -ClientFolder “Admin\Desktops” `
 -Accounts “$ServerName\Administrators” `
 -Servernames $Servername

By specifying the ApplicationType of ServerDesktop, you indicate that you are creating

a desktop published application. You also specify DisplayName, FolderPath, Description,

Accounts, and ServerName, which you have already seen previously. ClientFolder

is an option that determines what folder the application is placed in when it is presented to

the users.

Modifying Application Properties
You can modify applications with the Set-XAApplication cmdlet. It operates very

similarly to the New-XAApplication cmdlet you saw in the previous section. However, Set-
XAApplication uses the BrowserName to identify which application to modify.

I haven’t talked about browser names yet. Browser name is the unique identi�ier for

applications in the XenApp environment. In most cases, it is the same as the display name.

However, in cases where the display name is duplicated, the browser name is adjusted so

that it is unique. This is most easily demonstrated by duplicating an application.

Importing/Exporting Applications
As a Citrix administrator, there will be many times when you need to back up your applications

or move them from one environment to another. With Windows PowerShell, you will not

believe how easy it can be. There have been entire applications written for this purpose.

The heart of the solution is based on the Export-CliXml and Import-CliXml cmdlets,

which are a part of the base Windows PowerShell environment. Export-CliXml takes a

Windows PowerShell object and creates an XML-based representation of that object, which

is then saved to an XML �ile. Import-CliXml then takes that XML �ile and deserializes the

XML representation into a Windows PowerShell object. These objects aren’t attached to

actual physical implementations, so you can’t execute the object’s methods.

In the following example, you use Get-XAApplication to get the list of all applications in

your farm. You could easily restrict this list to any subset of applications that you want. You

c18.indd 465c18.indd 465 02/09/11 11:42 AM02/09/11 11:42 AM

466

Part IV: Server Applications

pipe the output of Get-XAApplication to Export-CliXml, which uses applications.xml

to store the serialized object:

Get-XAApplication | Export-Clixml .\applications.xml

Now, you move to your target farm. For this purpose, suppose that you are duplicating

your published applications from your production farm to your test farm. You copy the

applications.xml �ile to your test farm and then use Import-Clixml to deserialize

the data into a collection of Citrix.XenApp.Commands.XAApplication objects. These

objects don’t represent any physical entity, but do have all of the properties. By passing

them to New-XAApplication, you create applications with all of the properties of the

previous objects.

Import-CliXml .\applications.xml | New-XAApplication

Now you have duplicated your published applications on your test farm. But your test

farm has its own servers, which are, of course, named differently than your production

servers. No problem. You can specify the ServerNames property and override the servers

from which the applications are published. This will work on any property that the cmdlet

supports, such as Accounts if you wanted to change who the application was published to.

Import-Clixml .\applications.xml | New-XAApplication -ServerNames TestServer

Adding and Removing Assigned Accounts
Adding and removing accounts from applications is extremely easy by using the

Add-XAApplicationAccount and Remove-XAApplicationAccount cmdlets, respectively.

Each takes the name of the application and the accounts that you want to add or remove.

Add-XAApplicationAccount -BrowserName “Windows Notepad” `
 -Accounts “Domain\User”

Remove-XAApplicationAccount -BrowserName “Windows Notepad” `
 -Accounts “Domain\User”

Removing and Disabling Applications
To permanently remove an application from a farm, you use the Remove-XAApplication

cmdlet. It accepts the application’s BrowserName or you can pass an application object to it.

Remove-XAApplication -BrowserName “Windows Notepad”

If you just want to disable an application so that users can’t utilize it, but don’t want to

remove it completely, you use Disable-XAApplication, specifying the BrowserName:

Disable-XAApplication -BrowserName “Windows Notepad”

c18.indd 466c18.indd 466 02/09/11 11:42 AM02/09/11 11:42 AM

467

Chapter 18: Managing Citrix XenApp 6

Then, when you want to enable it, you use Enable-XAApplication:

Enable-XAApplication -BrowserName “Windows Notepad”

Managing Sessions
Every connection a user creates to a XenApp server results in a session. The XenApp

cmdlets allow for the management and thorough reporting of those sessions.

Enumerating Sessions
Now that you have published your applications, you want to know who is using them. For

this purpose, you look to the Get-XASession cmdlet.

Executing the cmdlet without any options returns all of the sessions in the XenApp farm.

Unfortunately, this includes the console sessions as well as any listeners you have con�igured.

Because you only want actual user sessions, you are going to include the -Farm switch.

Get-XASession -Farm

This command returns only actual user-related sessions. The code shows the information

returned on one of the sessions in your farm.

Get-XASession -Farm

SessionId : 3
SessionName : ICA-TCP#1
ServerName : Atlanta
AccountName : Milkyway\Meson
BrowserName : Published Desktop
State : Active
ClientName : Client
LogOnTime : 5/13/2011 9:16:13 AM
Protocol : Ica
VirtualIP :
EncryptionLevel : Basic
ServerBuffers :
ClientIPV4 :
ClientBuffers :
ClientBuildNumber :
ColorDepth : Colors16Bit
ClientDirectory :
ClientProductId :
HorizontalResolution :
VerticalResolution :
ConnectTime : 5/13/2011 9:16:05 AM

c18.indd 467c18.indd 467 02/09/11 11:42 AM02/09/11 11:42 AM

468

Part IV: Server Applications

DisconnectTime :
LastInputTime :
CurrentTime :
ClientCacheLow :
ClientCacheTiny :
ClientCacheXms :
ClientCacheDisk :
ClientCacheSize :
ClientCacheMinBitmapSize :

Notice in this example that there are blank entries for some of the properties. This is by

design. The Get-XASession cmdlet by default returns all of the properties of the session,

but it calculates only some of the values. This is because calculating those properties can be

very resource-intensive, especially when you have many sessions. To return those values,

you execute the same command with the -Full parameter:

Get-XASession -Farm -Full
SessionId : 3
SessionName : ICA-TCP#1
ServerName : Atlanta
AccountName : Milkyway\Meson
BrowserName : Published Desktop
State : Active
ClientName : Client
LogOnTime : 5/13/2011 9:16:13 AM
Protocol : Ica
VirtualIP :
EncryptionLevel : Basic
ServerBuffers : 0 x 0
ClientIPV4 : 192.168.1.25
ClientBuffers : 0 x 0
ClientBuildNumber : 30
ColorDepth : Colors16Bit
ClientDirectory : C:\PROGRA~2\Citrix\ICACLI~1\
ClientProductId : 1
HorizontalResolution : 864
VerticalResolution : 1536
ConnectTime : 5/13/2011 9:16:05 AM
DisconnectTime :
LastInputTime : 5/13/2011 9:17:11 AM
CurrentTime : 5/13/2011 9:17:14 AM
ClientCacheLow : 3145728
ClientCacheTiny : 32768
ClientCacheXms : 0
ClientCacheDisk : 0
ClientCacheSize : 0
ClientCacheMinBitmapSize : 0

c18.indd 468c18.indd 468 02/09/11 11:42 AM02/09/11 11:42 AM

469

Chapter 18: Managing Citrix XenApp 6

Now you can see all of the values populated. There is a lot of valuable information present

about the user’s session and client.

If you had to pull all of the sessions every time, you could be wasting a lot of time. This cmdlet

has parameters that enable you to specify which records are returned. Currently, you can

�ilter by server name, session ID, browser name, and account. For example, if you wanted to

�ind the sessions that were running Microsoft Word, you could use the following command:

Get-XASession -BrowserName “Microsoft Word”

Managing Session Processes
Another very powerful cmdlet in the XenApp arsenal is the Get-XASessionProcess

cmdlet. This cmdlet enables you to retrieve information about the executable the users are

running, not just the published applications. The following code shows one process that

was returned from the command. As you can see, you can get valuable information about

the processes that users are running. With this cmdlet, you have to specify the server name.

Get-XASessionProcess -Servername Atlanta
ProcessName : powershell_ise.exe
ProcessId : 5164
SessionId : 0
ServerName : Atlanta
AccountDisplayName : Milkyway\Meson
State : Unknown
CreationTime : 5/13/2011 7:59:08 AM
UserTime : 38704
KernelTime : 13000
BasePriority : 8
PeakVirtualSize : 0
CurrentVirtualSize : 0
PageFaultCount : 152877
PeakWorkingSetSize : 163897344
CurrentWorkingSetSize : 161873920
PeakPagedPoolQuota : 570144
CurrentPagedPoolQuota : 535928
PeakNonPagedPoolQuota : 50668
PageFileUsage : 169996288
PrivatePageCount : 0
PercentCpuLoad : 2.15

These results can be used to monitor your servers and see which processes are consuming

large amounts of resources or even track which processes users are running.

Managing Sessions
To disconnect active sessions for a user or group of users, you use the Disconnect-XASession

cmdlet. Disconnecting users puts their session into a disconnected state, which means that

c18.indd 469c18.indd 469 02/09/11 11:42 AM02/09/11 11:42 AM

470

Part IV: Server Applications

they can reconnect to it at a later time. The following examples demonstrate how you can

disconnect users that are using a speci�ied application, users that are logged in to a speci�ied

server, or any user or group of users that are passed to the cmdlet:

Disconnect-XASession -BrowserName “Microsoft Notepad”
Disconnect-XASession -ServerName “Server1”
Get-XASession -Account “Domain\User” | Disconnect-XASession

To reset a session, you use the Reset-XASession cmdlet. Reset-XASession works exactly

the same as Disconnect-XASession except that it resets the session. Resetting a session

terminates the session so that it is no longer available and a user cannot reconnect to it.

Reset-XASession -BrowserName “Microsoft Notepad”
Reset-XASession -ServerName “Server1”
Get-XASession -Account “Domain\User” |
 Reset-XASession

Maintaining Servers
The XenApp servers are the workhorses of the XenApp farm. They host and run the

applications that users depend on.

Managing Server Logons
When you need to work on one of your XenApp servers, you will need to make sure that no

users log on to the server while you are working. You do this by disabling the logons to the

server using the Disable-XAServerLogon cmdlet. The cmdlet simply takes the name of the

server for which you want to disable logons:

Disable-XAServerLogon -ServerName TestServer

To enable logons, you use the Enable-XAServerLogon cmdlet, again specifying the name of

the server:

Enable-XAServerLogon -ServerName TestServer

Note
The problem with disabling access to the servers with this method is that it disables all logons. This includes
when you try to connect to the server remotely to do the work. A better method that I employ in my
production network is to use load-balancing policies.

Create a load-balancing policy that uses a scheduling rule to disallow logins at any part of the day. Then apply
that policy to the server, using the method shown in the “Managing Load Evaluators” section later in this
chapter. This rule affects only connections that are load-balanced, so you can still remote directly into the
server. �

c18.indd 470c18.indd 470 02/09/11 11:42 AM02/09/11 11:42 AM

471

Chapter 18: Managing Citrix XenApp 6

Getting Server Load
To obtain the numerical load of your servers, you use the Get-XAServerLoad cmdlet.

Without any parameters, it retrieves the server name and load number for each of your

XenApp servers. If you specify a server name, it returns the load only for that speci�ic server.

Managing Load Evaluators
In the XenApp environment, server load is calculated based on a collection of rules. Each

rule is evaluated and combined to produce a number in the range of 0 to 10,000 with

0 representing no load and 10,000 representing a full load. When a user launches an

application, all servers hosting that application are compared, and the server with the

lowest load number receives the connection.

The load evaluator rules can be based on one of the conditions shown in Table 18-5.

TABLE 18-5

XenApp Load Evaluator Rules

Rule Load Calculation

Application User Load Based on number of users accessing a specific application

Context Switches Based on the number of context switches

CPU Utilization Based on the percentage of CPU utilization

Disk Data I/O Based on disk data I/O throughput

Disk Operations Based on the number of disk operations per second

IP Range Based on the IP address of the client requesting access

Load Throttling Based on logon operations occurring at time of request

Memory Usage Based on the available memory

Page Faults Based on the number of page faults per second

Page Swaps Based on the number of page swaps per second

Scheduling Based on the time of the day that the access is being requested

Server User Load Based on the total number of users on requested server

Getting Load Evaluators
To retrieve load evaluators, you use the Get-XALoadEvaluator cmdlet. Without any

parameters, you get a listing of all the load evaluators on the system.

Get-XALoadEvaluator

c18.indd 471c18.indd 471 02/09/11 11:42 AM02/09/11 11:42 AM

472

Part IV: Server Applications

You can also specify the server name or the browser name to get load evaluators attached

to particular servers or applications, respectively.

Get-XALoadEvaluator -ServerName MyServer
Get-XALoadEvaluator -BrowserName “Windows Notepad”

Creating Load Evaluators
This section does not address every load evaluator type listed in the “Managing Load

Evaluators” section. Instead, it addresses the general task of adding load evaluators with a

few examples. To �ind more information about the speci�ic load evaluator rules, consult the

Windows PowerShell help �ile.

When creating new load evaluators, you use the New-XALoadEvaluator cmdlet. After

specifying the name and the description of the load evaluator rule, you begin to add the

rules. In the following example, you create a load evaluator that allows logins only during

business hours. The scheduling rule is different from the rest in that you actually have

seven properties that de�ine the rule, one for each day of the week.

New-XALoadEvaluator -LoadEvaluatorName “BusinessHours” `
 -Description “Allows logins only during business hours.” `
 -SundaySchedule “00:00-00:00” `
 -MondaySchedule “08:00-17:00” `
 -TuesdaySchedule “08:00-17:00” `
 -WednesdaySchedule “08:00-17:00” `
 -ThursdaySchedule “08:00-17:00” `
 -FridaySchedule “08:00-17:00” `
 -SaturdaySchedule “00:00-00:00”

In the next example, you create a load evaluator that is an exact duplicate of the Advanced

load evaluator that is built into XenApp to illustrate that you can combine any of the rules:

New-XALoadEvaluator -LoadEvaluatorName “Copy of Advanced” `
 -Description “Use the Advanced Load Evaluator to limit memory usage,
 CPU utilization, and page swaps on a server for load management.”`
 -CPUUtilization 10, 90 `
 -LoadThrottling “High” `
 -MemoryUsage 10, 90 `
 -PageSwaps 0, 100

Notice that several of the rules accept two integer values. The �irst value is the low

watermark, which represents no load, and the second value is the high watermark, which

represents full load.

Applying Load Evaluators
The load evaluator has been created, and now you need to apply it to your servers. You do

this with the Set-XALoadEvaluator cmdlet. To apply it to a list of servers, you can supply

the list to the ServerName parameter.

c18.indd 472c18.indd 472 02/09/11 11:42 AM02/09/11 11:42 AM

473

Chapter 18: Managing Citrix XenApp 6

Set-XALoadEvaluator -LoadEvaluatorName “BusinessHours” `
 -ServerName “ATL-1”

However, if you want to apply it to a large number of servers, you can just pipe server

objects to the cmdlet, which applies the load evaluator to all of the servers in the farm, as

shown here:

Get-XAServer | Set-XALoadEvaluator -LoadEvaluatorName “Business Hours”

Note
Reset-XALoadEvaluator automatically attaches the Default load evaluator to the server(s) specified. I
discourage use of the Default load evaluator because it calculates load based only on the number of the users
and doesn’t take into account what they are doing. If you still want to use the Default load evaluator, I would
recommend you still use Set-XALoadEvaluator to explicitly change the load evaluator to Default as a clear
reminder of your intentions. �

Changing Server Zones
To change the zone membership of a server, use the Set-XAServerZone cmdlet. The

following example changes the Vega-2 server to the Earth Zone:

Set-XAServerZone -ServerName Vega-2 -ZoneName Earth

Caution
After changing the zone membership of a server, it is important to reboot the server as soon as possible to
avoid IMA DataStore corruption. �

Applying Load-Balancing Policies
Load-balancing policies were added to XenApp to allow administrators to direct users to

the least loaded XenApp server hosting published resources based on various �ilters.

Creating Load-Balancing Policies
Creating a load-balancing policy for XenApp is a multistep operation. The �irst step

involves creating the policy itself using the New-XALoadBalancingPolicy cmdlet. This

cmdlet differs from others in that it does not actually do any work; it simply creates a

blank policy.

$LBPolicy = New-XALoadBalancingPolicy -PolicyName “DRFailover” `
 -Description “DR Failover Policy”

Because this policy is used as you work through creating your load-balancing policy, assign

it to the $LBPolicy variable. In the next section, you con�igure the load-balancing policy.

c18.indd 473c18.indd 473 02/09/11 11:42 AM02/09/11 11:42 AM

474

Part IV: Server Applications

Configuring Load-Balancing Policies
In the previous section, you created the policy. Now, you will con�igure the policy. The

Set-XALoadBalancingPolicyConfiguration cmdlet includes several options for

con�iguring streaming options that won’t be covered. The parameter that you will be most

interested in is the WorkerGroupPreferences parameter. This parameter con�igures the

priority of the Worker Groups, which decides the order in which users are directed to

the Worker Groups. When a higher-priority Worker Group is unavailable or full, applicable

connections are sent to the next-highest Worker Group. When that Worker Group is full or

unavailable, connections are sent to the next-highest Worker Group.

Set-XALoadBalancingPolicy -PolicyName $LBPolicy `
 -WorkerGroupPreferences “1=MainSite”,”2=DRSite”

In this example, the MainSite is the primary Worker Group and has a higher priority;

DRSite is the lower-priority Worker Group. The next step in the process of creating and

con�iguring load balancing is creating the policy �ilter.

Applying Filters to Load-Balancing Policies
Load-balancing policies can be applied to users based on a combination of four conditions:

� Access Control

� Client IP Address

� Client Name

� Users

Using Access Control, you are able to load-balance users based on whether or not they come

through an Access Gateway or even if they meet de�ined Access Gateway policies. Client IP

Address allows you to direct users based on client IP address. Client Name allows you to

direct users based on the name of the client workstation, and Users allows you to direct

users based on user accounts or group membership.

Using Set-XALoadBalancingPolicyFilter, you apply load-balancing policies to users or

devices based on the conditions in the previous list. In this �irst example, you create a �ilter

based on the IP address of the client.

As with all of the �ilters, you �irst have to enable it for it to take effect. Just setting a value

does not apply the �ilter. In this example, setting ClientIpAddressEnabled to true enables

it and the AllowedIPAddresses sets the value:

Set-XALoadBalancingPolicyFilter -PolicyName “Internal Users” `
 -ClientIPAddressEnabled $True `
 -AllowedIPAddresses “10.0.0.0-10.255.255.255”

c18.indd 474c18.indd 474 02/09/11 11:42 AM02/09/11 11:42 AM

475

Chapter 18: Managing Citrix XenApp 6

Each �ilter condition also has a global condition that applies to all devices. For

example, to match all client devices regardless of the IP address, you would set

ApplyToAllClientAddresses to true:

Set-XALoadBalancingPolicyFilter -PolicyName “All Users” `
 -ClientIPAddressEnabled $True `
 -ApplyToAllClientAddresses $True

Conditions can be combined to apply a policy to a speci�ic subset of clients and/or users.

For example, in the following code you use the IP address condition and a user group

condition to target a policy to all of your executives that are accessing the system from an

internal network:

Set-XALoadBalancingPolicyFilter -PolicyName “Internal Executives” `
 -ClientIPAddressEnabled $True `
 -AllowedIPAddresses “10.0.0.0-10.255.255.255” `
 -AccountEnabled $True `
 -AllowedAccounts “Domain\Executives Group”

Worker Groups
Worker Groups are collections of XenApp servers that are managed as a single unit. Worker

Group membership can be explicit or dynamic, and a single server can be a member of one

or more Worker Groups. This provides very powerful capabilities for the management of

your XenApp servers.

Adding and Removing Worker Groups
You can add machines in one of three different ways:

� Specifying the names of the farm servers.

� Specifying an Active Directory group that will contain the servers.

� Specifying an Active Directory Organizational Unit that will contain the servers.

When adding a worker group you can actually mix the conditions, such as specifying group

and server names. You can also specify more than one condition as shown here:

New-XAWorkerGroup -WorkerGroupName MyWorkerGroup `
 -Description “My Worker Group” `
 -FolderPath “WorkerGroups/Testing” `
 -ServerNames “ATL-1” `
 -ServerGroups “OfficeServers” `
 -OUs “OU=Resources,DC=Domain,DC=com”, “OU=Servers, DC=Domain,DC=com

c18.indd 475c18.indd 475 02/09/11 11:42 AM02/09/11 11:42 AM

476

Part IV: Server Applications

As you can see, server names, server groups, and Organizational Units are all speci�ied

with multiple Organizational Units speci�ied in addition. Also included in this command is

the folder path where the Worker Group is created.

Another method for adding a Worker Group is to copy an existing one using

Copy-XAWorkerGroup. This cmdlet takes an existing Worker Group and creates an

exact duplicate. You are able to specify the folder location of the Worker Group, but the

name will automatically be the name of the existing Worker Group with a counter added

to the end.

PS> $WorkerGroup = Copy-XAWorkerGroup -WorkerGroupName MyWorkerGroup `
>> -FolderPath “WorkerGroups\AnotherFolder”
>>
PS> $WorkerGroup.WorkerGroupName
MyWorkerGroup-1

You remove worker groups with the Remove-XAWorkerGroup cmdlet, which requires only

the name of a worker group:

Remove-XAWorkerGroup -WorkerGroupName MyWorkerGroup

Modifying Worker Groups
You modify worker groups using the Set-XAWorkerGroup cmdlet, which allows you to

change any of the Worker Group properties except for folder path and name, which are

covered next.

To change the description of the worker group, you use the Description parameter to set

the new description:

Set-XAWorkerGroup -WorkerGroup MyWorkerGroup `
 -Description “My New Description”

To change the server names, server groups, or Organizational Units, you would use the

appropriate parameter and specify your replacement value. One thing to note is that you

are replacing the existing value. To add a value, you would need to retrieve the existing

value and then add your new value to it. Then reference the resulting value in the cmdlet.

$WGServers = (Get-XAWorkerGroup -WorkerGroupName MyWorkerGroup).ServerNames
$WGServers += Vega-2”
Set-XAWorkerGroup -WorkerGroupName MyWorkerGroup `
 -ServerNames $WGServers

Changing the folder location of a Worker Group is accomplished with the Move-
XAWorkerGroup cmdlet. The ToFolderPath parameter is used to specify the new folder path:

Move-XAWorkerGroup -WorkerGroupName MyWorkerGroup `
 -ToFolderPath “WorkerGroups/NewFolder”

c18.indd 476c18.indd 476 02/09/11 11:42 AM02/09/11 11:42 AM

477

Chapter 18: Managing Citrix XenApp 6

To change the name of a Worker Group, use the Rename-XAWorkerGroup cmdlet. Here,

NewName is the name you want to change your Worker Group to:

Rename-XAWorkerGroup -WorkerGroupName MyWorkerGroup `
 -NewName MyNewWorkerGroupName

Summary
In this chapter, you learned how to use Windows PowerShell to manage your XenApp 6

environment. Starting with administrators, you then proceeded to manage applications,

interact with sessions, and maintain servers. Finally, you were introduced to load-balancing

policies and worker groups.

In the next chapter, you will be introduced to XenDesktop 5, Citrix’s answer to the virtual

desktop infrastructure (VDI) arena. A complete re-architecture of the previous version,

this version was built with Windows PowerShell in mind from the very beginning.

c18.indd 477c18.indd 477 02/09/11 11:42 AM02/09/11 11:42 AM

c18.indd 478c18.indd 478 02/09/11 11:42 AM02/09/11 11:42 AM

479

C H A P T E R

IN THIS CHAPTER
Setting up a XenDesktop

environment

Managing administrators

Adding collections

Creating policies

Working with hosts

Managing Citrix
XenDesktop 5

The latest version of the Citrix XenDesktop solution is a complete

re-architecture of the product. It is no longer based on the

standard Integrated Multi-system Architecture (IMA) that has

powered the XenApp product for many years. This redesign is touted

as being able to scale to much larger enterprise environments than

the preceding versions. Another important factor in the redesign is

that the management architecture is based completely on Windows

PowerShell. Windows PowerShell serves as the backbone for

everything you do in the Desktop Studio, the GUI-based configuration

utility. And, with a little research, you can effectively manage your

XenDesktop environment without even touching the GUI.

Note
The Citrix XenDesktop 5 product is a specialized product sold by Citrix Systems,
Inc. If you do not have this product installed but are interested in following
along with this chapter, you can download an evaluation copy at http://
deliver.citrix.com/go/citrix/XDExpress.

This product supports SQL Server 2008 and 2008 R2 and will not work with
earlier versions of SQL Server. �

Introducing Citrix XenDesktop 5
To begin your introduction to Citrix XenDesktop 5 and Windows

PowerShell, you start by learning how even the graphical management

console leverages Windows PowerShell. Next, you investigate the

snap-ins that power the functionality. And �inally, you learn how

to set up and con�igure your XenDesktop database using Windows

PowerShell commands alone.

C H A P T E R

c19.indd 479c19.indd 479 03/09/11 11:02 AM03/09/11 11:02 AM

480

Part IV: Server Applications

Examining the Windows PowerShell Tab
Citrix Desktop Studio is the GUI-based con�iguration utility for managing a XenDesktop

environment. When you open the Desktop Studio, you will immediately notice a tab in the

main window labeled PowerShell. When you navigate to this tab, you will, at the minimum,

see a couple of Windows PowerShell commands that the Desktop Studio used to connect to

the XenDesktop installation.

As illustrated in Figure 19-1, every action you perform in the Desktop Studio is recorded

and executed using Windows PowerShell to perform the actual commands. The Desktop

Studio is just the user-friendly interface. As you perform your daily work, Desktop Studio

keeps track of every Windows PowerShell command it executes and keeps track of the

commands in the PowerShell tab. You can use it to go back to a prior command to see

what the actual Windows PowerShell command is. This is an excellent way of learning the

Windows PowerShell cmdlets. You can do your normal work in Desktop Studio and then

see how it was done in Windows PowerShell. You can use the Launch PowerShell button

in the lower-right corner of the main window, as shown in Figure 19-1, to launch Windows

PowerShell and execute the commands right away. All of the XenDesktop snap-ins are

automatically loaded.

FIGURE 19-1

The Desktop Studio interface

Windows

PowerShell

commands

are tracked

here

Launch Windos

Pow console

here

c19.indd 480c19.indd 480 03/09/11 11:02 AM03/09/11 11:02 AM

481

Chapter 19: Managing Citrix XenDesktop 5

Exploring the Snap-Ins
XenDesktop 5 offers several different snap-ins for managing the XenDesktop environment.

The snap-ins each provide a method for managing the various components of the product.

Table 19-1 lists all the Citrix-provided snap-ins installed with XenDesktop 5.

TABLE 19-1

XenDesktop Snap-ins
Snap-in Description

Citrix.ADIdentity.Admin.V1 Manages Active Directory computer accounts.

Citrix.Broker.Admin.V1 This Windows PowerShell snap-in contains
cmdlets used to manage the Citrix Broker.

Citrix.Common.Commands Contains cmdlets for working with various aspects
of the Citrix product line. The majority of the
cmdlets interact with the Citrix tracing facility.

Citrix.Common.GroupPolicy Provides a PowerShell Provider that represents the
Citrix Group Policy configuration.

Citrix.Configuration.Admin.V1 Stores service configuration information.

Citrix.Host.Admin.V1 Manages hosts and Hypervisor connections.

Citrix.MachineCreation.Admin.V1 Creates new virtual machines.

Citrix.MachineIdentity.Admin.V1 Manages virtual machine storage.

PvsPsSnapIn Provides functionality for connecting with the
Provisioning Services product.

The Citrix.Common.Commands snap-in is a generic Citrix module that is provided with

a majority of the Citrix products. It includes the ability to create and manage Citrix CTX

traces, among some other functions. I do not cover this module, but if you perform a lot of

diagnostic work on your environment, I would recommend that you look at it.

Performing an Automated Environment Setup
Citrix has made every effort to make sure that you can manage and fully automate the

entire environment with Windows PowerShell. It even went so far as to enable you to

perform the initial setup, including database creation. In this section, you step through the

process of performing a basic setup of a XenDesktop environment. The only prerequisite

is that you installed the XenDesktop Controller and have a database instance ready for the

database.

c19.indd 481c19.indd 481 03/09/11 11:02 AM03/09/11 11:02 AM

482

Part IV: Server Applications

Setting Parameter Values
In Listing 19-1, you are setting the values for the parameters that are subsequently going

to be used to create the environment. You specify the name of the Microsoft SQL Server, the

database, and the connection string that will be used to connect to the database, Desktop

Controller, Service Group, and License Server.

LISTING 19-1

Setting Your Values

Set all the custom parameters
$SQLServer = “Canopus”
$DatabaseName = “XenDesktopDB”
$DBConnection = `
 “Server=$SQLServer; Initial Catalog=$DatabaseName; Integrated Security=True”
$DesktopController = “Capella”
$ServiceGroup = “XDServiceGroup”
$LicenseServer = “Rigel”

Loading Snap-Ins
The next step is to load the Citrix Windows PowerShell snap-ins. You could easily load

them one by one, but loading them all at once is simpler and makes sure that they are all

loaded.

Load all Citrix Snap-ins
Get-PSSnapin -Name Citrix* -Registered |
 Add-PSSnapin -ErrorAction SilentlyContinue

Creating the Database
This section focuses on creating the database that will be used by XenDesktop. First, you

de�ine a function called Invoke-SQL that will be responsible for running SQL on the SQL

Server. This procedure requires that you have Remoting enabled on your SQL Server.

Cross-Reference
Remoting is covered in the “Remoting” section of Chapter 2, “What’s New in Windows PowerShell V2.” �

XenDesktop has six different “components,” and each is managed somewhat independently.

Each component has a method for retrieving the Transact-SQL statement needed to create

the required SQL schema in the database. You have to feed it some parameters to �ill in the

SQL statement. This includes the name of the database, address of the Desktop Controller,

and the name of the Service Group. Because these are going to be common among the

different cmdlets, you create $SQLParameters so you don’t have to enter the same

parameters for each cmdlet.

c19.indd 482c19.indd 482 03/09/11 11:02 AM03/09/11 11:02 AM

483

Chapter 19: Managing Citrix XenDesktop 5

Note
For whatever reason, the Citrix.Broker.Admin.V1 module is slightly different than the other modules.
For example, whereas the other Schema cmdlets accept Database as the ScriptType parameter, the Broker
module requires FullDatabase. When you encounter errors with this module, check the parameters first to
make sure that the syntax isn’t different. �

Once you de�ine the parameters, the next step is to get the SQL statements required to

set up the schema. Listing 19-2 begins with de�ining the function for executing the SQL

commands. Each module has a cmdlet for retrieving the Transact-SQL. After you store the

Transact-SQL into variables, you create a new Remoting session to your SQL Server, which

is used for the subsequent statements.

The �irst SQL statement you execute actually creates the database with the required

collation settings. All of these statements, of course, require that you have the appropriate

server permissions. After the database is created, you then execute each of the retrieved

SQL statements. When you are �inished, you have a complete database ready for

XenDesktop. Close the Remoting session and proceed to connect XenDesktop to the

database.

LISTING 19-2

Creating the Database

function Invoke-SQL
{
 param($SQL)
 Invoke-Command -Session $SQLSession -ScriptBlock {
 param($DatabaseName, $SQL) Invoke-SQLCmd -Query $SQL
 } -ArgumentList $DatabaseName, $SQL

}

$SQLParameters = @{
 DatabaseName = $DatabaseName
 AdminAddress = $DesktopController
 ServiceGroupName = $ServiceGroup
}

$AcctDBSQL = Get-AcctDBSchema @SQLParameters -ScriptType Database
$ConfigDBSQL = Get-ConfigDBSchema @SQLParameters -ScriptType Database
$BrokerDBSQL = Get-BrokerDBSchema @SQLParameters -ScriptType FullDatabase
$HypDBSQL = Get-HypDBSchema @SQLParameters -ScriptType Database
$ProvDBSQL = Get-ProvDBSchema @SQLParameters -ScriptType Database
$PVSVMDBSQL = Get-PvsVmDBSchema @SQLParameters -ScriptType Database
$SQLSession = New-PSSession -ComputerName $SQLServer
Invoke-Command -Session $SQLSession -ScriptBlock {
 Add-PSSnapin SqlServerCmdletSnapin100

continues

c19.indd 483c19.indd 483 03/09/11 11:02 AM03/09/11 11:02 AM

484

Part IV: Server Applications

LISTING 19-2 (continued)

}
Invoke-SQL “Create database [$DatabaseName] collate Latin1_General_CI_AS_KS”
Invoke-SQL $AcctDBSQL
Invoke-SQL $ConfigDBSQL
Invoke-SQL $BrokerDBSQL
Invoke-SQL $HypDBSQL
Invoke-SQL $ProvDBSQL
Invoke-SQL $PVSVMDBSQL
Remove-PSSession $SQLSession

Connecting to the Database
Now, the database is completely set up and you just need to connect XenDesktop to the

newly created database. With XenDesktop, you can just switch connections from one

database to another. First, you have to clear the connection. As shown in Listing 19-3, you

do that by setting the DBConnection to $Null, in essence clearing the connection. This step

is not needed if you are setting up a brand-new Desktop Controller.

LISTING 19-3

Connecting XenDesktop to the Database

Reset Database Connections
$ConnectionParameters = @{
 DBConnection = $Null
 AdminAddress = $DesktopController
}
Set-ConfigDBConnection @ConnectionParameters
Set-AcctDBConnection @ConnectionParameters
Set-HypDBConnection @ConnectionParameters
Set-ProvDBConnection @ConnectionParameters
Set-PvsVmDBConnection @ConnectionParameters
Set-BrokerDBConnection @ConnectionParameters

Set Database Connections
$ConnectionParameters = @{
 DBConnection = $DBConnection
 AdminAddress = $DesktopController
}
Set-ConfigDBConnection @ConnectionParameters
Set-AcctDBConnection @ConnectionParameters
Set-HypDBConnection @ConnectionParameters

c19.indd 484c19.indd 484 03/09/11 11:02 AM03/09/11 11:02 AM

485

Chapter 19: Managing Citrix XenDesktop 5

Set-ProvDBConnection @ConnectionParameters
Set-PvsVmDBConnection @ConnectionParameters
Set-BrokerDBConnection @ConnectionParameters

Configuring Services
The next step involves the con�iguration of service instances. The code segment in

Listing 19-4 may seem a little overwhelming at �irst, but it’s really just two simple steps

that are executed for each of the XenDesktop components. The �irst step registers each

component service instance with the con�iguration service. The second step enables access

permissions and con�iguration service locations to be loaded. This must be performed on

new installations to reset the membership and permissions.

LISTING 19-4

Configuring the Services

Get-ConfigServiceInstance -AdminAddress $DesktopController |
 Register-ConfigServiceInstance -AdminAddress $DesktopController
Get-HypServiceInstance -AdminAddress $DesktopController |
 Register-ConfigServiceInstance -AdminAddress $DesktopController
Get-AcctServiceInstance -AdminAddress $DesktopController |
 Register-ConfigServiceInstance -AdminAddress $DesktopController
Get-PvsVmServiceInstance -AdminAddress $DesktopController |
 Register-ConfigServiceInstance -AdminAddress $DesktopController
Get-ProvServiceInstance -AdminAddress $DesktopController |
 Register-ConfigServiceInstance -AdminAddress $DesktopController
Get-BrokerServiceInstance -AdminAddress $DesktopController |
 Register-ConfigServiceInstance -AdminAddress $DesktopController

Get-ConfigRegisteredServiceInstance -AdminAddress $DesktopController |
 Reset-ConfigServiceGroupMembership -AdminAddress $DesktopController
Get-ConfigRegisteredServiceInstance -AdminAddress $DesktopController |
 Reset-HypServiceGroupMembership -AdminAddress $DesktopController
Get-ConfigRegisteredServiceInstance -AdminAddress $DesktopController |
 Reset-AcctServiceGroupMembership -AdminAddress $DesktopController
Get-ConfigRegisteredServiceInstance -AdminAddress $DesktopController |
 Reset-PvsVmServiceGroupMembership -AdminAddress $DesktopController
Get-ConfigRegisteredServiceInstance -AdminAddress $DesktopController |
 Reset-ProvServiceGroupMembership -AdminAddress $DesktopController
Get-ConfigServiceInstance -AdminAddress $DesktopController |
 Reset-BrokerServiceGroupMembership -AdminAddress $DesktopController

Configuring the License Server
The last part of the script, shown in Listing 19-5, is to con�igure the license server. For this,

you use the Set-BrokerSite cmdlet to specify the license server and license types for the

installation. Now, your system is ready to further con�igure.

c19.indd 485c19.indd 485 03/09/11 11:02 AM03/09/11 11:02 AM

486

Part IV: Server Applications

LISTING 19-5

Configuring Licensing

Configure Licensing
Set-BrokerSite -LicenseServerName $LicenseServer `
 -AppLicenseEdition PLT `
 -DesktopLicenseEdition PLT `
 -Name “XDServiceGroup” `
 -AdminAddress $DesktopController

Administrators
In XenDesktop, your administrators are anyone that needs to manage any part of your

farm. They range from users who just need to view your environment to you, the full-access

administrator.

Explaining Access Control
XenDesktop has �ive main levels of administrative access, which are accessible via the

Desktop Studio GUI. Table 19-2 lists the administration roles that you can assign to users.

TABLE 19-2

Administration Roles

Role Description

Full administrator Full administrative rights to manage the entire XenDesktop site.

Read-only administrator Can see all aspects of the XenDesktop site, but cannot make any
changes.

Machine administrator Owns the catalog and assigns assignment administrators.

Assignment administrator Takes desktops created by the machine administrator and creates
Desktop Groups and assigns users.

Help desk administrator Performs day-to-day monitoring and maintenance.

When utilizing the Windows PowerShell cmdlets, you have extra granularity over

permissions compared with the Desktop Studio. Each Windows PowerShell module has its

own administrator. For example, to give administrator access to the hypervisor snap-in,

you would use New-HypAdministrator. Each cmdlet supports either full or read-only

access.

c19.indd 486c19.indd 486 03/09/11 11:02 AM03/09/11 11:02 AM

487

Chapter 19: Managing Citrix XenDesktop 5

Creating Administrators
Creating administrators begins with the New-BrokerAdministrator cmdlet. In Listing

19-6, you create a full broker administrator by setting -FullAdmin to $True. This creates

a full broker administrator. You also have to grant access to the �ive snap-ins for the

administrator to be able to manage those components.

LISTING 19-6

Creating a Full Broker Administrator

$Account = “Domain\User”

Create Full Administrator
New-BrokerAdministrator -BrokerAdmin $True `
 -Enabled $True `
 -FullAdmin $True `
 -Name $Account `
 -ProvisioningAdmin $True `
 -ReadOnly $False `

New-ConfigAdministrator -Account $Account
New-AcctAdministrator -Account $Account
New-HypAdministrator -Account $Account
New-ProvAdministrator -Account $Account
New-PvsVmAdministrator -Account $Account

In Listing 19-7, you create an assignment administrator. This administrator role creates

Desktop Groups and assigns users to those Desktop Groups. The process for creating an

assignment administrator is slightly different than a site administrator. In the �irst section,

you create a read-only administrator, an administrator that can only view the environment

but not make any changes. Then, with the Add-BrokerAdministrator cmdlet, you add the

account as an administrator to the PreExisting catalog.

LISTING 19-7

Creating an Assignment Administrator

$Account = “Domain\User”

Create a new Assignment Administrator
Set-BrokerAdministrator -BrokerAdmin $True `
 -Enabled $True `
 -FullAdmin $False `
 -Name $Account `

continues

c19.indd 487c19.indd 487 03/09/11 11:02 AM03/09/11 11:02 AM

488

Part IV: Server Applications

LISTING 19-7 (continued)

 -ProvisioningAdmin $False `
 -ReadOnly $True `

New-ConfigAdministrator -Account $Account -ReadOnly
New-AcctAdministrator -Account $Account -ReadOnly
New-HypAdministrator -Account $Account -ReadOnly
New-ProvAdministrator -Account $Account -ReadOnly
New-PvsVmAdministrator -Account $Account -ReadOnly

Add-BrokerAdministrator -Name $Account `
 -Catalog ‘PreExisting’

Catalogs
In XenDesktop, a catalog is a collection of machines of the same type. Catalogs can contain

both physical and virtual machines with varying levels of management. Table 19-3 lists the

�ive machine types you can use when creating catalogs.

TABLE 19-3

XenDesktop Machine Types

Machine Type Description

Pooled Machines are provided to users on a per-session, first-come, first-served basis.
Changes are discarded at logoff.

Dedicated Machines are assigned manually or automatically, and changes are kept after
logoff.

Existing Preexisting virtual machines.

Physical Physical machines, usually blade PCs hosted in the data center.

Streamed Machines streamed with Provisioning Services.

Creating Catalogs
In XenDesktop, catalogs are groups of machines that are of the same type. The machine

type takes into consideration the type of hosting infrastructure (physical or virtual) and

whether user changes are persisted when they log off.

c19.indd 488c19.indd 488 03/09/11 11:02 AM03/09/11 11:02 AM

489

Chapter 19: Managing Citrix XenDesktop 5

Pooled Catalogs
Pooled machines are dynamic machines that are allocated to users on a per-session, �irst-

come, �irst-served basis. Pooled catalogs utilize the Machine Creation Services introduced

in XenDesktop 5 to allow a single disk image to be shared among multiple virtual machines.

Any changes made during a session are discarded when the user logs off. Machines are

either allocated on a random basis or allocated to the same person on every logon. The

latter allocation type is used for certain software licensing requirements.

The �irst step in creating a functional catalog is to create the broker catalog, which is the

actual catalog object itself. In Listing 19-8, you create the catalog. In this example, you

set the AllocationType to Random so that users are given desktops on a random basis.

In this step, you also specify the CatalogKind, which in this instance is SingleImage.

SingleImage is actually the value used to specify a pooled machine catalog.

LISTING 19-8

Creating a Pooled Catalog

$BrokerCatalog = New-BrokerCatalog -AllocationType ‘Random’ `
 -CatalogKind ‘SingleImage’ `
 -Description “Windows 7 Ultimate x64” `
 -Name ‘Windows 7’ `
 -PvsForVM @() `
 -Verbose

After creating the catalog, the next step is to create an Identity Pool using the code provided

in Listing 19-9. The Identity Pool is used to de�ine the template for which accounts will be

created in Active Directory for the desktop catalog. The relevant parameters are as follows:

� NamingScheme: The pattern used for the name of the machine. The # symbol

is a placeholder and will be replaced with actual values when the machines are

created.

� NamingSchemeType: Possible values are numeric or alphabetic. The type deter-

mines whether # symbols are replaced with numeric (0–9) or alphabetic (a–z)

characters.

� OU: The Organizational Unit where new desktop machine accounts will be placed.

LISTING 19-9

Creating an Identity Pool

$IdentityPool = New-AcctIdentityPool `
 -IdentityPoolName ‘Std VDI Naming Scheme’ `
 -NamingScheme ‘VDI-##’ `

continues

c19.indd 489c19.indd 489 03/09/11 11:02 AM03/09/11 11:02 AM

490

Part IV: Server Applications

LISTING 19-9 (continued)

 -NamingSchemeType ‘Numeric’ `
 -OU ‘OU=VDI,OU=Desktops,OU=Computers,OU=Resources,DC=domain,DC=com’ `
 -Domain ‘domain.com’ `
 -AllowUnicode

The next step is to create a snapshot that will be used for all of your machines as shown in

Listing 19-10. The New-HypVMSnapshot cmdlet is actually a XenDesktop cmdlet that works

with the host to create a snapshot of the virtual machine speci�ied by LiteralPath.

Continuing in Listing 19-10, you will create the template for the virtual machine itself.

The New-ProvScheme cmdlet creates a new provisioning scheme, or virtual machine (VM)

template. For this cmdlet, you specify the following parameters:

� HostingUnitName: Name of the hypervisor

� IdentityPoolName: Name of the Identity Pool created earlier

� VMCpuCount: Number of CPUs to assign

� VMMemoryMB: Amount of memory to assign

� CleanOnBoot: Whether to reset the VM to its initial condition on restart

� RunAsynchronously: Return before task is complete

When you run this cmdlet, XenDesktop makes a copy of the hard disk attached to the

virtual machine snapshot and stores it in every storage location referenced by the

provisioning scheme. This can be a lengthy task so the next section indicated by the do

loop tracks the progress of the provisioning task.

When the task completes, you have the new provisioning scheme that you need to associate

with the catalog. This is accomplished with the Set-BrokerCatalog cmdlet, which accepts

the provisioning scheme via the PvsForVM parameter. The parameter accepts an array of

strings composed of the global unique identi�ier (GUID) of the hosting unit as well as the

GUID of the provisioning scheme itself.

LISTING 19-10

Connecting the Images

$SnapShotImage = New-HypVMSnapshot -SnapshotName ‘Windows 7 - 20110509’ `
 -LiteralPath ‘XDHyp:\hostingunits\SOL\UrsaMajor.vm’ -Verbose

$ProvTaskID = New-ProvScheme -ProvisioningSchemeName ‘Windows 7 Gen Desktop’ `
 -HostingUnitName ‘SOL’ `

c19.indd 490c19.indd 490 03/09/11 11:02 AM03/09/11 11:02 AM

491

Chapter 19: Managing Citrix XenDesktop 5

 -IdentityPoolName ‘Std VDI Naming Scheme’ `
 -VMCpuCount 1 `
 -VMMemoryMB 512 `
 -CleanOnBoot `
 -MasterImageVM $SnapShotImage `
 -RunAsynchronously

do
{
 $ProvisioningTask = (Get-ProvTask $ProvTaskID)
 Write-Progress -Activity $ProvisioningTask.ProvisioningSchemeName `
 -PercentComplete $ProvisioningTask.TaskProgress `
 -Status $ProvisioningTask.TaskState
 Start-Sleep -Seconds 1
} while ($ProvisioningTask.WorkflowStatus -eq ‘Running’)

$ProvScheme = Get-ProvScheme -ProvisioningSchemeName ‘Windows 7 Gen Desktop’
$ProvSchemeGUID = $ProvScheme.ProvisioningSchemeUID.Guid
$ProvSchemeHostingGUID = $ProvScheme.HostingUnitUID.Guid

Set-BrokerCatalog -Name ‘Windows 7’ `
 -PvsForVM @(“$($ProvSchemeGUID):$($ProvSchemeHostingGUID)”)

In Listing 19-11, you start by creating the Active Directory (AD) accounts using the Identity

Pool you created previously. In this example, you start at 10 and create 5 accounts.

The next step is to actually provision the virtual machines. You start by associating the

controller address with the provisioning scheme via the Add-ProvSchemeControllerAddress

cmdlet. This allows newly created virtual machines to be associated with the controller.

Now you are ready to actually create the machines. For this task, you use the New-ProvVM

cmdlet, which actually provisions the virtual machines. You call New-ProvVM, specifying

the provisioning scheme name and the AD accounts that the machines will be associated

with. This can be a lengthy task, so you again use the RunAsynchronously parameter and

follow up with a loop to track the progress of the task.

LISTING 19-11

Creating the Machines

$ADAccounts = New-AcctADAccount -IdentityPoolName ‘Std VDI Naming Scheme’ `
 -StartCount 10 -Count 5

Add-ProvSchemeControllerAddress `
 -ProvisioningSchemeName ‘Windows 7 Gen Desktop’ `

continues

c19.indd 491c19.indd 491 03/09/11 11:02 AM03/09/11 11:02 AM

492

Part IV: Server Applications

LISTING 19-11 (continued)

 -ControllerAddress @(‘CAPELLA.MilkyWay.cmschill.net’)

$ProvVMTask = New-ProvVM -ProvisioningSchemeName ‘Windows 7 Gen Desktop’ `
 -ADAccountName $ADAccounts.SuccessfulAccounts `
 -RunAsynchronously

do
{
 $ProvisioningTask = (Get-ProvTask $ProvVMTask)
 $MachinesCreated = $ProvisioningTask.VirtualMachinesCreatedCount
 $MachinesToCreate = $ProvisioningTask.VirtualMachinesToCreateCount
 Write-Progress -Activity $ProvisioningTask.ProvisioningSchemeName `
 -PercentComplete $($MachinesCreated / $MachinesToCreate) `
 -Status $ProvisioningTask.TaskState
 Start-Sleep -Seconds 1
} while ($ProvisioningTask.WorkflowStatus -eq ‘Running’)

$ProvisioningTask.CreatedVirtualMachines |
 Lock-ProvVM -ProvisioningSchemeName ‘Windows 7 Gen Desktop’ `
 -Tag ‘Brokered’

$ADAccounts.SuccessfulAccounts | %{
 $AccountSID = $_.ADAccountSid
 $HostedMachineID = Get-ProvVM |
 Where-Object { $_.AdAccountSid -eq $AccountSID } |
 Select-Object -ExpandProperty VMID
 New-BrokerMachine -CatalogUid $BrokerCatalog.UID `
 -HostedMachineId $HostedMachineID `
 -HypervisorConnectionUid 1 `
 -MachineName $_.ADAccountSid
}

After the machines are created, you then use Lock-ProvVM to lock the machines so they

aren’t modi�ied accidently. Finally, you loop through each of the AD accounts that were

successfully added and retrieve the provisioned virtual machine. You then add that virtual

machine to the catalog, thereby registering it and making it available to XenDesktop.

Dedicated Catalogs
Dedicated machines are very much like pooled machines except that changes are not lost

when a user logs off. Users are either assigned automatically on launch or manually by an

c19.indd 492c19.indd 492 03/09/11 11:02 AM03/09/11 11:02 AM

493

Chapter 19: Managing Citrix XenDesktop 5

administrator. After the �irst login, that user will always receive the same desktop. When

users log off, their settings are saved and not discarded as they are with the pooled catalog.

In Listing 19-12, you create the machine catalog. The AllocationType is Permananent and

CatalogKind is ThinCloned.

LISTING 19-12

Creating a Dedicated Pool

$BrokerCatalog = New-BrokerCatalog -AllocationType ‘Permanent’ `
 -CatalogKind ‘ThinCloned’ `
 -Description ‘WIndows 7 Dedicated’ `
 -Name ‘WIndows 7 Dedicated’ `
 -PvsForVM @() `
 -Verbose

This step is the only variation from the Pooled machine catalog steps. You can use the

remaining steps from the previous example to complete the dedicated catalog.

Existing Catalog
Existing catalogs contain virtual machines that already exist. These virtual machines

were created by an external process and are managed manually or by a third-party

utility. Adding existing virtual machines to XenDesktop does give some extra control to

XenDesktop. One example is power control. You can con�igure XenDesktop to shut down a

virtual machine when a user logs off to conserve power.

The �irst step, as show in Listing 19-13, is the same as previous examples: create the

catalog. In this example, you use the PowerManaged value for the CatalogKind parameter.

The AllocationType is, of course, Permanent because XenDesktop is not managing the

virtual machines.

The next step is to register the machine with the catalog. In previous examples, there

were a lot of steps in between. In this example, because XenDesktop is not doing the

provisioning, you just need to add the machine to the catalog. For the New-BrokerMachine

cmdlet, you use the following parameters:

� CatalogUid: The unique identi�ier (UID) for the catalog you want to assign the

machine to.

� HostedMachineID: This unique identi�ier for the virtual machine. This is how the

machine’s hypervisor recognizes it.

� HypervisorConnectionUid: This is the UID for the hosting hypervisor in

XenDesktop.

� MachineName: Name of the AD account for the machine.

c19.indd 493c19.indd 493 03/09/11 11:02 AM03/09/11 11:02 AM

494

Part IV: Server Applications

Once you add the machine, you need to assign a user to it. The Add-BrokerUser cmdlet

assigns the user speci�ied by the Name parameter and assigns it to the virtual machine

identi�ied by the Machine parameter. Now, when that user logs in to XenDesktop, he or she

will �ind the machine available.

LISTING 19-13

Creating an Existing Pool

$BrokerCatalog = New-BrokerCatalog -AllocationType ‘Permanent’ `
 -CatalogKind ‘PowerManaged’ `
 -Description ‘Windows 7 Existing’ `
 -Name ‘Windows 7 Existing’ `
 -Verbose

New-BrokerMachine -CatalogUid $BrokerCatalog.UID `
 -HostedMachineId ‘4a3877cb-991c-4252-8140-c00b6fe4ec57’ `
 -HypervisorConnectionUid 1 `
 -MachineName ‘Domain\Machine’

Add-BrokerUser -Name ‘Domain\User’ -Machine ‘Domain\Machine’

Physical Catalog
Physical catalogs are almost identical to Existing catalogs except that the machines are

physical and not virtual. These catalogs, which are not frequently used, are typically used

for blade PCs that are in a data center. This situation is typically reserved for high-demand

users that need the resources of an actual physical machine.

In Listing 19-14, you see that, in this case, you use Unmanaged for the CatalogKind. With

the New-BrokerMachine cmdlet you specify the catalog’s UID and machine name, but

because this is not a virtual machine, you omit those details. The �inal step is to assign the

machine to the user.

LISTING 19-14

Creating a Physical Pool

$BrokerCatalog = New-BrokerCatalog -AllocationType ‘Permanent’ `
 -CatalogKind ‘Unmanaged’ `
 -Description ‘Windows 7 Physical’ `
 -Name ‘Windows 7 Physical’ `
 -Verbose

New-BrokerMachine -CatalogUid $BrokerCatalog.UID `

c19.indd 494c19.indd 494 03/09/11 11:02 AM03/09/11 11:02 AM

495

Chapter 19: Managing Citrix XenDesktop 5

 -MachineName ‘Domain\Machine’

Add-BrokerUser -Name ‘Domain\User’ -Machine ‘Domain\Machine’

Streamed Catalog
A streamed catalog is the type of catalog seasoned XenDesktop administrators are most

used to seeing. Such catalogs utilize the Citrix Provisioning Services, which have been an

integral part of previous XenDesktop releases.

The �irst step to creating a streamed catalog is to create the connection to the Provisioning

Services (PVS) collection via the Set-PvsConnection cmdlet. In this cmdlet, you specify the

server and the port as well as the domain.

Note
The PvsPsSnapIn module, of which Set-PvsConnection is a member, was not developed as well as the
rest of the modules included in the XenDesktop 5 product. In fact, it doesn’t even follow the same naming
convention. Unfortunately, the cmdlets in this module do not have any help files configured for them,
so Get-Help will not be of any use. �

Next, you grab the PVS collection that you want to associate your catalog with using

Get-SimplePvsCollection and specifying your site name as it appears in PVS.

The catalog is now created using New-BrokerCatalog, specifying that it is a Pvs catalog,

and supplying the address to the PVS server. At this point, you still haven’t associated the

catalog with the actual PVS collection.

The next step is to get the devices that are in the PVS collection you speci�ied. You iterate

through each of the devices and perform several steps on them. The �irst step is to get the

Active Directory account for the device via the Get-SimplePvsADAccount cmdlet. Next,

you grab the MAC address for the primary NIC in the device. However, the MAC address

associated with the device uses a dash (-) as a separator, whereas you need to have a

colon (:) as the separator for the next step. Using the Get-HypVMMacAddress cmdlet, and

by �iltering the output using the MAC address from the previous step, you obtain the ID

for the virtual machine. The key thing to note for this statement is that you speci�ied the

path to the hypervisor PS provider connection.

With all of the information you collected so far, you can now associate machines with the

catalog. Using New-BrokerMachine, you specify:

� CatalogUid: The ID of the Broker Catalog t§o which you are adding machines

� HostedMachineId: The ID of the virtual machine as assigned by the hypervisor of

the machine you are adding to the catalog

� HypervisorConnectionUid: The ID of the hypervisor connection

� MachineName: The SID of the machine’s Active Directory account

c19.indd 495c19.indd 495 03/09/11 11:02 AM03/09/11 11:02 AM

496

Part IV: Server Applications

Once this step is completed, the machines are now available to the Broker Catalog. The code

needed to complete these tasks is provided in Listing 19-15.

LISTING 19-15

Creating a Streamed Pool

$Server = ‘Atlanta’
$Site = ‘Site’

Set-PvsConnection -server ‘Atlanta’ `
 -port 54321 `
 -domain ‘MilkyWay.cmschill.net’

$Collection = Get-SimplePvsCollection -siteName @(‘Site’)

$Catalog = New-BrokerCatalog -AllocationType ‘Random’ `
 -CatalogKind ‘Pvs’ `
 -Description ‘Windows 7 Streamed Desktops’ `
 -MachinesArePhysical $False `
 -Name ‘Windows 7 Desktops’ `
 -PvsAddress ‘Atlanta’ `
 -PvsDomain ‘MilkyWay.cmschill.net’

$Devices = Get-SimplePvsDevice -CollectionId $Collection.CollectionId

$Devices | ForEach-Object {
 $ADAccount = Get-SimplePvsADAccount `
 -domain ‘MilkyWay.cmschill.net’ `
 -name $_.DeviceName

 $MacAddress = $_.DeviceMac -replace ‘-’,’:’

 $VMID = (Get-HypVMMacAddress -LiteralPath ‘xdhyp:\connections\Hyper-V’ |
 Where-Object { $_.MacAddress -eq $MacAddress }).VMID
 New-BrokerMachine -CatalogUid $Catalog.UID `
 -HostedMachineId $VMID `
 -HypervisorConnectionUid 1 `
 -MachineName $ADAccount.SID `
}

Managing Catalogs
Now that your catalogs are created, you will need to manage them. For this purpose, you

will use the Set-BrokerCatalog cmdlet. Using Set-BrokerCatalog, you can modify the

following properties of a catalog:

c19.indd 496c19.indd 496 03/09/11 11:02 AM03/09/11 11:02 AM

497

Chapter 19: Managing Citrix XenDesktop 5

� Description: Provides a description of the catalog.

� MachinesArePhysical: Indicates whether the machines in the catalog are

physical machines. Can only be set if the CatalogKind property is PVS.

� PvsAddress: Speci�ies the address of the Provisioning Server. Can only be set if

the CatalogKind property is PVS.

� PvsDomain: Speci�ies the domain of the Provisioning Server. Can only be set if the

CatalogKind property is PVS.

� PvsForVM: Links the broker catalog to the actual provisioning scheme. Can only

be set if the CatalogKind property is PVS.

By specifying the name of the catalog, you can change the properties of a single catalog. For

example, the following line of code changes the description for the Windows 7 catalog:

Set-BrokerCatalog -Name “Windows 7” -Description “Windows 7 with SP1”

If you want to change properties for more than one catalog, you can use the -InputObject

parameter to pass multiple catalogs or use the pipeline:

Get-BrokerCatalog -AllocationType Permanent |
 Set-BrokerCatalog -Description “Permanent allocated machines.”

To actually change the name of a catalog, you must use the Rename-BrokerCatalog cmdlet:

Rename-BrokerCatalog -Name “Windows 7” -NewName “Windows 7 SP1”

Removing Catalogs
Removing catalogs is extremely easy. Simply use the Remove-BrokerCatalog cmdlet. Note

that any catalog that contains one or more machines that are part of a Desktop Group

cannot be deleted until those machines are removed.

Remove-BrokerCatalog -Name “Windows 7” -Description “Windows 7 with SP1”

If you want to remove more than one catalog, you can use the -InputObject parameter to

pass multiple catalogs or use the pipeline:

Get-BrokerCatalog -AllocationType Permanent | Remove-BrokerCatalog

Provisioning
Provisioning is the process of taking a single machine image and con�iguring it to be used by

multiple devices. The previous section, “Creating catalogs,” covers the task of provisioning

images. This section covers additional topics related to provisioning.

c19.indd 497c19.indd 497 03/09/11 11:02 AM03/09/11 11:02 AM

498

Part IV: Server Applications

Introducing Machine Creation Services
You have already been brie�ly introduced to Machine Creation Services in the “Pooled

catalog” section. Machine Creation Services is the provisioning technology that was

introduced in XenDesktop 5. It differs from Provisioning Services in that it utilizes the

underlying hypervisor’s storage to deliver copies of virtual machines instead of using the

network to deliver the information.

Updating Master Images
When you provision a machine, you are creating numerous machines that are based on

a point-in-time snapshot of a master image. As time goes by, you will need to update the

image and propagate the changes to the client machines. Whether it’s a con�iguration

change, software installation, or even the monthly Windows patch cycle, you will need to

deploy these changes to the client machines.

For this task, you are going to use the Publish-ProvMasterVmImage cmdlet. Assume

that you need to update the “Windows 7 Gen Desktop” provisioning scheme that you

used earlier in this chapter. The code is provided in Listing 19-16. The �irst step is to

take a snapshot of the virtual machines with all of the changes included with the New-
HypVMSnapshot cmdlet.

LISTING 19-16

Updating a Master Image

$SnapShotName = ‘Windows 7 - 20110701’
$ProvScheme = ‘Windows 7 Gen Desktop’
$SnapShotImage = New-HypVMSnapshot -SnapshotName $SnapShotName `
 -LiteralPath ‘XDHyp:\hostingunits\SOL\UrsaMajor.vm’ -Verbose

$ProvTaskID = Publish-ProvMasterVmImage -ProvisioningSchemeName $ProvScheme `
 -MasterImageVM $SnapShotImage -RunAsynchronously

do
{
 $ProvisioningTask = (Get-ProvTask $ProvTaskID)
 Write-Progress -Activity $ProvisioningTask.ProvisioningSchemeName `
 -PercentComplete $ProvisioningTask.TaskProgress `
 -Status $ProvisioningTask.TaskState
 Start-Sleep -Seconds 1
} while ($ProvisioningTask.WorkflowStatus -eq ‘Running’)

Once the snapshot has been taken, call Publish-ProvMasterVmImage, specifying the

provisioning scheme name and the path of the updated snapshot. Because this is a

c19.indd 498c19.indd 498 03/09/11 11:02 AM03/09/11 11:02 AM

499

Chapter 19: Managing Citrix XenDesktop 5

long-running task, tell it you want to exit and continue running it in the background. You

then display a progress bar so you can track the process of the task.

Desktop Groups
Desktop Groups are virtual machines that you allocate to users from catalogs. A number of

key facts about Desktop Groups are:

� A Desktop Group can contain virtual machines from one or more catalogs.

� A machine can only belong to a single Desktop Group.

� A user can be granted access to multiple Desktop Groups.

� Multiple users can be granted access to a single virtual machine.

� Using Windows PowerShell, you can actually assign a virtual machine from a

Desktop Group to a device instead of a user.

Creating Desktop Groups
Desktop Groups in XenDesktop are sets or collections of virtual machines that are allocated

to users. Desktop Groups are created from Broker Catalogs and allow for an abstraction of

administration. Your virtualization administrators can allocate and be responsible for the

machines themselves, while the assignment administrators can create the Desktop Groups

and assign them to users.

In addition to Desktop Groups are Application Desktop Groups. Application Desktop
Groups are what used to be referred to as VM Hosted Apps. For those unfamiliar with this

terminology, virtual machines in Application Desktop Groups allow the user to run an

application and only be presented with the application. They have no Desktop or Start Menu.

Now, with XenDesktop 5, you don’t need a special farm for VM Hosted Apps. It is now built

into XenDesktop. I cover that feature in this section.

Starting with Listing 19-17, you are going to create a new Desktop Group. For this step,

you use the New-BrokerDesktopGroup cmdlet. You specify the Name, PublishedName, and

whether the Desktop Group is enabled. Many more parameters for the cmdlet allow you to

specify some connection parameters as well.

Once you create the Desktop Group, you need to add machines from an

existing Broker Catalog to the Desktop Group. For that purpose, you use the

Add-BrokerMachinesToDesktopGroup cmdlet. You specify the catalog to pull machines

from, the Desktop Group to add them to, and the number of machines to pull.

Now you must add users to your Desktop Group. The �irst step is to create a new broker

user using the New-BrokerUser cmdlet. You aren’t actually assigning anything. You are just

creating a broker object that will be used in the New-BrokerEntitlementPolicyRule. With

this cmdlet, you create a rule for access. In this case, you specify the Desktop Group’s UID and

the name of your entitlement rule as well as the group that you want to be able to access the

Desktop Group.

c19.indd 499c19.indd 499 03/09/11 11:02 AM03/09/11 11:02 AM

500

Part IV: Server Applications

LISTING 19-17

Creating and Assigning a Desktop Group

New-BrokerDesktopGroup -DesktopKind ‘Shared’ `
 -Name ‘Windows 7 Desktop’ `
 -PublishedName ‘My Desktop’ `
 -Enabled $True `

Add-BrokerMachinesToDesktopGroup -Catalog ‘Windows 7 Ultimate’ `
 -DesktopGroup ‘Windows 7 Desktop’ `
 -Count 5

New-BrokerUser -Name ‘MILKYWAY\Domain Users’

New-BrokerEntitlementPolicyRule -DesktopGroupUid 2 `
 -Enabled $True `
 -IncludedUsers @(‘MILKYWAY\Domain Users’) `
 -Name ‘Windows 7 Desktop_1’

Now that you have created the Desktop Group, you need to create policies to de�ine who

can access to the Desktop Groups. The following policies control how users can access the

Desktop Group as well as what they can do when they are connected.

� AllowedConnections: Used to determine whether a connection is coming in

through an Access Gateway (AG).

� AllowedProtocols: The protocols that a user can use to connect to the resource.

If this property is blank, access to the resource is implicitly denied.

� AllowedUsers: Users/Groups allowed to access a resource.

� AllowRestart: Whether or not a user can restart a desktop to which access is

granted.

� Enabled: Whether the rule is initially enabled.

� IncludedDesktopGroupFilterEnabled: Speci�ies whether the

IncludedDesktopGroups �ilter is enabled.

� IncludedDesktopGroups: Speci�ies the Desktop Groups to which you grant

access.

� IncludedSmartAccessFilterEnabled: Speci�ies whether the

IncludedSmartAccessTags �ilter is enabled.

� IncludedSmartAccessTags: Speci�ies the Smart Access Tags from the user’s con-

nection. Not applicable for non-Access Gateway connections.

� Name: Name of the access policy rule.

c19.indd 500c19.indd 500 03/09/11 11:02 AM03/09/11 11:02 AM

501

Chapter 19: Managing Citrix XenDesktop 5

Listing 19-18 creates two access polices, the �irst one for access that bypasses an Access

Gateway device. The second one creates an access policy for devices that go through an

Access Gateway device.

LISTING 19-18

Creating Access Policies

New-BrokerAccessPolicyRule -AllowedConnections ‘NotViaAG’ `
 -AllowedProtocols @(‘RDP’,’HDX’) `
 -AllowedUsers ‘AnyAuthenticated’ `
 -AllowRestart $True `
 -Enabled $True `
 -IncludedDesktopGroupFilterEnabled $True `
 -IncludedDesktopGroups @(‘Windows 7 Desktop’) `
 -Name ‘Windows 7 Desktop_Direct’

New-BrokerAccessPolicyRule -AllowedConnections ‘ViaAG’ `
 -AllowedProtocols @(‘RDP’,’HDX’) `
 -AllowedUsers ‘AnyAuthenticated’ `
 -AllowRestart $True `
 -Enabled $True `
 -IncludedDesktopGroupFilterEnabled $True `
 -IncludedDesktopGroups @(‘Windows 7 Desktop’) `
 -IncludedSmartAccessFilterEnabled $True `
 -IncludedSmartAccessTags @() `
 -Name ‘Windows 7 Desktop_AG’

Now that access has been granted by the access policies, you have to control the availability

of the Desktop Groups. For this, you are going to use the New-BrokerPowerTimeScheme

cmdlet to de�ine how many machines are available during certain periods of time. For this,

you are going to use the following parameters:

� Name: Name of the power time scheme. Must be unique.

� DaysOfWeek: When the power time scheme applies. Valid values are Monday,

Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, Weekdays, and Weekend —

or a combination of those values.

� DisplayName: Name of the power time scheme in Desktop Studio. Must be unique

within the Desktop Group, but can be duplicated in other Desktop Groups.

� PeakHours: A set of 24 Boolean values that represent each hour of the day start-

ing with 00:00 and ending with 00:59. Indicates whether that period of time is

considered a peak hour.

� PoolSize: A set of 24 Boolean values that represent each hour of the day starting

with 00:00 and ending with 00:59. De�ines either the absolute number of machines

or a percentage of machines that are always to be running.

c19.indd 501c19.indd 501 03/09/11 11:02 AM03/09/11 11:02 AM

502

Part IV: Server Applications

As you can see from the code in Listing 19-19, you create a power time scheme for business

hours, which are de�ined as 8:00 a.m. to 6:00 p.m. Monday through Friday.

Note
When you use the Desktop Studio, you can manage only two distinct time periods, Weekdays and Weekends.
When you use the cmdlets, you can define multiple time schemes. For example, you can define a time scheme
for Mondays, Wednesdays, and Fridays. �

LISTING 19-19

Controlling Availability

New-BrokerPowerTimeScheme -DaysOfWeek ‘Weekdays’ `
 -DesktopGroupUid 2 `
 -DisplayName ‘Weekdays’ `
 -Name ‘Windows 7 Desktop_Weekdays’ `
 -PeakHours (0..23 | %{ $_ -gt 8 -and $_ -lt 18 })
 -PoolSize @(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0)

Creating Application Desktop Groups
Application Groups, as mentioned earlier in this chapter, is the successor to VM Hosted

applications. Previously, you had to have a completely separate installation. With

XenDesktop 5, the Application Groups feature is built into the product itself. Application

Groups allows you to run applications on a desktop operating system, but still present

the application to the user. What this means is that you can present to the user Microsoft

Outlook, for example, and not have to present the user with a Desktop or Start menu. One

such example is an application that is not compatible with Remote Desktop Services, but

you still want to present the application to the users without having to give them a desktop

and multiple start menus.

Creating an Application Group is very much like creating a Desktop Group, with a few

modi�ications. In Listing 19-20, you create the actual Desktop Group, but this time, you

specify SharedApp as the DesktopKind. The rest of the parameters are the same as when

you created the Desktop Group (see Listing 19-17).

LISTING 19-20

Creating and Assigning an ApplicationGroup

New-BrokerDesktopGroup -DesktopKind ‘SharedApp’ `
 -Name ‘Windows 7 Application’ `
 -OffPeakBufferSizePercent 10 `

c19.indd 502c19.indd 502 03/09/11 11:02 AM03/09/11 11:02 AM

503

Chapter 19: Managing Citrix XenDesktop 5

 -PeakBufferSizePercent 10 `
 -ShutdownDesktopsAfterUse $True `
 -TimeZone ‘Eastern Standard Time’

Add-BrokerMachinesToDesktopGroup -Catalog ‘Windows 7 Ultimate’ `
 -DesktopGroup ‘Windows 7 Application’ `
 -Count 5

In Listing 19-21, you create access polices the same way you did in Listing 19-18 for a

Desktop Group.

LISTING 19-21

Creating Access Policies

New-BrokerAccessPolicyRule -AllowedConnections ‘NotViaAG’ `
 -AllowedProtocols @(‘RDP’,’HDX’) `
 -AllowedUsers ‘AnyAuthenticated’ `
 -AllowRestart $True `
 -Enabled $True `
 -IncludedDesktopGroupFilterEnabled $True `
 -IncludedDesktopGroups @(‘Windows 7 Application’) `
 -IncludedSmartAccessFilterEnabled $True `
 -IncludedUserFilterEnabled $True `
 -Name ‘Windows 7 Application_Direct’

New-BrokerAccessPolicyRule -AllowedConnections ‘ViaAG’ `
 -AllowedProtocols @(‘RDP’,’HDX’) `
 -AllowedUsers ‘AnyAuthenticated’ `
 -AllowRestart $True `
 -Enabled $True `
 -IncludedDesktopGroupFilterEnabled $True `
 -IncludedDesktopGroups @(‘Windows 7 Application’) `
 -IncludedSmartAccessFilterEnabled $True `
 -IncludedSmartAccessTags @() `
 -IncludedUserFilterEnabled $True `
 -Name ‘Windows 7 Application_AG’

Here, in Listing 19-22, you create the time scheme for the Desktop Group the same way you

did in Listing 19-19.

c19.indd 503c19.indd 503 03/09/11 11:02 AM03/09/11 11:02 AM

504

Part IV: Server Applications

LISTING 19-22

Controlling Availability

New-BrokerPowerTimeScheme -DaysOfWeek ‘Weekdays’ `
 -DesktopGroupUid 3 `
 -DisplayName ‘Weekdays’ `
 -Name ‘Windows 7 Application_Weekdays’ `
 -PeakHours
@($False,$False,$False,$False,$False,$False,$False,$True,$True,
$True,$True,$True,$True,$True,$True,$True,$True,$True,
$False,$False,$False,$False,$False,$False) `
 -PoolSize @(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0)

New-BrokerPowerTimeScheme -DaysOfWeek ‘Weekend’ `
 -DesktopGroupUid 3 `
 -DisplayName ‘Weekend’ `
 -Name ‘Windows 7 Application_Weekend’ `
 -PeakHours
@($False,$False,$False,$False,$False,$False,$False,$True,$True,
$True,$True,$True,$True,$True,$True,$True,$True,$True,
$False,$False,$False,$False,$False,$False) `
 -PoolSize @(0,0)

When you get around to actually creating the application for the Desktop Group, you have

a very important choice to make. You have two cmdlets for creating the application, New-
BrokerApp and New-BrokerApplication. New-BrokerApplication is the most complete

method for creating the application, but it also requires you to manually specify all of the

necessary information. New-BrokerApp performs the following activities for you:

� Creates the access policy rule and adds speci�ied users and/or session conditions

� Associates �ile-type associations

� Associates with Desktop Group

� Automatically attempts to locate the application icon

� Creates a folder and places the application in that folder

You will use the New-BrokerApp for the examples in this chapter because it is the most

ef�icient way to create the application. In Listing 19-23, you create the application.

LISTING 19-23

Creating the Application

New-BrokerApp -DisplayName “Windows PowerShell ISE” `
 -CommandLineExecutable “C:\Windows\System32\WindowsPowerShell\v1.0\i

c19.indd 504c19.indd 504 03/09/11 11:02 AM03/09/11 11:02 AM

505

Chapter 19: Managing Citrix XenDesktop 5

powershell_ise.exe” `
 -Description “Windows PowerShell ISE Script Environment” `
 -CommandLineArguments “ “ `
 -Enabled $True `
 -WorkingDirectory “C:\Windows\System32\WindowsPowerShell\v1.0” `
 -DesktopGroups ‘Windows 7 Application’ `
 -Accounts “Milkyway\Domain Users” `
 -ClientFolder “Windows PowerShell”Modifying desktop groups

Hosts
In XenDesktop 5, hosts refer to the hypervisor platform that contains the virtual machines

you deliver to your users. XenDesktop 5 supports XenServer, Hyper-V, and ESX(i)

hypervisors to deliver the virtual machines.

Hosts PSProvider
XenDesktop 5 uses a Windows PowerShell provider to facilitate access to the Hypervisor

hosts that are connected to the product. In other words, XenDesktop allows you to navigate

the hosts just as you would navigate a �ilesystem.

The Hypervisor Windows PowerShell Provider is part of the Citrix.Host.Admin
.V1 snap-in. When you load the snap-in, you will notice that Get-PSDrive shows a new

Windows PowerShell Provider drive named XDHyp of type citrix.host.admin.v1\
Citrix.Hypervisor. When you navigate to this drive, you will notice two subdirectories at

this location as show in Figure 19-2.

FIGURE 19-2

Two subdirectories on the Windows PowerShell Provider

Connections
The Connections directory contains the connections that are created between XenDesktop

and a speci�ic hypervisor type. In the case of Microsoft Hyper-V, this is the Virtual Machine

Manager server. In Citrix XenServer, it is the Resource Pool Master, and in VMWare ESX(i),

it is the Virtual Center Server.

c19.indd 505c19.indd 505 03/09/11 11:02 AM03/09/11 11:02 AM

506

Part IV: Server Applications

HostingUnits
The HostingUnits directory contains all of the actual hosting units. Hosting units, which

are referred to as Hosts in the Desktop Studio, is a con�iguration unit that includes the

name of the hosting unit, guest networks, and storage used by the hosting unit.

Adding Hosts
Adding connections and hosts to the XenDesktop environment is probably the �irst step

that is done with any XenDesktop environment. Each of the following examples follows the

same syntax for adding hosts among the various hypervisor technologies.

XenServer
In Listing 19-24, you are adding a XenServer Resource Pool to your XenDesktop

environment. In the �irst line, you actually use the built-in Windows PowerShell cmdlet

New-Item to add the hypervisor connection. This is possible due to the capabilities enabled

by the Windows PowerShell Provider.

You specify the name of the connection as well as the hypervisor address and the

connection type of XenServer. Because this is a XenServer Resource Pool, the hypervisor

address is the URL to the XenServer Resource Pool.

With the hypervisor connection created, you now add it to XenDesktop by using

New-BrokerHypervisorConnection. After the hypervisor connection is added, you need to

add the hosts.

LISTING 19-24

Adding XenServer Hosts

$HyperVisorConnection = New-Item -Path ‘xdhyp:\connections’ `
 -Name ‘MainCampusResourcePool’ `
 -HypervisorAddress ‘http://192.168.2.118’ `
 -ConnectionType ‘XenServer’ `
 -Username ‘root’ `
 -Password ‘password’ `
 -Persist

New-BrokerHypervisorConnection `
 -HypHypervisorConnectionUid $HyperVisorConnection.HyperVisorConnectionUID

New-Item -Path ‘xdhyp:\hostingunits’ `
 -Name ‘CriticalMachineHosting’ `
 -HypervisorConnectionName ‘MainCampusResourcePool’ `
 -RootPath ‘xdhyp:\connections\MainCampusResourcePool’ `
 -NetworkPath ‘xdhyp:\connections\MainCampusResourcePool\Network 0.network’ `
 -StoragePath @(‘xdhyp:\connections\MainCampusResourcePool\Tier I.storage’)

c19.indd 506c19.indd 506 03/09/11 11:02 AM03/09/11 11:02 AM

507

Chapter 19: Managing Citrix XenDesktop 5

As you can see, in Listing 19-24, you again use the New-Item cmdlet, in this case to add the

hosting unit.

For the name, I used CriticalMachineHosting. The reason I used this name is to

illustrate that although the GUI uses the term “host” for this, it is not really a host. It is

really a con�iguration unit. For example, with the CriticalMachineHosting name, you

could imagine that the network speci�ied was a priority network with greater bandwidth

allocation and that the storage, for example, is on faster disks.

Hyper-V
Listing 19-25 adds a Microsoft Virtual Machine Manager environment to the XenDesktop

environment. The �irst line is very similar to the previous example with XenServer.

However, the connection type is SCVMM and the hypervisor address is the address of the

Virtual Machine Manager controller. After the connection is created, you again utilize

New-BrokerHypervisorConnection to add the connection to XenDesktop.

In the last step, where you add the hosting unit, you might notice something a little

different in the root path as well as the network and storage path. Take the root path. You

will notice that after the name of the connection, Hyper-V, there is another level, SOL.host.

This is due to the nature of Virtual Machine Manager. In Virtual Machine Manager, you can

have multiple clusters, unlike a single Resource Pool in XenServer. This additional level

references the cluster that will be hosting your virtual machines.

LISTING 19-25

Adding Hyper-V Hosts

$ConnectionUID = New-Item -Path ‘xdhyp:\connections’ `
 -Name ‘Hyper-V’ `
 -HypervisorAddress @(‘Procyon.MilkyWay.cmschill.net’) `
 -ConnectionType ‘SCVMM’ `
 -Username ‘MilkyWay\Administrator’ `
 -Password ‘password’ `
 -Persist

New-BrokerHypervisorConnection `
 -HypHypervisorConnectionUid $ConnectionUID.HypervisorConnectionUid

New-Item -Path ‘xdhyp:\hostingunits’ `
 -Name ‘General VM Hosting’ `
 -HypervisorConnectionName ‘Hyper-V’ `
 -RootPath ‘XDHyp:\connections\Hyper-V\SOL.host’ `
 -NetworkPath ‘XDHyp:\connections\Hyper-V\SOL.host\192.168.2.0_24.network’`

 -StoragePath @(‘XDHyp:\connections\Hyper-V\SOL.host\VirtualMachines on i
SOL.MilkyWay.cmschill.net.storage’)

c19.indd 507c19.indd 507 03/09/11 11:02 AM03/09/11 11:02 AM

508

Part IV: Server Applications

ESX(i)
ESX(i) hosts are managed through VMware VCenter in the same way that Hyper-V is

managed through Virtual Machine Manager. For the ConnectionType, you use VCenter to

indicate that you are dealing with ESX(i) hosts, as shown in Listing 19-26. The rest of the

example is the same as the Hyper-V example.

LISTING 19-26

Adding VMware Hosts

$ConnectionUID = New-Item -Path ‘xdhyp:\connections’ `
 -Name ‘VMware’ `
 -HypervisorAddress @(‘https://vcenter.MilkyWay.cmschill.net’) `
 -ConnectionType ‘VCenter’ `
 -Username ‘MilkyWay\Administrator’ `
 -Password ‘password’ `
 -Persist

New-BrokerHypervisorConnection `
 -HypHypervisorConnectionUid $ConnectionUID.HypervisorConnectionUid

New-Item -Path ‘xdhyp:\hostingunits’ `
 -Name ‘General VM Hosting’ `
 -HypervisorConnectionName ‘VMware’ `
 -RootPath ‘XDHyp:\connections\VMware\SOL.host’ `
 -NetworkPath ‘XDHyp:\connections\VMware\SOL.host\192.168.2.0_24.network’ `

 -StoragePath @(‘XDHyp:\connections\VMware\SOL.host\VirtualMachines on i
SOL.MilkyWay.cmschill.net.storage’)

Removing Hosts
Removing hosts and connections from XenDesktop is extremely simple and is the same

among all hypervisors. To remove a hosting unit, you use the Remove-Item cmdlet, as

shown here:

Remove-Item -Path ‘xdhyp:\hostingunits\SOLHost’

After this statement, the hosting unit is removed. The next step is to remove the

connection:

Remove-BrokerHypervisorConnection -Name ‘SOL’
Remove-Item -Path ‘xdhyp:\connections\SOL’

c19.indd 508c19.indd 508 03/09/11 11:02 AM03/09/11 11:02 AM

509

Chapter 19: Managing Citrix XenDesktop 5

As shown here, you remove the broker connection using

Remove-BrokerHypervisorConnection and then you remove the hypervisor connection

itself using Remove-Item, just as you did with the hosting unit.

Summary
In this chapter, you explored the Citrix XenDesktop 5 product and how Windows

PowerShell can ef�iciently manage the environment. XenDesktop 5 was built from the

ground up with Windows PowerShell in mind.

In Part V you look at the use of virtualization. In the next chapter, you will be introduced

to Microsoft’s virtualization solution, Hyper-V, which is built into the core Windows Server

2008 R2 operating system.

c19.indd 509c19.indd 509 03/09/11 11:02 AM03/09/11 11:02 AM

c19.indd 510c19.indd 510 03/09/11 11:02 AM03/09/11 11:02 AM

Virtualization and
Cloud Computing

Part V

IN THIS PART
Chapter 20
Managing Hyper-V 2008 R2

Chapter 21
Managing System Center Virtual
Machine Manager 2008 R2

Chapter 22
Managing Windows Azure

Chapter 23
Managing VMware vSphere
PowerCLI

c20.indd 511c20.indd 511 03/09/11 11:02 AM03/09/11 11:02 AM

c20.indd 512c20.indd 512 03/09/11 11:02 AM03/09/11 11:02 AM

513

C H A P T E R

IN THIS CHAPTER
Using WMI to manage Hyper-V

Introducing the Windows
PowerShell Management
Library

Controlling virtual machines

Taking and managing snapshots

Managing
Hyper-V 2008 R2

 Hyper-V is Microsoft’s entry in the bare metal virtualization market.

Although one of the relatively late arrivals in the market, it is a

solid virtualization platform that is quickly gaining a foothold in

the arena. At the core of Hyper-V is the Windows 2008 R2 kernel that

enables administrators to manage Hyper-V with the same familiar tools

they already use to manage Windows, including Windows PowerShell.

Hyper-V Management Interfaces
The default management interface provided by Microsoft for

interacting with the Hyper-V service is WMI. You may remember WMI

from Chapter 6, “Managing and Installing Software,” where it was used

to perform software-related tasks. This chapter brie�ly looks at the

WMI interface for Hyper-V and its structure. The Windows PowerShell

community is very active and is always making improvements. So, in

the next section, you look at a project created by the community that

augments the WMI interface and makes it easier to use. The rest of the

chapter focuses solely on management using this project.

WMI Management Classes
Microsoft’s interface for automation of Hyper-V is WMI. There are no native

Windows PowerShell cmdlets for managing Hyper-V, but as you discovered

in Chapter 6, Windows PowerShell can interact effectively with WMI.

Cross-Reference
For more information on using WMI, refer to Chapter 6, “Managing and
Installing Software.” �

c20.indd 513c20.indd 513 03/09/11 11:02 AM03/09/11 11:02 AM

514

Part V: Virtualization and Cloud Computing

The Hyper-V WMI Provider contains multiple management classes. These classes are

present in the root\virtualization namespace. Table 20-1 lists the various classes and

what component they are directed toward.

TABLE 20-1

Hyper-V WMI Classes

Class Purpose

Msvm_ComputerSystem Represents physical or virtual computer systems

Msvm_ImageManagementService Represents the virtual media for a virtual machine

Msvm_Keyboard Represents virtual keyboards

Msvm_SyntheticMouse Represents virtual mice

Msvm_VirtualSwitchManagementService Represents the global networking resources

Msvm_VirtualSystemManagementService Represents the virtualization service

To illustrate how you interact with these classes, start by listing all of the computer systems

in your Hyper-V environment. To do that, you use the Msvm_ComputerSystem class listed

previously, as shown in Listing 20-1.

LISTING 20-1

Retrieving Hyper-V Machines

Get-WmiObject -ComputerName SOL `
 -Namespace root\virtualization `
 -Class Msvm_ComputerSystem |
 Select-Object ElementName, Description, Caption |
 Format-Table -AutoSize

As you can see from the output shown next, listing the class retrieves all of the machines,

hosts, and virtual machines in the Hyper-V environment.

ElementName Description Caption
----------- ----------- -------
Host Microsoft Hosting Computer System Hosting Computer System
Atlanta Microsoft Virtual Machine Virtual Machine
Chicago Microsoft Virtual Machine Virtual Machine
NewYork Microsoft Virtual Machine Virtual Machine

c20.indd 514c20.indd 514 03/09/11 11:03 AM03/09/11 11:03 AM

515

Chapter 20: Managing Hyper-V 2008 R2

Listing 20-2 actually provides the code necessary to perform an action on a virtual machine.

First, you use a WMI query to retrieve a virtual machine with the name you speci�ied. Next,

you use the RequestStateChange to change the state of the machine to Enabled, which

is represented by the value of 2.

Note
The RequestStateChange variable values and their corresponding meanings can be obtained from

http://msdn.microsoft.com/en-us/library/cc723874(v=vs.85).aspx. �

LISTING 20-2

Starting a Virtual Machine

$VM = Get-WmiObject -ComputerName SOL `
 -Namespace root\virtualization `
 -Query “SELECT * FROM Msvm_ComputerSystem WHERE ElementName = ‘Atlanta’”

$VM.RequestStateChange(2)

Windows PowerShell Management Library
for Hyper-V
Managing Hyper-V with WMI, although effective, is sometimes very cumbersome. You

already saw that in order to start a virtual machine, you have to �irst look up a value in a

table. A community-driven project called the Windows PowerShell Management Library for

Hyper-V, located on the Codeplex site at http://pshyperv.codeplex.com/, attempts to

make managing Hyper-V much easier than is possible with WMI alone. This project wraps

the WMI commands with easier native Windows PowerShell commands that also perform

additional error checking.

The project is delivered as a Windows PowerShell module. To install the module, follow

these steps:

 1. Download the module from the project’s website.

 2. Unblock the zip �ile.

 1. Right-click on the �ile, and click Properties.

 2. Under the General tab, click the Unblock button and click OK.

If you do not see a Unblock button, then the �ile is already unblocked.

 3. Extract the zip �ile to your local drive.

 4. Copy the HyperV-Install folder to your module’s directory and rename it HyperV.

c20.indd 515c20.indd 515 03/09/11 11:03 AM03/09/11 11:03 AM

516

Part V: Virtualization and Cloud Computing

Note
You can easily determine your module directories by checking the PSModulePath variable.

Get-Item env:PSModulePath �

Once you have the module in place, you can then use it by importing it with the following

command:

Import-Module HyperV

The Windows PowerShell module is now loaded, and you are able to use it to manage your

Hyper-V servers. From this point on, the examples in this chapter use this project unless

otherwise noted.

Note
The Windows PowerShell Management Library for Hyper-V is an active community-based project. Details around
it may change frequently. Please review the project’s website for the most recent documentation: http://
pshyperv.codeplex.com/. �

Managing Hosts
In the “WMI Management Classes” section of this chapter, you connected to a host directly.

The Windows PowerShell Hyper-V Library includes a great command for discovering hosts.

When you execute Get-VMHost, it queries your Active Directory (AD) domain and returns

all of the Hyper-V servers registered. You can also specify a parameter to select another

domain to search.

Retrieving Information
One of the items of information you might want to know is where the virtual disk �iles are

stored by default. When you add a virtual disk, if you don’t specify a location, it is stored in

the default location. To �ind this location, you use the Get-VHDDefault function.

Using Show-HypervMenu
Within the project is a very interesting function for managing Hyper-V hosts:

Show-HypervMenu. The Show-HypervMenu function does exactly what it sounds like — it

creates a simple text-based menu for managing various settings of your Hyper-V host.

The code below shows the invocation of the function and the initial screen that is displayed.

You can see in Figure 20-1 that you have many choices for managing the host as well as

manipulating virtual machines. The menu is hierarchical in that as you select different

options, you are shown different menus.

Show-HyperVMenu -Server SOL

c20.indd 516c20.indd 516 03/09/11 11:03 AM03/09/11 11:03 AM

517

Chapter 20: Managing Hyper-V 2008 R2

FIGURE 20-1

Show-HyperVMenu output

Managing Virtual Machines
In this section, you learn how to create and manage your virtual machines. You also cover

controlling the power state of your virtual machine and how to take snapshots. Finally, you

learn how you can easily create a disaster recovery plan with only a few lines of code.

Creating and Modifying Virtual Machines
Now you are going to create a new virtual machine. Several steps need to be completed

to create a virtual machine that is ready to install a new operating system. Code for these

steps is provided in Listing 20-3, which appears after the process is described.

The �irst step is to create a new virtual machine with the New-VM function. With this

function, you create a virtual machine shell. It is con�igured for the bare minimum

resources and does not yet have a hard drive or network connection.

Next, you set the number of CPUs and the memory to values that are adequate for your �inal

operating system. Use the Set-VMCPUCount and Set-VMMemory functions, as well as the

virtual machine object that was returned from New-VM to pass to the functions. You add a

network interface card (NIC) the same way. Specify which switch you want it attached to as

part of the function.

Adding a disk is a little different in this example. The function Add-VMNewHardDisk is

actually doing the work of three separate functions. First, you are creating a new virtual

c20.indd 517c20.indd 517 03/09/11 11:03 AM03/09/11 11:03 AM

518

Part V: Virtualization and Cloud Computing

disk �ile on the host that is 40 GB in size. Next, it is creating a drive in the virtual machine’s

controller. And �inally, it is attaching your virtual disk �ile to the drive.

LISTING 20-3

Creating a New Virtual Machine

$Server = SOL
$VM = New-VM -Name Phoenix -Server $Server
Set-VMCPUCount -VM $VM -CPUCount 2 -Server $Server
Set-VMMemory -VM $VM -Memory 4GB -Server $Server
Requires that the virtual switch already exists!
Add-VMNic -VM $VM -VirtualSwitch ‘192.168.2.0_24’ -Server $Server
Add-VMNewHardDisk -VM $VM -Size 40GB -Server $Server -Fixed $false

Controlling Virtual Machines
Now that you have learned how to create a virtual machine, you proceed to managing

virtual machines. In the �irst section, you manage the power state of the virtual machines,

including starting, stopping, and shutting down virtual machines. Then, you learn how to

take a snapshot of a virtual machine.

Managing Power State
Controlling virtual machines is an easy task with the Hyper-V Windows PowerShell

Management Library. To start a virtual machine, you use the Start-VM function. There are

two different approaches to calling Start-VM; the �irst is calling it directly, and the second

is by passing a VM object to the function. In the �irst approach, you specify the virtual

machine name and the server on which the virtual machine resides:

Start-VM -VM Phoenix -Server SOL -Wait

In second approach, you get a virtual machine object and then pass that object to the

Start-VM function:

Get-VM -VM Phoenix -Server SOL | Start-VM -Wait

In each of these approaches, you will notice the usage of the Wait parameter. By default,

the function starts the action in the background and then returns, which enables you to

proceed in your script while operations are being done. However, most of the time, you will

want the action to complete before proceeding. That is when the Wait parameter becomes

useful. This parameter also displays a progress bar indicating the ongoing status of the job.

Suspending and stopping virtual machines is accomplished via the Suspend-VM and Stop-VM

functions, respectively. These functions operate the same way Start-VM does. Suspending

a virtual machine enables you to store the contents of memory to disk and “pause” a

c20.indd 518c20.indd 518 03/09/11 11:03 AM03/09/11 11:03 AM

519

Chapter 20: Managing Hyper-V 2008 R2

virtual machine. Stopping a virtual machine is the same as pulling the physical machine’s

power cord, which is not a good idea. Instead, you want to gracefully shut down the virtual

machine’s guest operating system. To accomplish this, you use the Shutdown-VM function.

The Shutdown-VM function works the same way that the previous functions work except

that it also takes a Reason parameter. When you specify a reason, that information is sent to

the guest operating system so that it registers why the operating system was shut down and

performs a graceful shutdown.

Working with Snapshots
Snapshots are an important tool in managing your virtual machines and are what make

virtual machines so powerful. Within a matter of seconds, you have a point-in-time

checkpoint of your virtual machine. No matter what changes you make to the operating

system, you can always fall back to that point in time by reverting to that snapshot. Taking

a snapshot before a major upgrade or change could save you hours of rebuilding a machine

in the event of a failure.

Retrieving Snapshots
Get-VMSnapshot enables you to retrieve virtual machine snapshots under a variety of

conditions. Simply executing Get-VMSnapshot without any additional parameters lists all

of the snapshots on a given system:

Get-VMSnapshot

If you want to get the snapshots for a given virtual machine, you supply the VM parameter:

Get-VMSnapshot -VM UrsaMajor

If you want to retrieve only the latest snapshot for a given virtual machine, add the Newest

parameter:

Get-VMSnapshot -VM UrsaMajor -Newest

Taking Snapshots
Now that you can retrieve the snapshots, you need to know how to create them. Using the

New-VMSnapshot function, you can create snapshots of virtual machines:

New-VMSnapshot -VM UrsaMajor -Note “Testing” -Wait -Force

In the preceding example, you specify the virtual machine with the VM parameter. The Note

parameter allows you to add notes to the snapshot. It is a good idea to create a detailed

note indicating when the snapshot was taken, why it was taken, and for how long it should

be kept. The Wait parameter tells the function to halt further script execution and display

a progress indicator. Finally, the Force parameter eliminates the prompting before

continuing with the operation.

When you create the snapshot, you will notice that the name of the snapshot consists

of the virtual machine name and the time the snapshot was taken. This is very valuable

c20.indd 519c20.indd 519 03/09/11 11:03 AM03/09/11 11:03 AM

520

Part V: Virtualization and Cloud Computing

information, but suppose you have a naming scheme that you want to adhere to. There is

no way to specify the name of the snapshot, but with some additional work, you can end up

with the name you want. As shown in the following code, you create the snapshot the same

way you did previously. In the second step, you retrieve that snapshot by using the Newest

parameter because this will be the latest snapshot of that virtual machine. You then pass

that snapshot to Rename-Snapshot and specify the name you want. You also specify the

Force parameter so you don’t get prompted:

New-VMSnapshot -VM UrsaMajor -Note “Testing” -Wait -Force
Get-VMSnapshot -VM UrsaMajor -Newest |
 Rename-VMSnapshot -NewName “My Snapshot” -Force

Removing Snapshots
As time goes by, you are going to want to remove snapshots. They take up valuable space.

You remove snapshots with Remove-VMSnapshot. The Remove-VMSnapshot function differs

from the other functions that you have seen. In the previous functions, you could specify a

virtual machine and server — and occasionally additional information. With this function,

you can specify a snapshot object by parameter or pipeline, but the function itself doesn’t

accept any parameter directly that identi�ies the snapshot.

Take a look at a few test cases. The �irst example included in Listing 20-4 uses Get-VMSnapshot

to retrieve the latest snapshot for the virtual machine and uses Remove-VMSnapshot to

remove it. You again specify the Force and Wait parameters to prevent being prompted to

complete the action and to pause further execution until the process is complete.

The second example in the listing uses a function not covered yet, Choose-VMSnapshot.

This project includes several of these Choose-* functions, which present a text menu

to allow you to select an object. In this case, you specify a virtual machine and are then

presented with a tree view, from which you select the number of the snapshot that you

want. This snapshot is then passed to Remove-VMSnapshot.

The last example in the listing introduces the Tree parameter. The Tree parameter directs

Remove-VMSnapshot to remove the snapshot and all child snapshots.

LISTING 20-4

Removing Snapshots

Get-VMSnapshot -VM UrsaMajor -Newest |
 Remove-VMSnapshot -Wait -Force
Choose-VMSnapshot -VM UrsaMajor |
 Remove-VMSnapshot -Wait -Force
Get-VMSnapshot -VM UrsaMajor -Name “My Snapshot” |
 Remove-VMSnapshot -Wait -Tree -Force

c20.indd 520c20.indd 520 03/09/11 11:03 AM03/09/11 11:03 AM

521

Chapter 20: Managing Hyper-V 2008 R2

Implementing Disaster Recovery
Disaster recovery is a huge portion of any system administrator’s job, or at least it should

be. You are responsible for making sure you can recover any of your systems should you

have a failure in any one component. With the Windows PowerShell Management Library

for Hyper-V, it is a �igurative piece of cake. The library includes a function called Get-
VMBuildScript that enables you to generate a Windows PowerShell script that will help

you rebuild your environment.

In Figure 20-2, Get-VMBuildScript is executed for the CANOPUS virtual machine. From the

output, you can see that when the function is executed, the output is Windows PowerShell

code. The Windows PowerShell code that is outputted enables you to re-create the virtual

machine with exactly the same con�iguration. If you include this script with backups of the

virtual disks, you can completely restore your virtual machines on any Hyper-V server.

FIGURE 20-2

Get-VMBuildScript used to re-create a virtual machine

This example speci�ied the virtual machine using the VM parameter. If you omit the parameter,

the output will include the code to re-create all of the virtual machines on the server.

Summary
In this chapter, you were introduced to the Hyper-V WMI providers as well as the Windows

PowerShell Hyper-V Management Library. You learned how to create and manage virtual

machines as well as use snapshots to create point-in-time copies of your virtual machines.

The next chapter discusses the System Center Virtual Machine Manager, Microsoft’s

enterprise management platform for managing Hyper-V environments.

c20.indd 521c20.indd 521 03/09/11 11:03 AM03/09/11 11:03 AM

c20.indd 522c20.indd 522 03/09/11 11:03 AM03/09/11 11:03 AM

523

C H A P T E R

System Center Virtual Machine Manager (VMM), part of the

System Center suite of applications, is Microsoft’s solution for

managing Hyper-V, Microsoft’s virtualization tool in enterprise

environments. In this chapter, you explore managing hosts and virtual

machines as well as maintaining your VMM library.

Working with System Center
Virtual Machine Manager 2008 R2
In this section, you are introduced to the VMM snap-in. In addition,

you learn how to back up the VMM database and how to use the VMM

Administrator Console to write scripts.

Installing and Loading the Cmdlets
To install the VMM cmdlets on your system, you need to install the

VMM Administrator Console. Once you install the VMM Administrator

Console, the cmdlets are installed. They are in the Microsoft
.SystemCenter.VirtualMachineManager snap-in. To load them into

your system, you load this snap-in:

Add-PSSnapin -Name Microsoft.SystemCenter.VirtualMachineManager

The VMM cmdlets are now loaded into your Windows PowerShell

session and are available to you.

Managing System
Center Virtual
Machine Manager
2008 R2

C H A P T E R

IN THIS CHAPTER
Adding Hyper-V hosts to VMM

Attaching clusters to VMM

Creating and controlling virtual
machines

Introducing libraries

c21.indd 523c21.indd 523 03/09/11 11:03 AM03/09/11 11:03 AM

524

Part V: Virtualization and Cloud Computing

Backing Up the VMM Database
VMM has a unique cmdlet that enables you to back up your VMM database without having

to engage the assistance of your local database administrator. This is accomplished with the

Backup-VMMServer cmdlet. The �irst step is to use Get-VMServer to get a Virtual Machine

Manager server object. That server object is then passed to the Backup-VMMServer cmdlet.

$VMMServer = Get-VMMServer -ComputerName Procyon
$VMMServer | Backup-VMMServer -Path “D:\Backups\VMM”

The Path parameter is passed to the cmdlet with the location of where you want to store

the backup �ile. The location speci�ied here is the path relative to the SQL Server that hosts

your database and not the Virtual Machine server. To restore the VMM database, you will

need to use the SCVMMRecover.exe tool directly on the Virtual Machine Manager server.

Using the VMM Administrator Console
to Write Scripts
Even using the VMM Administrator Console, you are still using Windows PowerShell. This is

because the console is, in fact, based on Windows PowerShell cmdlets. When you execute an action

in the GUI, it calls Windows PowerShell cmdlets to do the actual work. This is most evident when

you click the View Script button in the summary screen of an action, as you can see in Figure 21-1.

FIGURE 21-1

VMM Administrator Console

c21.indd 524c21.indd 524 03/09/11 11:03 AM03/09/11 11:03 AM

525

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

If you click this button, Notepad opens up with the actual scripts that are going to be called

to perform the action as shown in Figure 21-2.

FIGURE 21-2

VMM Administrator Console script

Connecting to VMM
When working with the VMM cmdlets, you have a couple of methods for connecting to the

VMM Server. One is to pass or specify the server directly. In the previous example, where

the VMM database was backed up, Get-VMMServer was used to get a ServerConnection
object, which was then passed to the Backup-VMServer cmdlet. You could just as easily have

speci�ied the VMMServer property and entered the object variable. You can also specify the

server name in which the cmdlet would internally get the ServerConnection object.

Another option is to use an implicit pass-through. If you call Get-VMMServer and get a

ServerConnection object, that object is stored in the Windows PowerShell session. It is

available until your session is closed. To illustrate, you can rewrite the backup example

as follows:

Get-VMMServer -ComputerName Procyon
Backup-VMMServer -Path “D:\Backups\VMM”

As you can see, you didn’t store the connection, nor did you pass it to the backup cmdlet.

c21.indd 525c21.indd 525 03/09/11 11:03 AM03/09/11 11:03 AM

526

Part V: Virtualization and Cloud Computing

Note
The latter method of implicit pass-through is efficient, but I wouldn’t recommend using it when you are
writing a script. It will make it hard for someone viewing the script to know how you obtained your
connection. Without explicitly specifying the connection, there is always a slight chance that something
might interfere and switch connections to another server. �

Working with Host Servers
In this section, you work with the hypervisor hosts that power VMM. You begin with

adding hosts to VMM and proceed to organizing hosts within VMM.

Adding Hosts to VMM
Virtual Machine Manager supports managing three different host types:

� Virtual Server hosts

� Hyper-V hosts

� VMware ESX(i) hosts

Virtual Server is a Windows-based virtualization platform that, unlike Hyper-V, is a

service that runs on top of Windows. Its latest version is 2005 R2. VMware ESX(i) hosts are

supported via the VMWare VirtualCenter product. Neither Virtual Server nor ESX(i) are

considered in this chapter.

Note
If you are adding a host that is not in a domain, such as in a DMZ network, you will first have to install the
Virtual Machine Manager agent on those systems. When adding those systems, you have to establish an
encryption key and use that key when adding the host. �

The code in Listing 21-1 adds your �irst host to the VMM environment. In the code, you

need to pass administrator credentials to the cmdlet that adds the host, so you use

Get-Credential to store the credential in the $Credential variable. The next step is to

retrieve the host group that you want to add your host. Host groups are virtual folders for

you to organize your hosts in VMM. In this example, you are placing your host in the All

Hosts group that is the default group in VMM.

The �inal step is to actually add the host to the VMM Server via the Add-VMHost cmdlet. The

Add-VMHost cmdlet supports several parameters. The primary ones are listed here:

� VMMServer: The VMM Server to which you are adding the host.

� ComputerName: The name of the host you are adding to the VMM environment.

� Description: Optional description used to identify the host.

� Credential: Required credential object used to add the host.

c21.indd 526c21.indd 526 03/09/11 11:03 AM03/09/11 11:03 AM

527

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

� RemoteConnectEnabled: Whether you want to allow remote connections to

virtual machines on the speci�ied host.

� VMPaths: The default location where new virtual machine disks will be added.

� VMHostGroup: The host group where the host will be located inside the VMM

management environment.

� AvailableForPlacement: An indicator of whether or not the host can be used

for placement of virtual machines. Set this to false when you don’t want virtual

machines on the host until later.

Once the Add-VMHost cmdlet is executed, it will take a considerable amount of time because

the agents are installed on the host. Code execution will be halted until the cmdlet returns.

If you want to continue code execution, you can use the RunAsynchronously parameter to

place the execution in the background. That parameter is not used in Listing 21-1.

LISTING 21-1

Adding a Hyper-V Host

$Credential = Get-Credential
$VMHostGroup = Get-VMHostGroup -VMMServer PROCYON |
 Where-Object {$_.Path -eq “All Hosts”}

Add-VMHost -VMMServer PROCYON `
 -ComputerName “sol.milkyway.cmschill.net” `
 -Description “” `
 -Credential $Credential `
 -RemoteConnectEnabled $True `
 -VmPaths “D:\VirtualMachines” `
 -VMHostGroup $VMHostGroup `
 -AvailableForPlacement $True

If you add a host that has already had an older version of the VMM agent installed, you

might also need to update the agent on the host. Listing 21-2 shows the command for

updating the agent on the host just added. Running this cmdlet against a system with the

most recent agent version doesn’t perform any action. This next listing can be added to any

scripts that add new hosts to an environment to make sure they are up-to-date.

LISTING 21-2

Updating a Host Agent

$Credential = Get-Credential
Get-VMMManagedComputer -ComputerName “sol.milkyway.cmschill.net” |
 Update-VMMManagedComputer -Credential $Credential

c21.indd 527c21.indd 527 03/09/11 11:03 AM03/09/11 11:03 AM

528

Part V: Virtualization and Cloud Computing

Organizing Hosts
To organize your hosts in Virtual Machine Manager, you use host groups. Host groups are

organizational containers that enable you to group your hosts in a hierarchical structure

inside of VMM.

For this example, you create a new host group and move your newly added server into it.

The �irst step is to get the host object using Get-VMHost. Then, you create a new host group

called My Cluster in the existing Clusters host group. Lastly, you use Move-VMHost to

move the host into your host group.

$VMHost = Get-VMHost -ComputerName sol.milkyway.cmschill.net
$HostGroup = New-VMHostGroup -Name “My Cluster” -ParentHostGroup “Clusters”
Move-VMHost -VMHost $VMHost -ParentHostGroup $HostGroup

Managing Clusters
VMM supports highly available virtual machines when deployed on failover clusters.

This section covers the cmdlets that interact with clusters. A failover cluster is a group

of independent servers that interact with each other to provide increased availability of

applications and services. Formerly known as server clusters, failover clusters are available

in Windows Server 2008 Enterprise and Windows Server 2008 Datacenter.

Adding Clusters
Before you can add the host cluster to VMM, you have to create the failover cluster using

the Failover Cluster Management tool to create and con�igure the cluster. Creating and

con�iguring the cluster is not covered in this book. To add the cluster, you use the

Add-VMHostCluster cmdlet with the following parameters:

� Name: Name of your precon�igured failover host cluster

� Credential: Required credential object used to add the cluster

� Description: Optional description to identify the cluster

� RemoteConnectEnabled: Boolean value that indicates whether users can connect

to their virtual machines remotely

� RemoteConnectPort: Default value for the TCP port when users connect to their

virtual machine remotely

� VMHostGroup: Virtual directory in the VMM environment where you want your

cluster placed

� JobVariable: Speci�ies that job progress is tracked and stored in the variable

name speci�ied

� RunAsynchronously: Switch that returns control immediately

c21.indd 528c21.indd 528 03/09/11 11:03 AM03/09/11 11:03 AM

529

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

Listing 21-3 shows the steps for adding a host cluster to the VMM environment. For

clari�ication, note that the JobVariable parameter is in no way related to the Windows

PowerShell job system. The job functionality discussed here is completely contained within

the VMM cmdlets.

LISTING 21-3

Adding a Host Cluster

$Credential = Get-Credential
$VMHostGroup = Get-VMHostGroup | Where-Object ($_.Path -eq “Clusters”}
Add-VMHostCluster -Name “HostCluster.domain.com” `
 -Credential $Credential `
 -Description “Hyper-V Failover Cluster” `
 -RemoteConnectEnabled $True `
 -RemoteConnectPort 2179 `
 -VMHostGroup = $VMHostGroup `
 -VMMServer PROCYON `
 -JobVariable “ClusterAddition” `
 -RunAsynchronously

while ($ClusterAddition.status -eq “Running”)
{
 Write-Host “Still running…”
 Start-Sleep -Seconds 10
}
Write-Host “Addition complete.”

When the last statement is executed, the cmdlet actually populates the variable

$ClusterAddition with an object that represents the job of adding the host cluster.

Say you have an additional step that needs to be performed, but only after the cluster is

added. You accomplish this by checking the $ClusterAddition.Status property to make

sure it does not still indicate the job is running.

Caution
Windows PowerShell uses a strong naming convention that uses the module name in addition to the actual
cmdlet name to identify cmdlets. This allows for the possibility of having duplicate cmdlet names. This is
actually evident with the VMM cmdlets.

The following output demonstrates that the Microsoft.SystemCenter.VirtualMachineManager snap-in
has a Get-Job cmdlet, which is also in the core Windows PowerShell framework. The VMM cmdlet takes
 priority. If you want to execute the framework version of the cmdlet, you have to execute Microsoft
.PowerShell.Core\Get-Job.

PS> Get-Command -Name Get-Job* |
>> Select-Object Name, ModuleName, CommandType |

c21.indd 529c21.indd 529 03/09/11 11:03 AM03/09/11 11:03 AM

530

Part V: Virtualization and Cloud Computing

>> Format-Table -Autosize
>>

Name ModuleName CommandType
---- ---------- -----------
Get-Job Microsoft.PowerShell.Core Cmdlet
Get-Job Microsoft.SystemCenter.VirtualMachineManager Cmdlet �

Performing Maintenance on Host Servers
During your normal system administration routine, you will no doubt have to perform

work on one of your Hyper-V servers. With a failover cluster and VMM, migrating hosts

is an easy task.

The �irst step is to populate variables with the name of the host you want to perform

maintenance on and the host group that contains the cluster that your host belongs to. This

example assumes that only your cluster hosts are in the speci�ied host group.

The next step is to iterate through each of the virtual machines on your host. If the virtual

machine is running, a set of commands is run; otherwise, nothing is done to a virtual

machine that is not running.

With each of the running virtual machines, you get a hashtable of the host ratings. Host

ratings are numbers or stars from one to �ive in half-star increments that indicate the

suitability of a host to accept a virtual machine. The following statement retrieves the host

ratings in descending order for all hosts that are able to accept the virtual machine:

$HostRatings = @(Get-VMHostRating `
 -VM $VM `
 -VMHostGroup $VMHostGroup `
 -IsMigration |
 Where-Object {$_.Rating -gt 0 } |
 Sort-Object -Property Rating -Descending)

If there are no available hosts, the script in Listing 21-4 writes an error to screen.

Otherwise, the virtual machine is moved to the host with the highest rating, unless it

is its current host, in which case it is moved to the next-highest-rated host.

The last step is to recon�igure the host to indicate that is in maintenance mode by setting

AvailableForPlacement to $False. Listing 21-4 walks through the steps for migrating all

of your virtual machines off your host and then places the host in maintenance mode.

LISTING 21-4

Evacuating a Host

$VMHost = “sol.milkyway.cmschill.net”
Get-VMMServer -ComputerName “Procyon”

c21.indd 530c21.indd 530 03/09/11 11:03 AM03/09/11 11:03 AM

531

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

$VMHostGroup = Get-VMHostGroup |
 Where-Object {$_.Path -eq ‘All Hosts\My Cluster’}

foreach ($VM in (Get-VM -VMHost $VMHost))
{
 if ($VM.Status -eq ‘Running’)
 {
 $HostRatings = @(Get-VMHostRating -VM $VM `
 -VMHostGroup $VMHostGroup `
 -IsMigration |
 Where-Object {$_.Rating -gt 0 } |
 Sort-Object -Property Rating -Descending)

 if ($HostRatings.Count -eq 0)
 {
 Write-Error “No alternate hosts available.”
 }

 if ($HostRatings[0].VMHost -ne $VMHost)
 {
 Move-VM -VM $VM -VMHost $HostRatings[0].VMHost
 }
 else
 {
 Move-VM -VM $VM -VMHost $HostRatings[1].VMHost
 }
 }
}

Set-VMHost -VMHost $VMHost -AvailableForPlacement $False

Working with Virtual Machines
In this section, you interact with virtual machines beginning with the creation of virtual

machines. Next, you learn how to modify and control virtual machines. Finally, you learn

how to use snapshots.

Creating and Modifying Virtual Machines
Creating a new virtual machine involves several steps. This section breaks the steps down

into independent sections that can be placed together to create a new virtual machine.

The �irst thing you need to do is to create the Hardware Pro�ile. The Hardware Pro�ile is

used to store the hardware con�iguration. The �irst statement in Listing 21-5 gets the

CPUType that corresponds to a processor type of a 1.0 GHz Pentium III Xeon. The CPU type

c21.indd 531c21.indd 531 03/09/11 11:03 AM03/09/11 11:03 AM

532

Part V: Virtualization and Cloud Computing

represents the characteristics of the processor that your virtual machine requires. VMM

uses this value to determine which hosts your virtual machine can exist on. In most cases,

you just need a generic CPU, so that is why I selected this value.

LISTING 21-5

Creating the Hardware Profile

$CPUType = Get-CPUType -VMMServer PROCYON |
 Where-Object {$_.Name -eq “1.00 GHz Pentium III Xeon”}

$HardwareProfile = New-HardwareProfile -VMMServer PROCYON `
 -Owner “MILKYWAY\Meson” `
 -CPUType $CPUType `
 -Name “ServerDefaultProfile” `
 -Description “Default Server Profile” `
 -CPUCount 2 `
 -MemoryMB 4096 `
 -RelativeWeight 100 `
 -HighlyAvailable $False `
 -NumLock $False `
 -BootOrder “CD”, “IdeHardDrive”, “PxeBoot”, “Floppy”

With the CPU type retrieved, you now focus on the Hardware Pro�ile itself. The Hardware

Pro�ile enables you to template the general con�iguration of virtual machines without including

the disks or networking. In this example, the pro�ile is named ServerDefaultProfile,

indicating that you tend to use this pro�ile for all of your servers. The parameters used include:

� Owner: Owner of the virtual machine in the form of an Active Directory account.

� CPUType: The CPUType object retrieved previously.

� Name: Name of your Hardware Pro�ile.

� Description: Description of your Hardware Pro�ile.

� CPUCount: Number of virtual CPUs in your Hardware Pro�ile.

� MemoryMB: Amount of memory in megabytes that you want to allocate to your

virtual machine.

� RelativeWeight: Amount of CPU resources the host can use relative to other

virtual machines on the host. For example, a machine with a value of 200 would be

granted more resources than a machine with a value of 100.

� NumLock: Whether or not the number lock is enabled on the virtual machine.

� BootOrder: Order of devices that the virtual machine will boot.

Once you execute this command, you now have a Hardware Pro�ile that you can use to

create your virtual machine.

c21.indd 532c21.indd 532 03/09/11 11:03 AM03/09/11 11:03 AM

533

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

In the next section, you retrieve some information that is needed to create the virtual

machine. The �irst piece of required information is the host, as shown in Listing 21-6.

You use Get-VMHost to retrieve the object that represents a Hyper-V server named

sol.milkyway.cmschill.net. This is the server that you want to place your new

machine on.

The next bit of information you need is the operating system. Because you are building a

new server, you are going to install Windows Server 2008 R2. For this example, select the

value of 64-bit edition of Windows Server 2008 R2 Standard. Use Get-OperatingSystem to

get all the possible operating systems, and then �ilter out the one you want.

LISTING 21-6

Getting Data

$VMHost = Get-VMHost -VMMServer PROCYON |
 Where-Object {$_.Name -eq “sol.milkyway.cmschill.net”}

$OperatingSystem = Get-OperatingSystem -VMMServer PROCYON |
 Where-Object {$_.Name -eq “64-bit edition of Windows Server 2008 R2 Standard”}

Now you have all the information you need to create a virtual machine. You can create

the virtual machine by using the New-VM cmdlet, as shown in Listing 21-7, along with the

following parameters:

� Name: Displayed name of your virtual machine.

� Description: How you describe your virtual machine.

� OperatingSystem: Operating system you plan on installing inside the virtual

machine.

� Owner: Owner of the virtual machine in the form of an Active Directory account.

� VMHost: Host object that you retrieved representing the host the virtual machine

will be placed on.

� HardwareProfile: Your newly created Hardware Pro�ile.

� StartAction: What action you want performed on your virtual machine when your

host starts. In this case, it’s a server, so you always want it to be running.

� DelayStart: Number of seconds to wait before starting this virtual machine. Use

this value to stagger the startup of virtual machines.

� StopAction: Action to perform on a virtual machine when the host for your virtual

machine is stopping.

Listing 21-7 provides the code needed to create the virtual machine using the New-VM

cmdlet and its parameters.

c21.indd 533c21.indd 533 03/09/11 11:03 AM03/09/11 11:03 AM

534

Part V: Virtualization and Cloud Computing

LISTING 21-7

Creating the Virtual Machine

$VM = New-VM -VMMServer PROCYON `
 -Name “MyVM” `
 -Description “My New VM” `
 -OperatingSystem $OperatingSystem `
 -Owner “MILKYWAY\Meson” `
 -VMHost $VMHost `
 -Path “D:\VirtualMachines” `
 -HardwareProfile $HardwareProfile `
 -StartAction AlwaysAutoTurnOnVM `
 -DelayStart 0 `
 -StopAction SaveVM

At this point, your virtual machine is not complete. Although you have a virtual machine,

it doesn’t have any networking or storage capability — and what good is a virtual

machine without storage and networking? Beginning in Listing 21-8, you create a new

virtual machine network adapter using the New-VirtualNetworkManager cmdlet.

LISTING 21-8

Adding Storage and Networking

$VM is the object created with New-VM
New-VirtualNetworkAdapter -VM $VM `
 -PhysicalAddressType Dynamic `
 -VirtualNetwork “New Virtual Network”

New-VirtualDVDDrive -VM $VM `
-Bus 1 `
-LUN 0

New-VirtualDiskDrive -VM $VM `
-IDE `
-Bus 0 `
-LUN 0 `
-Size 40960 `
-Dynamic `
-Filename “MyVM_disk_1”

By setting the PhysicalAddressType to Dynamic, you tell VMM that you don’t care about

the virtual MAC address and to generate one on completion. With the VirtualNetwork

c21.indd 534c21.indd 534 03/09/11 11:03 AM03/09/11 11:03 AM

535

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

parameter, you indicate that you want your virtual machine to connect to the virtual

switch on your “New Virtual Network” network.

In the next two statements, you add storage to the virtual machine. You begin by adding

a DVD drive. Using the New-VirtualDVDDrive cmdlet, you simply specify the Bus ID

and the LUN ID that you want to use. For the hard drive, you use the New-VirtualDiskDrive,

which requires the Bus ID and the LUN ID as well as a few more parameters. You, of

course, specify the size of your virtual disk; in this case, you require a 40 GB drive. You

also specify the �ilename for the virtual disk. The disk will be stored in the default location

for the hypervisor.

The last parameter in the cmdlet is the Dynamic switch. The Dynamic switch tells VMM

that you want a dynamic disk. A dynamic disk is one that starts as needed and grows as

large as it needs to, up to the maximum size. The virtual machine sees the entire space

as available.

Note
Dynamic disks enable you to give the space to a virtual machine that it needs to grow. However, if you don’t
watch it, you can over-allocate your storage and run out of space on your storage devices. If you do use
dynamic disks, an excellent exercise for you would be to use Windows PowerShell to create a report showing
the total amount of available space and the amount of allocated space. �

Removing Virtual Machines
You can remove virtual machines with the Remove-VM cmdlet. Removing a virtual machine

deletes the record from Virtual Machine Manager and deletes all �iles associated with the

virtual machine. You can specify the name directly or pass a virtual machine object.

Remove-VM -VM MyVM
Get-VM | Where-Object {$_.Name -eq ‘MyVM’} | Remove-VM

Caution
Before removing a virtual machine, make sure that you back up or save any files you need. When you execute
this command, the virtual machine files will no longer be available. �

Controlling Virtual Machines
Several cmdlets are available for controlling your virtual machines. Table 21-1 lists those

cmdlets. As you saw in previous examples, you can specify the virtual machine as a

parameter of the cmdlet or via the pipeline. Both examples are shown here:

Start-VM -VM MyVM
Get-VM | Where-Object {$_.Name -eq ‘MyVM’ } | Shutdown-VM

c21.indd 535c21.indd 535 03/09/11 11:03 AM03/09/11 11:03 AM

536

Part V: Virtualization and Cloud Computing

TABLE 21-1

Cmdlets Used to Control Virtual Machine State

Cmdlet Description

Resume-VM Resumes paused virtual machines managed by Virtual Machine Manager

SaveState-VM Saves the state of virtual machines managed by Virtual Machine Manager

Shutdown-VM Shuts down a running virtual machine managed by Virtual Machine Manager

Start-VM Starts virtual machines managed by Virtual Machine Manager

Stop-VM Stops virtual machines managed by Virtual Machine Manager

Suspend-VM Suspends execution on virtual machines managed by Virtual Machine Manager

Managing Checkpoints
VMM uses checkpoints to allow you to save the state of your virtual machines at any point

in time. Generally called snapshots in other products, checkpoints provide a method for

taking temporary backups.

Creating Checkpoints
Creating a checkpoint in VMM allows you to create a point-in-time snapshot for a virtual

machine. To create a checkpoint in VMM, you will use the New-VMCheckPoint cmdlet as

shown in the following code:

Get-VMMServer -ComputerName “Procyon”
New-VMCheckPoint -VM “TestVM” `
 -Description “TestVM - SP1 Upgrade”

The VM parameter is required and speci�ies which virtual machine to take a checkpoint

on. The Description parameter is optional, but it is recommended to describe the

purpose of the checkpoint.

Note
With VMM, you are able to take a maximum of 64 checkpoints. However, checkpoints do take up space, so
routinely purging unneeded checkpoints is recommended. �

Retrieving Checkpoints
Once your checkpoints are created, you need to be able to retrieve them and information

about them. Using Get-VMCheckpoint without parameters retrieves all checkpoints

registered in the VMM server.

Get-VMCheckpoint

c21.indd 536c21.indd 536 03/09/11 11:03 AM03/09/11 11:03 AM

537

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

By specifying the virtual machine using the VM parameter, you retrieve the checkpoints for

that virtual machine:

Get-VMCheckpoint -VM “TestVM”

One additional parameter of interest is the MostRecent parameter. By specifying the

MostRecent parameter, you retrieve the most recent snapshot:

Get-VMCheckpoint -VM “TestVM” -MostRecent

Removing Checkpoints
Removing a checkpoint is an easy task. First, you need to get a reference to a checkpoint

using Get-VMCheckpoint, and then pass that to Remove-VMCheckpoint, as illustrated here:

Get-VMCheckpoint -VM “TestVM” |
 Remove-VMCheckpoint

In this example, you remove all the checkpoints for the speci�ied VM. Alternatively, you

could also explicitly specify the checkpoint, as shown here:

$Checkpoint = Get-VMCheckpoint -VM “TestVM” -MostRecent
Remove-VMCheckpoint -VMCheckpoint $Checkpoint

In this example, you delete the most recent checkpoint for the speci�ied virtual machine.

Restoring Checkpoints
Restoring checkpoints allows you to return a virtual machine to the time at which the

checkpoint was taken. In the example here, you restore a machine to the most recent

checkpoint for the speci�ied virtual machine:

$Checkpoint = Get-VMCheckpoint -VM “TestVM” -MostRecent
Restore-VMCheckpoint -VMCheckpoint $Checkpoint

Note
When restoring a checkpoint, it is important to note that any changes made to a machine after the most
recent checkpoint will be discarded. If you want to maintain information of the current state, it is important
that you take a new checkpoint. �

Libraries
Virtual Machine Manager libraries are repositories for the storage of virtual machine

resources. A library can include:

� Virtual hard disks

� CD/DVD ISO images

c21.indd 537c21.indd 537 03/09/11 11:03 AM03/09/11 11:03 AM

538

Part V: Virtualization and Cloud Computing

� Virtual machine templates

� Stored virtual machines

� Virtual �loppy disks

� Hardware and guest pro�iles

� Sysprep answer �iles

A library is important because it allows for the central storage and reuse of components

among the various hosts of a VMM implementation. In this section, you look at some of the

tasks associated with libraries.

Creating a Library
A VMM library is a combination of physical media stored on a network share along with

data stored in the VMM database. By default, a library is created on your VMM server. For

the purpose of this example, assume you want to create a new library on a new server in

your datacenter.

On your new server, you completed some previous con�igurations in preparation. The �irst

thing you did was create a folder structure on your server to hold your �iles. Then, you

shared it as VMM. It can be blank because you just need a �ile share.

Now, you are ready to create your server. The �irst step, as you have seen in prior

examples, is to get the administrator credentials and store them in a variable. Then, you

call Add-LibraryServer, specifying the server name and your VMM server as well as the

credentials.

$Credential = Get-Credential
Add-LibraryServer -ComputerName Atlanta `
 -VMMServer Procyon `
 -Credential $Credential `
 -AllowUnencryptedTransfers $True

You also set AllowUnencryptedTransfers to $True. As you can imagine, that parameter

allows transfers to and from the library to occur unencrypted. For this environment, you

don’t have the security requirement and can use the extra performance from not having

to encrypt the data. When this cmdlet is executed, VMM installs the VMM agent on the

target server.

Now that the server has been added to the library, you are going to add the share. You use

Add-LibraryShare and provide the Universal Naming Convention (UNC) path to the share

you created to the SharePath parameter:

Add-LibraryShare -SharePath \\Atlanta\VMM `
 -Credential $Credential `
 -Description “VMM Library Share”

c21.indd 538c21.indd 538 03/09/11 11:03 AM03/09/11 11:03 AM

539

Chapter 21: Managing System Center Virtual Machine Manager 2008 R2

The library share is now available, but it is empty. You can create folders on your library

share and/or copy your �iles to it. If you have the VMM console opened, you may notice

that the �iles you have placed in the library share aren’t visible. That is because VMM

needs to update its inventory of the share so it can be displayed. It is periodically

updated, so you could just wait. Or you can manually update or refresh the library using

Refresh-LibraryShare.

Use Get-LibraryShare with Where-Object to retrieve the library share object, which is

then passed to Refresh-LibraryShare. This causes VMM to update its inventory of the

contents of the physical share.

Get-LibraryShare |
 Where-Object {$_.LibraryServer -eq “Atlanta.MilkyWay.cmschill.net” } |
 Refresh-LibraryShare

Finding Dependent Objects
As you �ill up your library with all of the objects you need to support your environment,

you will no doubt accumulate extra components over time. After �iles have accumulated

for a period of time, you will need to clean out your �iles. First, however, you need to

determine whether the objects are in use. VMM provides a cmdlet for this purpose:

Get-DependentLibraryObject.

In the following example, you use Get-VirtualHardDisk to retrieve the hard drives in your

library and then select the hard drives that don’t have any dependent objects. In this case, a

dependent object for a hard drive would be a virtual machine that is attached to it. You can

replace hard drives with any other library components that you want to review.

Get all hard disks that aren’t attached to a virtual machine
Get-VirtualHardDisk |
 Where-Object { (!(Get-DependentLibraryObject $_)) } |
 Select-Object Name

Get all DVD ISOs that aren’t attached to a virtual machine
Get-ISO |
 Where-Object { (!(Get-DependentLibraryObject $_)) } |
 Select-Object Name

Summary
In this chapter, you were introduced to Virtual Machine Manager and learned how to use

the VMM Administrator Console to help you create your scripts. You learned how to manage

hosts and high-availability situations. Finally, you created and managed virtual machines.

In the next chapter, you will be introduced to Microsoft’s cloud service, Windows Azure.

c21.indd 539c21.indd 539 03/09/11 11:03 AM03/09/11 11:03 AM

c21.indd 540c21.indd 540 03/09/11 11:03 AM03/09/11 11:03 AM

541

C H A P T E R

IN THIS CHAPTER
Installing the WASM cmdlets

Scripting Windows Azure
deployments

Modifying Windows Azure
deployments

 Working with Windows Azure
logs

Managing
Windows Azure

Microsoft’s cloud service offering, Windows Azure, is a robust and

extendable infrastructure to host applications that can live in

virtual machines (VMs) all over the world. The fact that these

systems are dispersed requires not only a delicate hand when it comes to

architecting the applications, but also the ability to easily automate tasks

like deploying code and scaling the applications to more infrastructure.

Although C#, Silverlight, and .NET are the tools being used for the

applications that are created in Azure, Windows PowerShell is quickly

becoming the automation tool of choice for the Microsoft cloud.

Note
When this book was written, the Windows Azure Service Manager (WASM)
cmdlets were in Version 1.2. These cmdlets provide a way to do automation tasks
like deployments, code changes, configure monitoring, and scaling applications,
but it is expected that we will see them grow and mature in future versions. This
chapter dives into what is currently available with Version 1.2 of the cmdlets. �

Installing and Using the Windows
Azure Service Manager Cmdlets
To use the Windows Azure Service Manager (WASM) cmdlets, you must

have the following installed on your computer:

� Windows PowerShell

� .NET 3.5 SP1 or higher

� IIS 7 with ASP.NET

� IIS MMC (required by the SDK)

� The Windows Azure software development kit (SDK)

c22.indd 541c22.indd 541 03/09/11 11:04 AM03/09/11 11:04 AM

542

Part V: Virtualization and Cloud Computing

The WASM cmdlet installation �iles come with a dependency checker that ensures

that you have met all of the prerequisites to install the snap-in. If you have not met the

requirements, the WASM Con�iguration Wizard will provide a link to download or install

the missing components, as shown in Figure 22-1.

FIGURE 22-1

The WASM dependency checker

Warning
If you use the dependency checker to install the SDK, you will not be able to use the Rescan button to complete
the snap-in installation after the SDK installation completes. You must close and rerun the dependency checker
in order for it to detect that you have a later version of the SDK than the one originally required. �

Installing the WASM Cmdlets
You can download the installation �iles for the WASM cmdlets from the MSDN archive at

http://archive.msdn.microsoft.com/azurecmdlets.

Once the �iles are downloaded and extracted to your hard drive (by default, this is to

c:\WASMCmdlets), you can run startHere.cmd. This �irst loads the dependency checker to

help you ensure that your prerequisites are met, followed by the WASM cmdlet installation

that installs a snap-in named AzureManagementToolsSnapIn.

After the snap-in is installed, you can load it into your Windows PowerShell session with the

following:

Add-PsSnapin AzureManagementToolsSnapIn

Creating and Registering Your Certificate
To control your Windows Azure instance with the WASM cmdlets, you need to create a

management certi�icate for your machine, and then upload it to your instance of Windows

Azure. If you have a certi�icate signed by a certi�icate authority, you can use that. If you

c22.indd 542c22.indd 542 03/09/11 11:04 AM03/09/11 11:04 AM

543

Chapter 22: Managing Windows Azure

need to create a self-signed certi�icate, you can do so with the makecert utility that is

installed with the Windows SDK:

.\makecert -r -pe -a sha1 -n CN=Azure -ss My -sky exchange -b 02/28/2011 i
-e 12/31/2039 “Azure.cer”

Once you have the certi�icate, you need to upload it to your Azure instance:

 1. Log on to https://windows.azure.com. This opens the management portal.

 2. Click Hosted Services, Storage Accounts & CDN. A new list of tasks is shown in the

upper-left corner of the screen.

 3. Click Management Certi�icates. If you have any certi�icates, they will now be visible

in the main pane.

 4. Click Add Certi�icate (see Figure 22-2). The Add New Management Certi�icate

dialog box opens.

 5. Choose the Azure subscription instance you plan on managing.

 6. Browse to a local copy of your certi�icate �ile.

 7. Click OK.

FIGURE 22-2

Installing a management certificate in the management portal

c22.indd 543c22.indd 543 03/09/11 11:04 AM03/09/11 11:04 AM

544

Part V: Virtualization and Cloud Computing

Most of the cmdlets require you to provide this certi�icate when they are invoked. The best

way to do this is to load your certi�icate into a variable using the certi�icate provider so

that you can use it later:

cd cert:\CurrentUser\My\
dir

 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\my

Thumbprint Subject
---------- -------
CC0687153A57C0B1CD30746B43E7C050A9DEFB9E CN=toenuff
BBED3A8515381C212649868C08E146BD62553856 CN=Azure

$cert = Get-Item BBED3A8515381C212649868C08E146BD62553856

Managing Hosted Services
A hosted service is the entry point to a Windows Azure application. It de�ines which data

centers the underlying infrastructure can live in, and it provides a DNS entry point to

access any public-facing roles like web services or a web front end. Some applications may

take advantage of multiple hosted services, whereas others may build a single deployment

in a hosted service that contains all of the roles the application needs. Deployments within

a hosted service contain a set of services or roles that can run on a single virtual server.

The nature of the cloud means that these sets of roles could be running on one server or

they could be running on hundreds of servers. The point is that every one of those hundred

servers will be running all of the roles speci�ied by the deployment.

Getting Hosted Service Information
The WASM cmdlets provide two ways of getting hosted services: Get-HostedServices

and Get-HostedService. These cmdlets require you to pass the certi�icate as well as your

Azure account’s subscription ID. The following two lines are used to set the variables that

you will see in further examples in this section. They must be populated with values

that are relevant to your subscription of Azure.

$subID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’
$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E

The Get-HostedServices cmdlet returns all of the hosted services that exist in your Azure

subscription.

Get-HostedServices -Certificate $cert -SubscriptionId $subID

c22.indd 544c22.indd 544 03/09/11 11:04 AM03/09/11 11:04 AM

545

Chapter 22: Managing Windows Azure

Get-HostedService retrieves an object that represents a single hosted service.

For example, the following retrieves a hosted service named poshbible:

$serv = Get-HostedService -Certificate $cert -SubscriptionId $subid i
-ServiceName ‘poshbible’

The WASM cmdlets provide proper pipeline support to other cmdlets. You can use

Get-HostedProperties to see a little bit more information about the af�inity groups or

data center regions the underlying virtual machines live in. The following shows how you

can pipe the object you retrieved from Get-HostedService into Get-HostedProperties:

$serv | Get-HostedProperties

Another cmdlet that can be used via the pipeline is Get-Deployment. This cmdlet will get

information about the code that has been deployed to either the staging or production slot

of the hosted service.

$serv |Get-Deployment -Slot Production

The following shows a quick way to look at the contents of the XML con�iguration �ile used

by the staging deployment:

$serv |Get-Deployment -Slot Staging |Select -ExpandProperty configuration

Finally, you can see that Windows PowerShell allows you to use the information

retrieved in interesting ways. For example, you can use the url property retrieved from
Get-Deployment to see the URL for the deployment. You can then use Start-Process to

launch the website automatically in a web browser. The following line of code does this

(using the start alias for Start-Process):

start ($serv |Get-Deployment -Slot Production |Select -ExpandProperty url)

Starting and Stopping Deployments
Starting and stopping deployments is very straightforward with the Set-DeploymentStatus

cmdlet. The code needed to start and stop deployments is presented in Listing 22-1. It uses

the splatting technique that was discussed in Chapter 2, “What’s New in Windows PowerShell

V2,” to pass arguments to Get-HostedService.

Note
It can sometimes be confusing to hear the word deployment thrown around the way it is in Windows Azure.
It’s important to realize that a deployment not only is the code and configuration that makes up a collection of
roles or services, but actually represents the roles or services themselves. In the Windows Azure world, setting
a deployment to suspended or to run is similar to using Stop-Service or Start-Service with a collection of
services on a server. �

c22.indd 545c22.indd 545 03/09/11 11:04 AM03/09/11 11:04 AM

546

Part V: Virtualization and Cloud Computing

LISTING 22-1

Using Set-DeploymentStatus to Stop and Start a Deployment

$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E
$serviceargs = @{
 Certificate = $cert
 SubscriptionID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’
 ServiceName = ‘poshbible’
}
$serv = Get-HostedService @serviceargs

Stop the deployment
$serv |
 Get-Deployment -Slot Staging |
 Set-DeploymentStatus -Status Suspended |
 Get-OperationStatus -WaitToComplete

Start the deployment
$serv |
 Get-Deployment -Slot Staging |
 Set-DeploymentStatus -Status Running |
 Get-OperationStatus -WaitToComplete

Get-OperationStatus
Many of the WASM cmdlets return immediately after they are run without error, but that is

not necessarily an indication that the method was successful. The calls made by the cmdlets

through the SDK are being done asynchronously. This is by design because many operations

may require an excessive amount of time to complete. On the surface, you may be issuing

a single command to do something like uploading code to your cloud instance, but the

Windows Azure infrastructure may be performing very complex work�lows that create new

virtual machines, copy code to multiple servers, and manipulate network infrastructure.

To �ind out whether an operation has succeeded, you can use the Get-OperationStatus

cmdlet to �ind out the status of a request. Additionally, there is a switch parameter called

WaitToComplete that you can use to ensure that the entire workload of operations that

Azure is performing has been completed prior to continuing.

Deploying New Code
To upload code to Windows Azure, developers must package their project into a service

package �ile (.cspkg) with a service con�iguration �ile (.csfg). When deploying new code

to the staging or production slot of the hosted service for the �irst time, you use the

New-Deployment cmdlet. This creates a deployment and uploads the package and

supporting con�iguration �ile to Windows Azure. Listing 22-2 shows a sample of how

to use the New-Deployment cmdlet.

c22.indd 546c22.indd 546 03/09/11 11:04 AM03/09/11 11:04 AM

547

Chapter 22: Managing Windows Azure

LISTING 22-2

Creating a New Deployment

$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E
$ServiceArgs = @{
 Certificate = $cert
 SubscriptionID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’
 ServiceName = ‘poshbible’
}

$serv = Get-HostedService @ServiceArgs

$Arguments = @{
 Label = ‘PoshBibleSite’ # Deployment name
 StorageServiceName = ‘poshbible’ # Storage account name
 Package = ‘d:\PoshBible.cspkg’ # The package to deploy
 Configuration = ‘d:\ServiceConfiguration.cscfg’ # The config file
}

This next bit deploys the code
$serv |
 Get-Deployment -Slot Staging |
 New-Deployment @Arguments |
 Get-OperationStatus -WaitToComplete

Start it up
$serv |
 Get-Deployment -Slot Staging |
 Set-DeploymentStatus -Status ‘Running’
 Get-OperationStatus -WaitToComplete

When you want to deploy new or updated code to a hosted service that already contains a

deployment, you should use Set-Deployment. Set-Deployment takes the same parameters

as New-Deployment, so it’s easy to convert the script in Listing 22-2 to an update script by

stopping the existing deployment and then changing the line that uses New-Deployment to

Set-Deployment:

$serv |
 Get-Deployment -Slot Staging |
 Set-DeploymentStatus -Status ‘Suspended’
 Get-OperationStatus -WaitToComplete

$serv |
 Get-Deployment -Slot Staging |
 Set-Deployment @Arguments |
 Get-OperationStatus -WaitToComplete

c22.indd 547c22.indd 547 03/09/11 11:04 AM03/09/11 11:04 AM

548

Part V: Virtualization and Cloud Computing

Scaling Services
A deployment within a hosted service may consist of one or more virtual machines.

These virtual machines can be created and destroyed seamlessly, making it easy to scale

applications by adding new virtual machines on demand as more resources are required.

This agility is one of the promises that cloud computing offers. Windows PowerShell in

concert with the WASM cmdlets provides a way to deliver that promise.

You can use the Set-DeploymentConfiguration cmdlet to modify the con�iguration for

a deployment. This cmdlet makes it very easy to add or remove more infrastructure for a

Windows Azure application, as shown in Listing 22-3.

LISTING 22-3

Scaling Underlying Infrastructure for a Deployment

$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E
$ServiceArgs = @{
 Certificate = $cert;
 SubscriptionID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’;
 ServiceName = ‘poshbible’
}

The following adds a new server to the deployment in the Production slot
$serv |Get-Deployment -Slot Production |
 Set-DeploymentConfiguration -ScriptConfiguration {
 $_.RolesConfiguration[“WebRole1”].InstanceCount += 1
 } |Get-OperationStatus -WaitToComplete

Note
It may not be obvious due to the lack of documentation for the ScriptConfiguration parameter of
Set-DeploymentConfiguration, but this script block is giving you a way to modify the value of the
configuration property returned by Get-Deployment. You can modify any item that lives in the .cscfg file
that was used for the deployment, but you cannot add new items. InstanceCount is the most obvious use
of this configuration because it exists in every deployment, but a developer can use this .cscfg file to store
other information at this level with some effort. �

Managing Certificates
Using certi�icates for SSL with Windows Azure is generally handled during development.

The developer is able to specify that the endpoint uses HTTPS, specify a port, and choose

which certi�icates to use — all within Visual Studio. Even though the applications are tied

c22.indd 548c22.indd 548 03/09/11 11:04 AM03/09/11 11:04 AM

549

Chapter 22: Managing Windows Azure

to speci�ic certi�icates, you still need a way to upload these certi�icates and manage them

in the cloud. The WASM cmdlets give you an interface to view, delete, or upload certi�icates

within your hosted service. You can use Get-Certificate and Get-Certificates to view

what certi�icates have been uploaded to the service host. You can use Remove-Certificate

to remove a certi�icate from the service host and Add-Certificate to upload a certi�icate to

your hosted service. Listing 22-4 shows how you would automate the task of uploading a

certi�icate to a service host.

LISTING 22-4

Adding a Certificate to a Hosted Service

$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E
$ServiceArgs = @{
 Certificate = $cert
 SubscriptionID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’
 ServiceName = ‘poshbible’
}
$serv = Get-HostedService @ServiceArgs

$serv |Add-Certificate -CertificateToDeploy d:\azure.pfx -Password ‘poshbible’

Windows Azure Diagnostics
Windows Azure provides you with a way to monitor your application and the underlying

servers with log �iles that can be stored in one of your storage accounts. These logs, also

known as buffers, can consist of application trace messages, �ile-based logs, event viewer

messages, performance counters, or messages about the diagnostic monitoring system

itself. Windows PowerShell does not give you a way to directly enable monitoring in

your applications: however, if a developer has enabled diagnostic monitoring in the

Windows Azure application with the DiagnosticMonitor.Start() method, you can

use Windows PowerShell to modify the con�iguration of this monitoring on the �ly with

the WASM cmdlets.

Getting Logging Configuration
The �irst step to con�iguring logging is to �ind the roles that have logging enabled and

view their con�iguration. Listing 22-5 is a script that displays the diagnostic con�iguration

settings for all diagnostic-enabled roles in staging that are con�igured to use any of your

Azure storage accounts. The variable $BufferNames contains all of the available logs that

can exist within Windows Azure.

c22.indd 549c22.indd 549 03/09/11 11:04 AM03/09/11 11:04 AM

550

Part V: Virtualization and Cloud Computing

LISTING 22-5

Getting Diagnostic Configuration Information

$BufferNames = @(“DiagnosticInfrastructureLogs”,”Directories”)
$BufferNames += (“Logs”,”PerformanceCounters”,”WindowsEventLogs”)

$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E
$ServiceArgs = @{
 Certificate = $cert
 SubscriptionID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’
 ServiceName = ‘poshbible’
}

$serv = Get-HostedService @serviceargs
$deploymentid = ($serv |Get-Deployment -Slot staging).DeploymentId

$serv |Get-StorageServices |foreach {
 $Arguments = @{
 DeploymentId = $deploymentid;
 StorageAccountName = $_.ServiceName
 StorageAccountKey = ($_ |Get-StorageKeys).Primary
 }

 Get-DiagnosticAwareRoles @Arguments |foreach {
 “Web Role: $_”
 “Storage: “ + $arguments.StorageAccountName

 $Arguments.RoleName = $_

 Get-DiagnosticAwareRoleInstances @arguments |foreach {
 $Arguments.InstanceId = $_
 foreach ($buf in $BufferNames) {
 $Arguments.BufferName = $buf
 Get-DiagnosticConfiguration @Arguments |select @{
 n=’Buffer’;e={$buf}
 }, ScheduledTransferPeriod,BufferQuotaInMB, i
ScheduledTransferLogLevelFilter, DataSources
 }
 }
 }
}

Listing 22-5 uses some new cmdlets you have not seen. They are described in Table 22-1.

c22.indd 550c22.indd 550 03/09/11 11:04 AM03/09/11 11:04 AM

551

Chapter 22: Managing Windows Azure

TABLE 22-1

Storage and Diagnostic “Get” Cmdlets

Cmdlet Description

Get-StorageServices Lists storage services underneath the subscription

Get-StorageKeys Displays primary and secondary keys for the account

Get-DiagnosticAwareRoles Lists the roles that have successfully started at least one
diagnostic monitor

Get-DiagnosticAwareRoleInstances Returns the IDs of active role instances where a
diagnostic monitor is running

Get-DiagnosticConfiguration Gets the configuration for a specified buffer

Configuring Logging
You can change the logging con�iguration for one of the buffers by calling the appropriate

Set-* command for the buffer you want to con�igure. Table 22-2 shows these commands

and their corresponding buffer name.

TABLE 22-2

Cmdlets Used to Set Buffer Configurations

Cmdlet Buffer

Set-InfrastructureLog DiagnosticInfrastructureLogs

Set-FileBasedLog Directories

Set-WindowsAzureLog Logs

Set-PerformanceCounter PerformanceCounters

Set-WindowsEventLog WindowsEventLogs

Listing 22-6 shows some examples of how to con�igure the WindowsEventLogs, Logs, and

PerformanceCounters buffers.

c22.indd 551c22.indd 551 03/09/11 11:04 AM03/09/11 11:04 AM

552

Part V: Virtualization and Cloud Computing

LISTING 22-6

Configuring Logging for a Windows Azure Instance

$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E
$ServiceArgs = @{
 Certificate = $cert
 SubscriptionID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’
 ServiceName = ‘poshbible’
}
$serv = Get-HostedService @ServiceArgs

$ArgsMaster = @{
 RoleName = ‘WebRole1’
 StorageAccountName = ‘poshbible’
 DeploymentId = ($serv |Get-Deployment -Slot staging).DeploymentId
 InstanceId = ‘WebRole1_IN_0’
 StorageAccountKey = ($serv |Get-StorageServices |Where {
 $_.ServiceName -eq ‘poshbible’
 } |Get-StorageKeys).Primary
}

This section configures the application and system log to get transferred
to Azure storage every 60 minutes
$arguments = $argsmaster.Clone()
$arguments.TransferPeriod = 60
$arguments.Eventlogs = (‘Application!*’,’System!*’)
Set-WindowsEventLog @arguments

This section shows how to configure Azure logging to the maximum level
for debugging. Data that shows up in these logs are messages from the
developers of the application via Trace messages
$arguments = $argsmaster.Clone()
$arguments.TransferPeriod = 1
$logLevelFilter = [Microsoft.WindowsAzure.Diagnostics.LogLevel] ::Verbose
$arguments.LogLevelFilter = $logLevelFilterSet-WindowsAzureLog @arguments

This final section shows how to configure performance counters on an
Azure instance
$arguments = $argsmaster.Clone()
$arguments.TransferPeriod = 5
$arguments.PerformanceCounters = @()
$arguments.PerformanceCounters += `
New-Object Microsoft.WindowsAzure.Diagnostics.PerformanceCounterConfiguration `
 -Property @{
 CounterSpecifier=’\Processor(_Total)\% Processor Time’;
 SampleRate=[TimeSpan]::FromSeconds(30)
 }

c22.indd 552c22.indd 552 03/09/11 11:04 AM03/09/11 11:04 AM

553

Chapter 22: Managing Windows Azure

$arguments.PerformanceCounters += `
New-Object Microsoft.WindowsAzure.Diagnostics.PerformanceCounterConfiguration `
 -Property @{
 CounterSpecifier=’\PhysicalDisk(_Total)\Disk Writes/sec’;
 SampleRate=[TimeSpan]::FromSeconds(30)
 }

Set-PerformanceCounter @arguments

Forcing Logs to Transfer to Storage
Logging within Windows Azure happens constantly, but the data exists on local

storage in your VM. In order for an administrator to see the logs, he or she must transfer

the logs to an Azure storage account. Buffers are generally con�igured to transfer at

an interval, as you saw in the previous section, but a transfer can also be forced with

Start-OnDemandTransfer.

Two additional cmdlets enable you to work with on-demand transfers: Get-ActiveTransfers

and Stop-ActiveTransfer. These cmdlets are necessary because the WASM cmdlets do not

clear a transfer when it is complete; you must do this manually. Unfortunately, the cmdlets also

do not offer proper pipeline support the way you would expect them to.

Listing 22-7 shows an example of how to force a transfer of the Directories buffer, which

contains, among other things, the IIS logs. Prior to starting the transfer, the script ensures

that any active transfers are �irst stopped.

LISTING 22-7

Transferring Local Data Logs to Azure Storage

$cert = Get-Item cert:\CurrentUser\My\CC0687153A57C0B1CD30746B43E7C050A9DEFB9E
$serviceargs = @{
 Certificate = $cert
 SubscriptionID = ‘1741a92f-7f1f-4ed6-921b-90ecc2f3c2cd’
 ServiceName = ‘poshbible’
}
$serv = Get-HostedService @serviceargs

This section gets an active transfer if one exists and
displays its information to the screen
$argsmaster = @{
 RoleName = ‘WebRole1’

continues

c22.indd 553c22.indd 553 03/09/11 11:04 AM03/09/11 11:04 AM

554

Part V: Virtualization and Cloud Computing

LISTING 22-7 (continued)

 StorageAccountName = ‘poshbible’
 DeploymentId = ($serv |Get-Deployment -Slot staging).DeploymentId
 InstanceId = ‘WebRole1_IN_0’
 StorageAccountKey = ($serv |Get-StorageServices |Where {
 $_.ServiceName -eq ‘poshbible’
 } |Get-StorageKeys).Primary
}
$args = $argsmaster.Clone()
$transfer = Get-ActiveTransfers @args
$transfer

This next section will remove the active transfer we received above
if ($transfer) {
 $args = $argsmaster.Clone()
 $args.TransferId = $transfer.RequestId
 Stop-ActiveTransfer @args
}

This final section will transfer items found in the directories buffer
to Azure storage. If the default configuration is not changed, this will
include the IIS logs.

$args = $argsmaster.Clone()
$args.DataBufferName = ‘Directories’

The ‘From’ and ‘To’ parameters specify the time frame for the log data
UTC time is the default for every Windows Azure server
$args.From = (Get-Date).ToUniversalTime().AddHours(-5)
$args.To = (Get-Date).ToUniversalTime()

poshbible is a queue that is created in Azure storage. You must specify
this in order to see a status message when using Get-ActiveTransfers
$args.NotificationQueueName = ‘poshbible’

Start-OnDemandTransfer @args

Summary
Based on Microsoft’s investment into cloud computing, it’s a safe bet that Windows Azure

is here to stay. The Windows Azure Service Management (WASM) cmdlets provide a way

to perform many of the management tasks that are available with the Windows Azure

c22.indd 554c22.indd 554 03/09/11 11:04 AM03/09/11 11:04 AM

555

Chapter 22: Managing Windows Azure

SDK directly from within Windows PowerShell. These cmdlets are young, but you can

expect them to mature as Windows Azure and the SDK mature over time. Until then, these

cmdlets already make tasks like automating deployments and con�iguration changes easy.

In addition, their ability to con�igure diagnostics after an application has been deployed is

unmatched by any other method currently available from Microsoft.

The next chapter �inishes up the exploration of virtualization automation with Windows

PowerShell by looking at the cmdlets that are available from one of the earliest third-party

adopters of Windows PowerShell: VMware.

c22.indd 555c22.indd 555 03/09/11 11:04 AM03/09/11 11:04 AM

c22.indd 556c22.indd 556 03/09/11 11:04 AM03/09/11 11:04 AM

557

C H A P T E R

IN THIS CHAPTER
Using PowerCLI

Working with ESX hosts

Scripting against virtual
machines

Managing vCenter

Managing VMware
vSphere PowerCLI

VMware and Windows PowerShell both received a great boom

in support after VMware released its VI toolkit in 2008. This

toolkit was a snap-in built on top of Windows PowerShell V1,

and as the product matured, it became the standard scripting language

for VMware. Though VMware also had a Perl toolkit and an SDK, the

Windows PowerShell implementation enabled some administrators

to become active scripters almost overnight. VMware had already

invested heavily in Windows as its management tier with vCenter;

Windows PowerShell has many syntactical elements that make it easy

for a Unix administrator or Perl scripter to adopt the language quickly.

Add those two facts together, and it is no surprise that Windows

PowerShell quickly became the standard for scripting against

VMware’s products.

Installing and Using the Cmdlets
The latest implementation of the cmdlets used to manage VMware

is known as vSphere PowerCLI. At the time of writing, PowerCLI is in

Version 4.1.1.

Installing PowerCLI
PowerCLI can be installed on most versions of Windows, and it can be

used with any version of Windows PowerShell. You can use PowerCLI

to manage ESX from Version 3.0.3 and higher (including ESXi), but

it requires these hosts to be patched to appropriate versions. It also

requires vCenter 2.5 Update 6 if you want to use the cmdlets with

vCenter.

c23.indd 557c23.indd 557 02/09/11 11:59 AM02/09/11 11:59 AM

558

Part V: Virtualization and Cloud Computing

To install PowerCLI, you must �irst download it from VMware’s website at

www.vmware.com/go/powercli.

The installation of PowerCLI is very straightforward. It simply requires you to run the

downloaded installation �ile as an administrator.

Loading PowerCLI
After PowerCLI is installed, you can load it by clicking Start � All Programs � VMware �

VMware vSphere PowerCLI � VMware vSphere PowerCLI. You can also load the snap-in

into a Windows PowerShell session or script by running the following command:

Add-PSSnapin VMware.Vimautomation.Core

Connecting to a Host or vCenter Instance
Once the snap-in is loaded, you need to connect PowerCLI to an ESX host or a vCenter

instance. You do this with the Connect-VIServer cmdlet:

Connect-VIServer vcenter1 -Credential (Get-Credential)

In addition to the Credential parameter, you can use the User and Password parameters

to specify a username and password in clear text. You can also omit the credential

completely if you are logged in as a user who has access to the vCenter instance to which

you are trying to connect.

The following example shows a common way of loading the snap-in and connecting to a

vCenter instance within a script. This code is useful during development of a script because

it ensures that you do not waste time trying to load the snap-in or connect to the vCenter

instance more than once.

if (!(Get-PSSnapin VMware.Vimautomation.Core -ErrorAction SilentlyContinue)) {
 Add-PSSnapin VMware.Vimautomation.Core
}
if (!$global:DefaultVIServer) {
 Connect-VIServer vcenter1
}

Note
The first time you use Connect-VIServer more than once in a session, you will be prompted to specify
how you would like this cmdlet to behave when it is used multiple times. You can allow either multiple
simultaneous connections or one connection at a time. PowerCLI uses two global variables to store these
connections: $global:DefaultVIServer and $global:DefaultVIServers. The code just shown is
designed for PowerCLI instances that are configured to use only one connection at a time.

c23.indd 558c23.indd 558 02/09/11 11:59 AM02/09/11 11:59 AM

559

Chapter 23: Managing VMware vSphere PowerCLI

When you allow multiple connections, your commands will run against each connected instance stored in the
$global:DefaultVIServers array. If you are using a single instance of vCenter, the chances are high that
this is not what you want to do. If you would like to change the behavior, use Set-PowerCLIConfiguration
to change the DefaultVIServerMode value to either single or multiple. �

Retrieving Hosts and VMs
PowerCLI offers excellent pipeline support. Many PowerCLI scripts obtain an object or set

of objects that represent things, such as a virtual machine (VM) or an ESX/ESXi host, and

then pass those objects to another cmdlet that will perform a function on each of them to

either get more objects like CD drives on a VM or perform actions like putting an ESX host

into maintenance mode. Hosts and VMs are retrieved with Get-VMHost and Get-VM.

The Name parameter of Get-VM and Get-VMHost is used to specify the name of the VM or

host you would like to retrieve. This parameter name does not need to be speci�ied because

it is positional. For example, you can retrieve a VM named vm1 with the following:

Get-VM vm1

Both Get-VM and Get-VMHost cmdlets accept wildcards within the Name parameter. For

example, this gets all hosts that begin with the letter E:

Get-VMHost e*

Both cmdlets also have a Location parameter that can be used to specify a container

such as the folder, the datacenter, or the cluster the VM or host belongs to. The following

retrieves all VMs from cluster1:

Get-VM -Location cluster1

If you need to specify multiple clusters, folders, or datacenters, you can do so by passing an

array of names to the Location parameter. For example, the following code retrieves all

the VMs from cluster1, cluster2, and cluster3:

Get-VM -Location @(‘cluster1’,’cluster2’,’cluster3’)

It is very common to perform a Windows PowerShell �ilter using Where-Object or its alias

Where to retrieve VMs that have speci�ic properties. For example, the following retrieves all

VMs on the system that have more than 2 gigabytes of RAM:

Get-VM |Where {$_.memoryMB -gt 2048}

Most of the cmdlets in PowerCLI have excellent pipeline support. For example, you can get

the ESX host that vm1 currently exists on by running the following:

Get-VM vm1 |Get-VMHost

c23.indd 559c23.indd 559 02/09/11 11:59 AM02/09/11 11:59 AM

560

Part V: Virtualization and Cloud Computing

Managing ESX and ESXi
This section looks at the cmdlets in PowerCLI that are available to manage ESX and

ESXi hosts.

Note
For the remainder of this chapter, the name ESX will be used to imply ESX and ESXi. This chapter also focuses
mainly on infrastructure that includes a vCenter server. Many of the cmdlets will work without one by
connecting directly to a host, but some will not. The rule of thumb is that if you are trying to get information
that is only available in vCenter, you probably need a vCenter server in order to get it through PowerCLI. �

Putting Hosts in Maintenance Mode
There is rarely a script that modi�ies an ESX host that does not �irst have to put the host

into maintenance mode. In PowerCLI, this is done by setting the State parameter of Set-
VMHost to Maintenance. The following example puts a host named esx1.psbible.com into

maintenance mode:

$vmhost = Get-VMHost esx1.psbible.com
$vmhost |Set-VMHost -State Maintenance

Because Set-VMHost accepts output from Get-VMHost through the pipeline, you can easily

put a large set of hosts into maintenance mode. The following does this for all of the hosts

in cluster1:

Get-VMHost -Location cluster1 |Set-VMHost -State Maintenance -RunAsync

Exiting maintenance mode is performed by setting the state of the host to Connected.

The following code illustrates this. It will exit maintenance mode on all hosts that are

currently in maintenance mode.

Get-VMHost |
 Where {$_.ConnectionState -eq ‘Maintenance’} |
 Set-VMHost -State Connected -RunAsync

Note
RunAsync is a parameter that is available for some of the cmdlets in PowerCLI that generally take a long time
to complete. By using this parameter, you are telling PowerCLI to initiate the command with vCenter, but then
continue to process the rest of the script. If your script does not rely on the action to either fail or succeed
before it continues the next set of commands in your script, you should use this parameter. You will find that
this cmdlet is very useful when you need to do things like start or stop a large set of VMs. �

Inspecting Host Properties
The following code shows all of the properties from the objects that are returned when

using Get-VMHost:

c23.indd 560c23.indd 560 02/09/11 11:59 AM02/09/11 11:59 AM

561

Chapter 23: Managing VMware vSphere PowerCLI

Get-VMHost esx1.psbible.com |Select *
WARNING: ‘State’ property is obsolete. Use ‘ConnectionState’ instead.

State : Connected
ConnectionState : Connected
PowerState : PoweredOn
VMSwapfileDatastoreId :
VMSwapfilePolicy : Inherit
ParentId : ClusterComputeResource-domain-c40
IsStandalone : False
Manufacturer : VMware, Inc.
Model : VMware Virtual Platform
NumCpu : 1
CpuTotalMhz : 1293
CpuUsageMhz : 23
MemoryTotalMB : 2047
MemoryUsageMB : 833
ProcessorType : Genuine Intel(R) CPU U7300 @ 1.30GHz
HyperthreadingActive : False
TimeZone : UTC
Version : 4.1.0
Build : 348481
Parent : Cluster
VMSwapfileDatastore :
StorageInfo : HostStorageSystem-storageSystem-36
NetworkInfo : esx1:psbible.com
DiagnosticPartition : mpx.vmhba1:C0:T0:L0
FirewallDefaultPolicy :
ApiVersion : 4.1
CustomFields : {}
ExtensionData : VMware.Vim.HostSystem
Id : HostSystem-host-36
Name : esx1.psbible.com
Uid : /VIServer=admin@vcenter:443/VMHost=HostSystem-host-36/

In addition to these properties, you can get information about the host and the components

that the host uses by passing the host into the various Get-* cmdlets within PowerCLI.

Table 23-1 lists these cmdlets.

TABLE 23-1

Cmdlets Used to Gather More Information about ESX Hosts

Cmdlet Description

Get-Annotation Gets annotations

Get-Datastore Gets the data stores connected to the host

continues

c23.indd 561c23.indd 561 02/09/11 11:59 AM02/09/11 11:59 AM

562

Part V: Virtualization and Cloud Computing

Cmdlet Description

Get-View Gets the .NET view object for the host

Get-VMHostAdvancedConfiguration Gets the advanced configuration of the host

Get-VMHostAvailableTimeZone Gets the time zones that are available on the host

Get-VMHostDiagnosticPartition Gets the diagnostic partitions on the host

Get-VMHostDisk Gets information about the disks attached to the host

Get-VMHostFirmware Gets information about the firmware

Get-VMHostNetwork Gets information about the host network

Get-VMHostNetworkAdapter Gets information about the network adapters on the host

Get-VMHostPatch Gets information about the installed patches on the host

Get-VMHostRoute Gets the routing table information from the host

Get-VMHostStartPolicy Gets the start policy for the host

Get-VMHostStorage Gets information about the storage that is configured on
the host

Get-VMHostService Gets information about the services running on the host

Get-VMHostSysLogServer Gets the remote syslog servers for the host

Get-VirtualPortGroup Gets information about the port groups on the host

Get-VirtualSwitch Gets information about the virtual switches on the host

Managing Storage
Whether it’s shared storage or local storage, all aspects of a host’s storage con�iguration

can be managed with PowerCLI. Any task that is available within vCenter is also available

within Windows PowerShell. For example, to rescan all of the host bus adapters (HBAs) on

a host or to rescan the virtual machine �ile system (VMFS) for additional VMFS volumes,

you run the following:

$vmhost = Get-VMHost esx1.psbible.com
$vmhost |Get-VMHostStorage -RescanAllHba
$vmhost |Get-VMHostStorage -RescanVmfs

TABLE 23-1 (continued)

c23.indd 562c23.indd 562 02/09/11 11:59 AM02/09/11 11:59 AM

563

Chapter 23: Managing VMware vSphere PowerCLI

Note
You may have noticed that all of the cmdlets that deal with an ESX host are referred to as a VMHost. All of
the examples have also been using $vmhost as the variable rather than using $host. The reason that the word
host is so carefully avoided is because it has special meaning to the core language of Windows PowerShell.
In Windows PowerShell, a host is the environment that is running Windows PowerShell. For example, both
the Windows PowerShell console and the Windows PowerShell ISE are hosts. The $host variable is a reserved
variable that is used to configure and display information about the host you are running your script from. If
you try to set $host to a value like the result of Get-VMHost, you will receive an error. �

Another set of tasks that is common when dealing with storage is to create, rename, or

remove a VMFS. These tasks can be handled by using New-DataStore, Set-Datastore, and

Remove-Datastore, as shown in the following lines of code:

$vmhost = Get-VMHost esx1.psbible.com

$vmhost |New-Datastore -Nfs -Name NASv1 -NfsHost NAS -Path “/nfs/Nasv1”

$vmhost |Get-Datastore -Name NASv1 |Set-Datastore -Name NASNewName

$vmhost |Get-Datastore -Name NASNewName |Remove-Datastore -Confirm:$False

New-Datastore has a different switch parameter for each type of storage system you might

create a VMFS on. You can use Nfs, Cifs, or Local to specify which type of storage you are

creating with this cmdlet.

Managing Host Networks
Although it is possible to con�igure almost all aspects of networking with PowerCLI, two

requirements seem to manifest more than others when working with vSphere: con�iguring

virtual switches and managing virtual port groups.

Configuring Virtual Switches
Virtual switches can be added, removed, or changed with New-VirtualSwitch,

Remove-VirtualSwitch, and Set-VirtualSwitch, respectively. For example, if you wanted

to use jumbo frames on your virtual switch, you would need to set the maximum

transmission unit (MTU) value to 9000. The following illustrates how you could do this

while creating a new virtual switch:

Get-VMHost -Location cluster |
 New-VirtualSwitch -Name BibleSwitch -Nic vmnic5 -Mtu 9000 -NumPorts 1024

Listing 23-1 shows a script that uses Set-VirtualSwitch to increase the number of ports

available to all virtual switches on a cluster. It has some additional logic to put the host into

maintenance mode followed by a reboot after the change. The script illustrates how the

different elements of PowerCLI can be strung together to perform a change work�low.

c23.indd 563c23.indd 563 02/09/11 11:59 AM02/09/11 11:59 AM

564

Part V: Virtualization and Cloud Computing

LISTING 23-1

Increasing the Number of Ports on a Virtual Switch

#Change the number of ports on all vSwitches connected to hosts in cluster1
$vmhosts = Get-VMHost -Location cluster
$vmhosts |
 Get-VirtualSwitch |
 Set-VirtualSwitch -NumPorts 512 -Confirm:$False

A restart is required for this change to take effect
foreach ($vmhost in $vmhosts) {
 $vmhost |Set-VMHost -State ‘Maintenance’ |Restart-VMHost -Confirm:$false
 # Wait for the host to come back up before rebooting the next one
 while ((Get-VMHost $vmhost.name).ConnectionState -ne ‘Maintenance’) {
 Sleep 15
 }
 $vmhost |Set-VMHost -State ‘Connected’
}

Managing Virtual Port Groups
Virtual port groups are managed by using New-VirtualPortGroup, Remove-
VirtualPortGroup, and Set-VirtualPortGroup. For example, to add a port group to a

switch named vswitch0 on all hosts in a cluster, you can execute the following:

Get-VMHost -Location cluster1 |
 Get-VirtualSwitch -Name vswitch0 |
 New-VirtualPortGroup VLAN20 -VLanId 20

The following example shows how you can use Get-VirtualPortGroup along with Remove-
VirtualPortGroup through the pipeline. This example will remove the VLAN20 port group

from all hosts in cluster1.

Get-VMHost -Location cluster1 |
 Get-VirtualPortGroup -Name VLAN20 |
 Remove-VirtualPortGroup -Confirm:$false

Configuring NTP Servers
Add-VmHostNtpServer and Remove-VMHostNtpServer are used to add and remove NTP

servers from a host’s con�iguration. The following examples show how you can use these

cmdlets to add and remove an NTP server from a host:

$vmhost = Get-VMHost esx1.psbible.com
Add an NTP server
$vmhost |Add-VmHostNtpServer ‘192.168.1.1’

c23.indd 564c23.indd 564 02/09/11 11:59 AM02/09/11 11:59 AM

565

Chapter 23: Managing VMware vSphere PowerCLI

Remove the NTP server

$vmhost |Remove-VMHostNtpServer -NtpServer 192.168.1.1 -Confirm:$False

Working with Host Profiles
Host pro�iles were introduced with vSphere 4. They provide the ability to capture the set

of con�igurations a host is using and then apply them to a cluster or another host. These

pro�iles can be applied automatically or they can be used to track which con�igurations on

a host are different from the pro�ile the host is associated with.

Creating a Host Profile
To create a host pro�ile, you need to select a host that will act as a template. The following

example shows how to do this with New-VMHostProfile.

$vmhost = Get-VMHost esx1.psbible.com
$vmhost |New-VMHostProfile profile1 -Description ‘PowerCLI generated’

Adding and Removing Profiles from a Host or Cluster
Once the pro�ile is created, you can apply it to either a host or a cluster with Apply-
VMHostProfile. When used against a host, this will both con�igure the host to use the pro�ile

and apply its changes unless you use the AssociateOnly parameter. When it is used with

a cluster, you must specify the AssociateOnly parameter. For example, to apply a pro�ile

named pro�ile1 to a cluster named cluster1, you execute the following two lines of code:

$profile = Get-VMHostProfile profile1
$profile |Apply-VMHostProfile -Entity (Get-Cluster cluster1) -AssociateOnly

The following illustrates how you can attach and apply the same pro�ile retrieved above

with Get-VMHostProfile to a host named esx1.psbible.com.

$vmhost = Get-VMHost esx1.psbible.com
$vmhost |Set-VMHost -State Maintenance

$profile |Apply-VMHostProfile -Entity $vmhost

$vmhost |Set-VMHost -State Connected

Testing Host Compliance
Test-VMHostProfileCompliance is used to �ind out whether a host is compliant with its

associated pro�ile. This cmdlet returns an object that contains a list of elements that are

out of compliance. The following shows how you can use this cmdlet to generate a report

that shows the VMHostID along with some information about what is out of compliance for

all of your hosts.

c23.indd 565c23.indd 565 02/09/11 11:59 AM02/09/11 11:59 AM

566

Part V: Virtualization and Cloud Computing

Get-VMHost |Test-VMHostProfileCompliance |foreach {
 “Host: “ + $_.VMHostID
 $_.IncomplianceElementList
}

If you would like to apply the changes to make the host compliant with its pro�ile, you must

use Apply-VMHostProfile with the ApplyOnly switch parameter. This is illustrated in the

following snippet, which applies the changes required to the esx1.psbible.com host to make

it compliant with the pro�iles that are attached to it:

Get-VMHost esx1.psbible.com |
 Set-VMHost -State ‘Maintenance’ |
 Apply-VMHostProfile -ApplyOnly -Confirm:$False |
 Set-VMHost -State ‘Connected’

Note
You can suppress any prompts that ask you to confirm whether you really want to do something in PowerCLI
by using -Confirm:$False. This parameter exists in many of the PowerCLI functions that make changes or
remove a component of vSphere. �

Backing Up and Restoring Host Profiles
Backing up a pro�ile is done with Export-VMHostProfile. For example, the following backs

up the pro�ile named pro�ile1 to a �ile named profile1.prf:

Get-VMHostProfile profile1 |Export-VMHostProfile profile1.prf

You use Import-VMHostProfile to restore a pro�ile from a disk backup. The following

shows how you can restore the backup �ile you just created as a new pro�ile named pro�ile2:

Import-VMHostProfile profile1.prf -Name profile2

Getting Logs
To review log data from an ESX host, you must �irst connect to the host with Connect-
VIServer. You can then use Get-LogType to show a list of the logs that are available to you,

as is shown in the following:

Connect-VIServer esx1.psbible.com
Get-LogType
Key Summary
--- -------
hostd Server log in ‘plain’ format
messages Server log in ‘plain’ format
vpxa vCenter agent log in ‘plain’ format

c23.indd 566c23.indd 566 02/09/11 11:59 AM02/09/11 11:59 AM

567

Chapter 23: Managing VMware vSphere PowerCLI

To view a log, pass a key name to Get-Log and then inspect the Entries property. For

example, to view the hostd log, you would run the following line of code:

Get-Log hostd |Select -ExpandProperty Entries

To �ilter the data returned from Get-Log, you can use any of the methods directly within

Windows PowerShell like Select-String, Select-Object, or Where-Object. For example,

to view the tail of the log, you could use Select-Object or its alias Select with the Last

parameter:

Get-Log hostd |Select -ExpandProperty Entries |select -Last 20

Gathering Performance Data from a Host
Collecting and reviewing performance data is a common task for ESX administrators.

PowerCLI provides a few simple ways to gather this data so that it can be exported or

analyzed directly within Windows PowerShell. For an ESX host, this data can be gathered

from vCenter or it can be collected in real time.

Using Get-Stat to Collect Performance Data from vCenter
The performance data that is collected by vCenter can be queried using Get-Stat. Switch

parameters are available to let you specify whether you want to receive Cpu, Disk, Memory,

or Network statistics. The following example demonstrates using Get-Stat to look at some

CPU data:

$vmhost = Get-VMHost esx1.psbible.com
$finish = Get-Date
$start = $finish.addminutes(-2)
$vmhost |Get-Stat -Start $start -Finish $finish -Cpu -IntervalSecs 30
MetricId Timestamp Value Unit Instance
-------- --------- ----- ---- --------
cpu.usagemhz.average 5/29/2011 12:43:33 AM 95 MHz
cpu.usagemhz.average 5/29/2011 12:43:13 AM 45 MHz
cpu.usagemhz.average 5/29/2011 12:42:53 AM 350 MHz
cpu.usage.average 5/29/2011 12:43:33 AM 7.39 % 0
cpu.usage.average 5/29/2011 12:43:13 AM 3.55 % 0
cpu.usage.average 5/29/2011 12:42:53 AM 27.1 % 0
cpu.usage.average 5/29/2011 12:43:33 AM 7.39 %
cpu.usage.average 5/29/2011 12:43:13 AM 3.55 %
cpu.usage.average 5/29/2011 12:42:53 AM 27.1 %

Note
I won’t go into this again when I talk about virtual machines or vCenter, but you can also use Get-Stat to get
performance data from a VM. If the data is available in vCenter, you can retrieve it with Get-Stat. To view
this data about a VM, you would pipe a VM object or collection of VM objects obtained by Get-VM into
Get-Stat rather than a VMHost object. �

c23.indd 567c23.indd 567 02/09/11 11:59 AM02/09/11 11:59 AM

568

Part V: Virtualization and Cloud Computing

Using esxtop to Collect Real-Time Performance Data from an ESX Host
Esxtop has long been considered one of the essential tools in the utility belt of a VMware

engineer. With the release of PowerCLI 4.1.1, you can now use the functionality of esxtop directly

from within Windows PowerShell with Get-EsxTop. To do this, you must connect directly to an

ESX or ESXi host with Connect-VIServer. Listing 23-2 shows how you can use Get-EsxTop to

discover the available counters and then how to retrieve point-in-time data for these counters.

LISTING 23-2

Using Get-EsxTop to Collect Performance Counter Data

Connect to the ESX host
Connect-VIServer esx1.psbible.com -Credential (Get-Credential)

Display all of the available counters
Get-EsxTop -Counter

Display the fields collected for the physical memory (PMem) counters
Get-EsxTop -Counter PMem |Select -ExpandProperty Fields

Collect the point-in-time data from the PMem counter
Get-EsxTop -CounterName PMem |Select *

A script to collect PMem data about every 5 seconds for a
little more than a minute
$data = @()
$delay = 5
$iterations = 20
for ($i=0;$i -lt $iterations; $i++) {
 $esxtop = Get-EsxTop -CounterName PMem
 $esxtop |Add-Member Noteproperty -Name Time -Value (Get-Date)
 $data += $esxtop
 Sleep $delay
}
$data |Select * |Export-Csv -Encoding ASCII -NoTypeInformation pmem.csv

Managing Virtual Machines
This section looks at how PowerCLI can be used to manage VMs.

Deploying New VMs
You can create VMs in PowerCLI with the New-VM cmdlet. This cmdlet can be used

minimally by specifying only a host and a data store where the VM should be created.

New-VM -Name VM1 -VMHost esx1.psbible.com -Datastore ds1

c23.indd 568c23.indd 568 02/09/11 11:59 AM02/09/11 11:59 AM

569

Chapter 23: Managing VMware vSphere PowerCLI

New-VM has two parameters, VM and Template, which allow you to create the new VM by

cloning an existing VM or template in your environment.

New-VM -VMHost esx1.psbible.com -VM VM1 -Name VM2 -Datastore ds1
New-VM -VMHost esx1.psbible.com -Template TP1 -Name VM3 -Datastore ds1

In addition, if you only need to create the VM containers and you don’t care about cloning

an existing VM or template’s disk, you can create the VM with a template of con�igurations

that are stored in a Windows PowerShell script.

$arguments = @{
 Name = ‘VM4’
 VMHost = ‘esx1.psbible.com’
 Datastore = ‘ds1’
 RunAsync = $True
 DiskMB = 16384
 MemoryMB = 2048
 VMSwapfilePolicy = ‘InHostDataStore’
 NetworkName = ‘VM Network’
 CD = $true
 Floppy = $true
 NumCpu = 1
 OSCustomizationSpec = ‘psbiblecustomization’ #guest customization template
}
New-VM @arguments

Removing VMs
You can remove VMs with Remove-VM. If you want to delete the VM and its disks from the

data stores it is using, you must also use the DeletePermanently parameter switch:

Get-VM vm1 |Remove-VM -DeletePermanently

Working with Virtual Hardware
The process of adding, removing, or modifying virtual hardware components for multiple

VMs is extremely tedious when it is done through vCenter. Part of the problem is that vCenter

actions take some time to take place, leaving the administrator with a lot of time between clicks.

Automation of these types of tasks with PowerCLI makes it much less cumbersome. Rather than

having to click through hardware wizards, an administrator can initiate a script and go get a cup

of coffee while the VMs are performing tasks like disconnecting all of the �loppy and CD drives.

Adding Hardware to a VM
Within PowerCLI, the process for working with virtual hardware is fairly simple. If you

want to add hardware, you use Get-VM to �ind the VMs you want to add the hardware to and

then pipe them into the appropriate New cmdlet. For example, to create a new �loppy drive for

all of your VMs, you could do the following:

Get-VM |New-FloppyDrive -StartConnected

c23.indd 569c23.indd 569 02/09/11 11:59 AM02/09/11 11:59 AM

570

Part V: Virtualization and Cloud Computing

You can use the following cmdlets to add hardware to a VM:

� New-CDDrive

� New-FloppyDrive

� New-HardDisk

� New-NetworkAdapter

Removing and Modifying Hardware on a VM
Removing or modifying hardware requires you to �irst retrieve the object you would like to

change and then pipe that object into either the Remove or Set cmdlet for that type of hardware.

For example, you can remove all of the CD drives from all of your VMs by doing the following:

Get-VM |Get-CDDrive |Remove-CDDrive -Confirm:$False

You can use the following cmdlets to remove hardware from a VM:

� Remove-CDDrive

� Remove-FloppyDrive

� Remove-HardDisk

� Remove-NetworkAdapter

You can use the following Set cmdlets to modify existing hardware. Each of these also has

a corresponding Get cmdlet to enable you to retrieve the object you would like to change.

� Set-CDDrive

� Set-FloppyDrive

� Set-HardDisk

� Set-NetworkAdapter

For example, you use Set-CDDrive to connect a CD drive to an ISO image.

Get-VM VM1 | Get-CDDrive |
 Set-CDDrive -IsoPath ‘[datastore1] boot.iso’ -Connected $True -Confirm:$False

Here is an example that uses Set-HardDisk to increase the capacity of the �irst disk in a VM

named VM1 by 1 gigabyte.

$disks = @(Get-VM vm1 |Get-HardDisk)
$disks[0] |Set-HardDisk -CapacityKB ($disks[0].CapacityKB + (1GB/1KB))

Note
The previous example sets the $disks variable to the contents of Get-HardDisk. The way this cmdlet and
many other cmdlets work is that it returns one hard disk if there is only one hard disk. If there are multiple
hard disks, it returns a collection of hard disks. In this case, @() is used to signify that you want to receive

c23.indd 570c23.indd 570 02/09/11 11:59 AM02/09/11 11:59 AM

571

Chapter 23: Managing VMware vSphere PowerCLI

a collection of hard disks even if there is only one hard disk returned. That is why you can then access
$disks[0]. This is an extremely handy technique when working with cmdlets where it is possible that you
may receive either one object or a set of objects. �

Managing VM Resource Configuration
Resource con�igurations are retrieved with Get-VMResourceConfiguration. Changes to these

con�igurations are made by piping the con�iguration into Set-VMResourceConfiguration.

Here is an example of how you can use these two cmdlets to set the memory reservation for all

of your VMs:

foreach ($vm in (Get-VM) {
 $vm |Get-VMResourceConfiguration |
 Set-VMResourceConfiguration -MemReservationMB ($vm.MemoryMB/2)
}

Updating VM Tools
Updating the VMware tools on a VM is done with Update-Tools. This cmdlet mounts the

VMware tools, and automatically updates the tools to the latest version.

Get-VM VM1 |Update-Tools

If the tools are not already installed, you will need to mount the tools with Mount-Tools

and then execute a silent installation with msiexec. Listing 23-3 shows a technique to do

this if you have WinRM enabled on the VM.

Cross-Reference
WinRM and Windows PowerShell remoting are discussed in Chapter 2, “What’s New in Windows
PowerShell V2.” �

LISTING 23-3

Mounting and Installing VM Tools via Windows PowerShell Remoting

$vm = get-vm ‘VM1’
$vm |Mount-Tools

$script = {
 $argument ‘-i “D:\VMware Tools64.msi” ADDLOCAL = ALL /qn’
 [diagnostics.process]::start(“msiexec.exe”, $args).WaitForExit()
}
Invoke-Command -ComputerName $vm.name -ScriptBlock $script

$vm |Dismount-Tools

c23.indd 571c23.indd 571 02/09/11 11:59 AM02/09/11 11:59 AM

572

Part V: Virtualization and Cloud Computing

Starting and Stopping VMs
The power state of VMs can be controlled by piping a VM or a set of VMs into one of the

cmdlets listed in Table 23-2. For example, to start all of the VMs on a cluster named

cluster1 you can run the following line:

Get-VM -Location cluster1 |Start-VM -RunAsync

TABLE 23-2

Cmdlets Used to Control the Power State of a VM

Cmdlet Description

Start-VM Starts a VM.

Stop-VM Turns off the virtual power to a VM. Equivalent to holding down the power
button on a physical computer.

Restart-VM Restarts a VM. Equivalent to hitting the reset button on a physical computer.

Suspend-VM Puts the VM into a suspended state.

Shutdown-VMGuest Uses the VM tools to turn off a VM.

Restart-VMGuest Uses the VM tools to restart a VM.

Suspend-VMGuest Uses the VM tools to put the VM into a suspended state.

Using Snapshots
Snapshots are used to create very quick point-in-time backups of a VM. PowerCLI provides

you with an interface for managing them. Snapshots are created with New-Snapshot.

$vm = Get-VM vm1
$vm |New-Snapshot -Name pre_sp1 -Description ‘Prior to sp1’

You can view snapshots by using Get-Snapshot. The following line retrieves all the

snapshots for the VM we are working with:

$vm |Get-Snapshot

You can retrieve a speci�ic snapshot by using the Name parameter of Get-Snapshot.

For example, to retrieve the object that represents the snapshot you just created with

New-Snapshot, you can run the following line:

$snapshot = $vm |Get-Snapshot -Name pre_sp1

A snapshot can be renamed or its description can be updated with Set-Snapshot.

$snapshot |Set-Snapshot -Description ‘Prior to Service Pack 1’

c23.indd 572c23.indd 572 02/09/11 11:59 AM02/09/11 11:59 AM

573

Chapter 23: Managing VMware vSphere PowerCLI

A VM is reverted to a snapshot by using the Snapshot parameter of Set-VM. The following

reverts the VM to the snapshot created at the beginning of this section:

$vm |Set-VM -Snapshot $snapshot -Confirm:$False

Invoking Scripts
PowerCLI provides a cmdlet called Invoke-VMScript that uses the VM tools on the guest

(VM) along with the VI Toolkit that is installed with PowerCLI to remotely execute a

command or script on a running VM. Though this can also be accomplished using WinRM

and Windows PowerShell remoting with Invoke-Command, Invoke-VMScript can be

issued against any guest that is running the VM tools. This includes VMs that are running

operating systems other than Windows. The command requires you to specify credentials

for both the ESX host and for the guest VM. The following shows an example of how you can

use Invoke-VMScript to get all of the processes running on a VM named linux1. The script

makes use of the fact that the command you wish to run can be passed to the ScriptText

parameter as a positional parameter.

$hcred = Get-Credential
$gcred = Get-Credential
$command = ‘ps > /mnt/vol1/proc.txt’
Get-VM linux1 |
 Invoke-VMScript $command -HostCredential $hcred -GuestCredential $gcred

Managing vCenter
vCenter is the management layer of the vSphere stack of applications and services from

VMware. You have already seen how to use PowerCLI with some of the features, for

example, host pro�iles and collecting vCenter performance statistics about an ESX host,

that are available only with a vCenter server. In this section, you will look at some of the

additional vCenter components that can be manipulated by PowerCLI.

Clusters
Clusters provide a way of grouping together a set of ESX hosts within vCenter. Although

this can be done for security reasons or to apply a common host pro�ile to a set of ESX

hosts, clusters are generally used when an administrator wants to take advantage of high

availability (HA) or load balancing (DRS).

Clusters are created by using New-Cluster.

New-Cluster drs1 -DrsEnabled -Location datacenter1

c23.indd 573c23.indd 573 02/09/11 11:59 AM02/09/11 11:59 AM

574

Part V: Virtualization and Cloud Computing

Cluster objects can be retrieved and inspected by using Get-Cluster. The following two

lines retrieve the cluster you created previously and then display its settings to the screen:

$cluster = get-cluster drs1
$cluster |Select *

You can change a cluster’s behavior by piping a cluster object into Set-Cluster. For

example, to enable HA on the cluster, you can run the following line:

$cluster |Set-Cluster -HAEnabled $true -Confirm:$False

To add a host to a cluster, you use the Move-VMHost cmdlet:

get-vmhost esx1.psbible.com |Move-VMHost -Destination $cluster

Clusters can also be moved into other datacenters by using Move-Cluster:

$cluster = Get-Cluster drs1
$cluster |Move-Cluster -Destination (Get-Datacenter dc1)

Migrating VMs
The process used to migrate VMs is similar to the process you just looked at to move an ESX

host into a new cluster. In the case of VMs, Get-VM is used to retrieve the VM and Move-VM

is used to move the VM. The Destination parameter of Move-VM is extremely �lexible. You

can specify a host retrieved by Get-VMHost, a folder retrieved by Get-Folder, or a resource

pool retrieved by Get-ResourcePool as the argument for this parameter. For example, you

can move a VM to a new host by performing the following line of code:

Get-VM vm1 |Move-VM -Destination (Get-VMHost esx1.psbible.com)

If vMotion is con�igured properly and the VM is powered on, then vMotion will be used for

the migration of the VM. Similarly, you can use the Datastore parameter of Move-VM to

migrate the VM via Storage vMotion. The following line shows an example of a command

that can be used to initiate a migration to new storage:

Get-VM vm1 |Move-VM -Datastore (Get-Datastore ds1)

If vMotion and Storage vMotion are not con�igured properly, you would need to shut down

a VM prior to issuing the Move-VM command against it.

Note
In case you are new to VMWare’s technology, vMotion is the ability to migrate a VM from one ESX host
to another while the VM is powered on. The technology relies on using shared storage and a network link
between the two ESX hosts. The vMotion technology is what makes things like HA and DRS possible.

Storage vMotion is similar to vMotion because it allows you to migrate VMs while they are powered on. In the
case of Storage vMotion, this migration occurs to a new set of disks. �

c23.indd 574c23.indd 574 02/09/11 11:59 AM02/09/11 11:59 AM

575

Chapter 23: Managing VMware vSphere PowerCLI

Managing Folders, Resource Pools,
and Datacenters
Folders, resource pools, datacenters, and clusters all have a similar set of cmdlets that help

you create, modify, move, and delete them from vCenter. In the “Clusters” section of this

chapter, you saw how to use cmdlets to manage clusters. The same techniques for

managing clusters can also be applied to the cmdlets in Table 23-3 to manage resource

pools and datacenters.

TABLE 23-3

Cmdlets Used to Manage Folders, Resource Pools,
and Datacenter Objects in vCenter

Folder Cmdlets Datacenter Cmdlets Resource Pool Cmdlets

New-Folder New-Datacenter New-ResourcePool

Set-Folder Set-Datacenter Set-ResourcePool

Get-Folder Get-Datacenter Get-ResourcePool

Move-Folder Move-Datacenter Move-ResourcePool

Remove-Folder Remove-Datacenter Remove-ResourcePool

Getting Log Data
In the “Getting Logs” section of this chapter, you saw how you can gather log data

from an ESX host. The cmdlets used in the examples from this section, Get-LogType and

Get-Log, also work when connected to vCenter to retrieve vCenter logs. The following

code shows an example of what the output of Get-LogType looks like when connected to a

vCenter server:

Get-LogType

Key Summary
--- -------
vpxd:vpxd-13.log vCenter server log in ‘plain’ format
vpxd:vpxd-14.log vCenter server log in ‘plain’ format
vpxd:vpxd-alert-9... vCenter server log in ‘plain’ format
vpxd:vpxd-profile... vCenter server log in ‘plain’ format
vpxd-profiler:vpx... vpxd-profiler

c23.indd 575c23.indd 575 02/09/11 11:59 AM02/09/11 11:59 AM

576

Part V: Virtualization and Cloud Computing

In addition to this log data, you can also view vCenter events with Get-VIEvent. The

following code shows how you can use this cmdlet to look at events over the last hour:

$finish = Get-Date
$start = $finish.AddHours(-1)
Get-VIEvent -Start $start -Finish $finish |
 Select UserName,FullFormattedMessage |Format-Table -AutoSize

UserName FullFormattedMessage
-------- --------------------
Administrator Task: Initialize powering On
Administrator Reconfigured VM2 on esx1.psbible.com in dc1
Administrator Task: Reconfigure virtual machine
Administrator Removed rp1 on Cluster1 in dc1
Administrator Task: Delete resource pool

Tasks that have occurred recently or are currently taking place can also be retrieved by

using Get-Task, as shown in the following example. The output shows tasks that are in

various states in vCenter.

Get-Task

Name State % Complete Start Time Finish Time
---- ----- ---------- ---------- -----------
Destroy_Task Success 100 06:44:38 PM 06:44:48 PM
CreateClusterEx Success 100 06:47:52 PM 06:47:53 PM
MoveInto_Task Error 100 06:48:25 PM 06:48:25 PM
EnterMaintenanceMode_Task Success 100 06:48:36 PM 06:48:43 PM
MoveInto_Task Success 100 06:48:45 PM 06:48:45 PM
ExitMaintenanceMode_Task Running 15 06:48:52 PM

Getting Performance Data
You have already seen how you can gather the performance data that is stored in the

vCenter database for an ESX host in the “Using Get-Stat to Collect Performance Data

from vCenter” section earlier in this chapter. The cmdlet used in this example, Get-
Stat, can also be used against any object in vCenter that has a performance tab like VMs,

clusters, and resource pools. For example, you could retrieve performance data about a

VM with the following line of code:

Get-VM vm1 |Get-Stat -Memory

Everything Else
This chapter has touched on a few common scripting tasks that you may encounter when

working with vSphere. Though it’s by no means a comprehensive look into what is possible

c23.indd 576c23.indd 576 02/09/11 11:59 AM02/09/11 11:59 AM

577

Chapter 23: Managing VMware vSphere PowerCLI

with PowerCLI, it should provide you with enough practical examples and information to

begin your journey into automating VMware.

In addition to what you have looked at, PowerCLI also has the ability to manage the

following aspects of vSphere:

� vApps

� vCenter alarms

� vCenter Update Manager

� vCenter permissions and roles

� vCenter questions

� DRS

Note
For more information on these topics or any of the topics covered in this chapter, you can review VMWare’s
documentation: www.vmware.com/support/developer/PowerCLI/index.html. �

Summary
PowerCLI enables Windows PowerShell users to manage their VMware virtual

infrastructure. When comparing this set of cmdlets to others that you have looked at in this

book, it is apparent that a lot of thought was put into how the cmdlets interact with each

other through the pipeline. The fruit of this effort is that VMware has provided us with an

easy and intuitive command-line interface to vSphere.

This brings us to the end of our exploration of virtualization and cloud infrastructure. In

the next part of this book, you take a look beyond the console at some other components of

Windows PowerShell that can help an administrator deliver a polished set of scripts.

c23.indd 577c23.indd 577 02/09/11 11:59 AM02/09/11 11:59 AM

c23.indd 578c23.indd 578 02/09/11 11:59 AM02/09/11 11:59 AM

Part VI

Beyond the Console

IN THIS PART
Chapter 24
Creating User Interfaces

Chapter 25
Using the Windows PowerShell ISE

c24.indd 579c24.indd 579 03/09/11 11:05 AM03/09/11 11:05 AM

c24.indd 580c24.indd 580 03/09/11 11:05 AM03/09/11 11:05 AM

581

C H A P T E R

IN THIS CHAPTER
Using text mode user interface

Creating a simple UI in
Windows PowerShell using
Windows Forms

Working with Windows Forms
controls

Using Windows PowerShell and
PrimalForms

Working with other UI
mechanisms

Creating User
Interfaces

This chapter shows you how you can create a user interface (UI)

using Windows PowerShell. It looks first at what you can do,

UI-wise, at the text mode console and then introduces Windows

Forms and how to create a form using Windows PowerShell. You look

at some of the key elements that you can add to a form, including

button, textbox, and label controls, and how you can use these to create a

simple share viewer application GUI. You then look at PrimalForms as

a tool that can help you to lay out a form. The chapter finishes with a

look at other ways to create UIs.

A user interface is a set of features that an end user accesses in order

to use and operate an application. At the command line, UIs tend to be

fairly basic. By comparison, a graphical user interface, or GUI, is a much

richer Windows application, complete with buttons, boxes, and so on.

For Windows PowerShell, the most commonly used UIs are the

Windows PowerShell console and the Windows PowerShell ISE.

Although these are �ine for users that fully understand Windows

PowerShell, giving the command line to less experienced users may

cause some degree of confusion and user resistance.

Working with Text Mode UI
A text mode UI for a Windows PowerShell script is usually pretty

 simplistic — you code the script to ask the user for the relevant

information and then display a result. The idea is to hide the details of

scripts and how Windows PowerShell works from an end user who just

is using your script.

C H A P T E R

c24.indd 581c24.indd 581 03/09/11 11:05 AM03/09/11 11:05 AM

582

Part VI: Beyond the Console

Text mode does not offer a lot of options for building a UI. Users can enter data in only a few

ways: they can call your script using parameters, you can code requests for information

that they type in at runtime, or they can provide a �ile that contains the necessary

information. The next example provides a look at some of the ways you can create a UI to

get user credentials for use by a script.

Getting Credentials
For many scripts, users may need to supply speci�ic user credentials because their own

logon credentials may not be adequate. Using the principles of lowest privilege, a user

may log in to his or her system using fairly low-privilege credentials and then run a script

or run a cmdlet using elevated credentials. Get-WmiObject, for example, is a cmdlet that

supports a -Credential parameter.

The most common way to get credentials is to use the Get-Credential cmdlet and prompt

the user for the domain, user ID, and password. These can then be stored in a variable that

is supplied to the relevant cmdlet or pro�ile at runtime.

For example, suppose you want to get the BIOS information from a remote system, using

different credentials than you are currently logged on with. You could do the following:

$cred = Get-Credential
Get-WmiObject -Class Win32_Bios -Computer Cookham11 -Credentials $cred

When you use this approach, Windows PowerShell displays a standard Windows dialog

box where the user can enter the credentials. You can see the PowerShell session and the

credentials dialog box in Figure 24-1.

FIGURE 24-1

Getting credentials

c24.indd 582c24.indd 582 03/09/11 11:05 AM03/09/11 11:05 AM

583

Chapter 24: Creating User Interfaces

Getting Strings
A key feature of a UI is its ability to get data from a user that is acted upon by your script.

For example, you might want to obtain a user’s age. With Windows PowerShell, you use

Read-Host to read input from the console. For example:

$Age = Read-Host -Prompt “Enter your age: “

This statement �irst displays “Enter your age:” at the console, then assigns what was read

to the variable $Age. By default, Read-Host returns a string. To return a number, you cast

the result of Read-Host to a number using an explicit type declaration as follows:

[int] $Age = Read-Host “Enter your age”

There is only one small problem with this approach, which is that the user could enter

something other than a number. If so, then Windows PowerShell generates a runtime

exception. To get around this, you can code a Try/Catch block like this:

while ($True) {
 try {[int] $Age=Read-Host “Enter Your age”
 break}
catch{ “Not a number - try again”}}

Validating Input
Another key aspect of a good UI is that it ensures the data entered and passed to your

string is valid and not malicious. For the most part, users are responsible and attempt to

input correct values when prompted by a script. But not all users do this all the time.

Some users can accidentally enter invalid data; other, less nice people do it deliberately as

many organizations have learned (after a successful hack attack) to their detriment.

If you start from the premise that all user input is intentionally evil until proven otherwise

and proceed from there, you are less likely to have problems. As shown earlier, there are easy

ways to detect and code around these issues, but they require some thought and (usually)

some extra code.

You can validate data with Windows PowerShell in two broad ways. First, you can write

code to examine each bit of data that is entered and reject all invalid data. The second

way is to use attributes and have Windows PowerShell check that function (and cmdlet)

parameters have acceptable values.

As you examine the data, you should use the try/catch approach noted earlier. This will

catch some errors that would otherwise cause your script to abort when converting the

string returned by Read-Host into the value type you want it to be.

You should also write Windows PowerShell code to check any input for both formatting and

to check that it makes good business sense (for example, ensuring age is, say, greater than

or equal to 18 and less than 65).

c24.indd 583c24.indd 583 03/09/11 11:05 AM03/09/11 11:05 AM

584

Part VI: Beyond the Console

To both get and validate the age value, you could do something like this:

function Get-Age {
while ($True) {
 try {
 [int] $age = Read-Host “Enter your age”
 if ($age -ge 18 -and $age -le 65) {break}
 Write-Host “Age must be between 18 and 65 - please reenter” }
 catch{ “Not a number - Please reenter”}
}
return $age

An alternative way of validating numbers and dates is to use the .NET TryParse()

method, which exists for a number of .NET value types (for example, Int32 and DateTime).

This method takes a string and attempts to convert it into a number or date. The method

returns either an error (if the string cannot be parsed successfully, or it returns the parsed

value). For example, you could do this:

while ($true) {
 try {
 [int] $age = 0
 [int] $number = Read-Host “Enter your age: “
 $result = [System.Int32]::TryParse($number, [ref] $number);
 If ($result) {
 If ($age -ge 18 -and $age -le 65) {break}
 Write-Host “Age must be between 18 and 65”
 Write-Host “Please reenter”}
 }
 catch { “Not a number - Please reenter”}
}

This might seem to be overkill, but the more hard validation you do on user input, the less

the likelihood of bad data being used leading to bad results.

With a bit of work, you can create a text-mode UI for your product, which may be �ine for

those users who are experienced at the command line. No matter who you are writing a UI

for, you still need to validate any input before using it. If you have less experienced users

or you need to do something a bit more, then you need to write additional code, or consider

moving the UI to be a GUI.

Building a Simple UI in Windows
PowerShell Using Windows Forms
Text-mode UIs are acceptable where the amount of data the user is expected to input is small

and where the probability of successful entry of data is high. For other scenarios, a richer

Windows-based GUI solution is called for — a full window, with spaces for user entry being

explicitly coded in. This window might display information it knows about (or deduces), then

c24.indd 584c24.indd 584 03/09/11 11:05 AM03/09/11 11:05 AM

585

Chapter 24: Creating User Interfaces

allow the end user to enter extra information or to override the script-generated values (that

is, where the script has not guessed user intentions wisely enough).

You can use two Windows technologies to achieve this: Windows Forms and Windows

Presentation Foundation (WPF). Windows Forms is an older technology but is more than

adequate for building simple GUIs. The following section looks at how you can use Windows

Forms to build simple GUIs with Windows PowerShell.

Using Windows Forms
Windows Forms is a .NET component that enables you to create GUI-like forms that you use

to gather and display information. This makes using your scripts appear much more like a

Windows application than using the raw console for input and output.

Creating a GUI using Windows Forms can produce great results, but it can end up being

quite a lot of work if the GUI is particularly complex. Try to keep things as simple as

possible, and if you can’t avoid complexity, consider using more powerful tools, such as

PrimalForms, which is covered later in this chapter. Of course, you should always consider

whether you are writing a real application and, therefore, should be using a lower-level

 language like C# or VB.NET and richer development tools such as Microsoft’s Visual Studio.

Building a GUI with Windows Forms — the Basics
With Windows Forms, you work with two main objects:

� Forms: These are windows that you can display. Typically, for most simple UIs,

you just have one form.

� Controls: These are objects you place on the form and use to capture and display

information.

Using Windows Forms, you must �irst develop code that creates a form. You then create

each control, specify handlers that do things when the user accesses the form at runtime,

and then attach the control to the form. When you have completed adding the necessary

controls to your form, you can display the form with which the user can interact.

Like many parts of .NET, the .NET assembly needed for Windows Forms exists on your

computer, but is not loaded by default. That’s simple to overcome by loading the relevant

assembly explicitly in your script, like this:

[
Add-Type -Assembly System.Windows.Forms

Once you have loaded the Windows Forms assembly, you next create the form, with basic

sizes and with other properties set. Once created in memory, you show a form using the

form’s ShowDialog() method:

Create form
$form= New-Object -TypeName Windows.Forms.Form

c24.indd 585c24.indd 585 03/09/11 11:05 AM03/09/11 11:05 AM

586

Part VI: Beyond the Console

$form.Width = 500
$form.Height = 200
$form.Text = “My first Windows Forms application”
Now show the form as dialog box.
$form.ShowDialog()

This code brings up a window, as shown in Figure 24-2.

FIGURE 24-2

Basic Windows form

This is not yet a useful GUI, but it does represent a starting point. The form has a basic size,

and you can use normal Windows handling to resize it. You close the form by clicking the X

in the upper-right corner.

To make the form more useful, you need to add and con�igure controls as you see in the next

section.

Using Windows Forms Controls
Once you have your basic form created, you need to add controls to make the form useful.

Controls are objects that you add to your form to make the form useful. Typical form

controls include a label control, a button control, and a textbox control.

Note
There are many more form controls available. You can read more at http://msdn.microsoft.com/en-us/
library/3xdhey7w.aspx. �

Label Control
A label control puts a simple label onto the form. Typically, you place the label next to some

input control, to tell the user what the input box is to be used for. Or you can use a label

control to display a message inside a form.

c24.indd 586c24.indd 586 03/09/11 11:05 AM03/09/11 11:05 AM

587

Chapter 24: Creating User Interfaces

Incorporating a label control takes several steps. First, you need to create the control, in

memory, by using New-Object and specifying the control name. Next, you need to add the

control to a form, and �inally, you need to make the control visible on the form.

Like other controls, the label control has a large number of properties to make the control

�it your particular purpose. You can set its size, location on the form, color, and so on. Some

of the properties of the label control are objects in their own right. Continuing the example

form, you create and add a label control like this:

Load System.Windows.Forms
Add-Type -AssemblyName “System.Windows.Forms”

Create form
$form= New-Object -TypeName Windows.Forms.Form
$form.width = 500
$form.height = 200
$form.text = “My first windows forms application”

Create a label control
Set label location, text, size, etc.
$label = New-Object -TypeName Windows.Forms.Label
$label.Location = New-Object -TypeName Drawing.Point -ArgumentList 100,75
$label.Size = New-Object -TypeName Drawing.Point -ArgumentList 100,50
$label.text = “Computer Name: “
$label.font = “Comic Sans”

Now make label visible and add it to the form
$form.Controls.Add($label)
$label.Visible = $true

Finally, show the form as dialog box.
$form.ShowDialog()

You can see the results of this form and control in Figure 24-3.

FIGURE 24-3

A label control

This is a small improvement over the form shown in Figure 24-2, but it needs more controls

to make the form useful to an end user.

c24.indd 587c24.indd 587 03/09/11 11:05 AM03/09/11 11:05 AM

588

Part VI: Beyond the Console

Button Control
The button control places a push-down button on the form, which enables the user to

click the button to perform some action. .NET does the clever stuff to make the button look

like it’s actually being pushed and released by your mouse click.

Like the Label control, to make use of a button control, you �irst create the control and set

properties. The code to do this is as follows:

Create a button control
$button = new-object windows.forms.button
$button.text = “Push To Close Form.”
$button.width = 150
$button.location = new-object drawing.point 100,100

Once you have created the control, you de�ine a button handler. The handler is code that

runs, for example, when the button is pushed. Once de�ined, you attach the handler to the

control and then attach the button control on the form, using this code:

Define Button Click handler
$button_OnClick = {
 $label.Text = “Closing!!”
 Start-Sleep -Seconds 1
 $form.Close()}

Add the script block
$button.Add_Click($button_Onclick)

$form.Controls.Add($button)

The complete code now looks like this:

Load System.Windows.Forms
Add-Type -AssemblyName System.Windows.Forms

Create form
$form= New-Object -TypeName Windows.Forms.Form
$form.width = 500
$form.height = 200
$form.text = “My first windows forms application”

Create a label control
Set label location, text, size, etc.
$label = New-Object -TypeName Windows.Forms.Label
$label.Location = New-Object -TypeName Drawing.Point -ArgumentList 100,50
$label.Size = New-Object -TypeName Drawing.Point -ArgumentList 100,50
$label.Text = “Computer”
$label.Font = “Comic Sans”

Now make label visible and add it to the form

c24.indd 588c24.indd 588 03/09/11 11:05 AM03/09/11 11:05 AM

589

Chapter 24: Creating User Interfaces

$label.Visible = $true
$form.Controls.Add($label)

Now create a button
$button = New-Object -TypeName Windows.Forms.Button
$button.Text = “Push To Close Form.”
$button.Width = 150
$button.Location = New-Object -TypeName Drawing.Point 100,100

Define Button Click handler
$button_OnClick = {
 $form.Close()}

Add the script block
$button.Add_Click($button_OnClick)

$form.Controls.Add($button)

Finally, show the form as dialog box.
$form.ShowDialog()

Once you add the button control, the form is now marginally more useful. Figure 24-4

shows the button you created, which you can use to close the form.

FIGURE 24-4

Using a button control

This form is still not very useful, but hopefully, you can see the basic approach to adding

more controls to your form: you create the control, de�ine properties, de�ine a handler, and

then attach the handler to the control and the control to the form.

Textbox Control
You can use the textbox control to create a box on your form where the user can enter text. The

idea is that you display a textbox, and the user enters text into the textbox and clicks a button.

The button handler can then take the text in the textbox and do something useful with it.

c24.indd 589c24.indd 589 03/09/11 11:05 AM03/09/11 11:05 AM

590

Part VI: Beyond the Console

A textbox control is very similar in usage to a button control. To create a textbox, you would

do the following:

Create a text box to get computer name and add to form
$text1 = New-Object -TypeName Windows.Forms.Textbox
$text1.location = New-Object -Typename System.Drawing.Point `
 -ArgumentList 150, 50
$text1.text= “Localhost”
$text1.font= “Courier New”
$text1.visible = $true
$form.Controls.Add($text1)

As with the label control, you �irst create the control and work out its location on the form.

You then set some properties — in this example, some default text and the font to display

the text. For some controls, you can de�ine handlers that de�ine what happens when you

click a control — each control can respond to a number of user actions. With the control

de�ined, you add it to the form. You would add this code anywhere before the ShowForm.

Then, you move on to the next control. Most controls follow a similar pattern.

Thus far in the examples, you’ve created a very simple form with a couple of controls. Now,

complete the application, which is a GUI for displaying computer shares on a given machine.

To create this application, you can take the preceding snippets and turn them into a GUI.

You need to add the textbox control for the user to enter the name of the computer, a button

to get the shares from that computer entered, and a button to close the form. Also, the

form needs a further label control, where you place the details of the shares for the user to

view. Finally, you need to add some code to the button handler that takes the name of the

computer and uses WMI to get the shares and display them nicely in the label control.

Listing 24-1 provides the complete code for creating a basic share viewer UI.

LISTING 24-1

Creating a Share Viewer UI

Share Viewer GUI

Load System.Windows.Forms
Add-Type -AssemblyName System.Windows.Forms

Create form
$form= New-Object -TypeName Windows.Forms.Form
$form.width = 600
$form.height = 650
$form.text = “My Share Viewer UI”

Create a “computer name” label control
Set label location, text, size, etc.
$label1 = New-Object -TypeName Windows.Forms.Label

c24.indd 590c24.indd 590 03/09/11 11:05 AM03/09/11 11:05 AM

591

Chapter 24: Creating User Interfaces

$label1.Location = New-Object -TypeName Drawing.Point -ArgumentList 50,50
$label1.Text = “Computer Name:”
$label1.Font = “Comic Sans”
$label1.Visible = $true

Add it to the form
$form.Controls.Add($label1)

Create a text box to get computer name and add to form
$text1 = New-Object -TypeName Windows.Forms.TextBox
$text1.Location = New-Object -TypeName System.Drawing.Point `
 -ArgumentList 150, 50
$text1.Text= “Localhost”
$text1.Font= “Courier New”
$text1.Visible = $true
$form.Controls.Add($text1)

Create a label to output stuff
$label2 = New-Object -TypeName Windows.Forms.Label
$label2.Location = New-Object -TypeName Drawing.Point -ArgumentList 50,100
$label2.Width = 500
$label2.Height = 360
$label2.Text = “”
$label2.Font = “Courier New”
$label2.Visible = $true
$form.Controls.Add($label2)

Create a button to get the shares
$button1 = New-Object Windows.Forms.Button
$button1.Text = “Push To Get Shares”
$button1.Width = 150
$button1.Location = New-Object -TypeName Drawing.Point -ArgumentList 350,50

Define Getting Shares Button Click handler
$button1_OnClick = {
 $label2.Text = “Shares on $($text1.text):`n”
 $shares = Get-Wmiobject -Class win32_share -computer $text1.text |
 where {$_.Type -eq 0}
 foreach ($share in $shares)
 {
 $label2.Text += “{0,-25} {1}`n” -f $share.Name, $share.Path
 }
 }

Add the script block handler
$button1.Add_Click($button1_Onclick)
$form.controls.add($button1)

Now create a button to close window

continues

c24.indd 591c24.indd 591 03/09/11 11:05 AM03/09/11 11:05 AM

592

Part VI: Beyond the Console

LISTING 24-1 (continued)

$button2 = New-Object -TypeName windows.forms.button
$button2.Text = “Push To Close Form”
$button2.Width = 150
$button2.Location = New-Object -TypeName drawing.point -ArgumentList 160,550

Define Button Click handler
$button2_OnClick = {
 $form.Close()}

Add the script block handler
$button2.Add_Click($button2_Onclick)
$form.Controls.Add($button2)

Finally, show the form as dialog box.
$form.ShowDialog()

When you run the script, you produce a nice dialog box that, when used, creates what you

see in Figure 24-5.

FIGURE 24-5

Completed share viewer UI

c24.indd 592c24.indd 592 03/09/11 11:05 AM03/09/11 11:05 AM

593

Chapter 24: Creating User Interfaces

Like almost any UI in Windows, you could take this mini-application a lot further. You

could add controls to the form that enable the user to add new shares to a system, or

that enable the user to remove a share. You could provide an additional form to enable

the user to enter credentials that WMI could use to obtain the share information from

remote computers. You could de�ine additional handlers for, say, the button control that

changes the color of the text whenever you hover over the button (and reverts back to

the original color when you stop hovering over the button). Each of those additional

features is simply more of the same: you de�ine an additional control, determine where

the control goes on the form, set some properties to the controls, de�ine control

handlers, and then add the control to the form.

Of course, you can end up writing a full-blown Windows application, and there have

been several of these. However, using the out-of-the-box tools (Windows PowerShell and

Notepad or the ISE) is not the most ef�icient method for creating rich GUI applications, if for

no other reason than there is no built-in design functionality.

In the examples set out here, I had to play around a bit to get the controls into the right

place, ensure the form was the right size, and so on. Tools such as Sapien’s PrimalForms

make these tasks signi�icantly simpler.

Using Windows PowerShell
and PrimalForms
As noted earlier, using Notepad (or even Windows PowerShell ISE) to develop a GUI

takes time and a bit of guesswork. For writing full-blown Windows applications, you

may be better off using traditional application development methods; that is, writing

the application in C# and using Visual Studio. Though you can write applications using

Windows PowerShell, it may not always be the best approach for IT professionals.

But there are likely to be many occasions where Windows PowerShell is the right tool

for creating your GUI, but where you have multiple controls that need to be accurately

placed on one or even more forms. One tool you can use to help you do this is Sapien’s

PrimalForms.

PrimalForms is a commercial tool that enables you to create visual Windows PowerShell-

based applications and UIs that you can then easily package and distribute. At the time of

this writing, the full version was selling for US$299 from the website. Though not

free, the savings in time make this a very useful tool for developing simple Windows

PowerShell-based GUIs. Sapien also ships a free Community edition with less

functionality that might be enough for some simple use cases. PrimalForms has a good

script editor for you to edit your script as well as a forms designer to make designing your

script simple and quick.

c24.indd 593c24.indd 593 03/09/11 11:05 AM03/09/11 11:05 AM

594

Part VI: Beyond the Console

Note
PrimalForms has a wealth of other features, as described in Sapien’s website (www.sapien.com/software/
primalforms#). You can also download a fully functional time-bombed evaluation copy.

For more information on the Community edition, see Sapien’s blog article at: www.sapien.com/blog/2011/
06/07/where-did-the-free-community-tools-go/. �

Before you can really begin to exploit the richness of PrimalForms, you need to understand

the basics of using Windows Forms with Windows PowerShell. If you are likely to create

administrative GUIs, then PrimalForms is a great tool to have — but there is a learning

curve!

Note
Microsoft has produced extensive documentation on its MSDN site that describes Windows Forms, the con-
trols, which you should be familiar with before starting to use PrimalForms. You can start here: http://
msdn.microsoft.com/en-us/library/aa983655%28VS.71%29.aspx. �

When you run PrimalForms, you get a nice forms designer that you can use to lay out your

form and to set default properties for the controls on your form(s). You can then look at the

script that PrimalForms generates as you add and update controls. From the script editor,

you can add code as needed — for example, to handle a button click, and so on.

You can see the PrimalForms UI in Figure 24-6.

FIGURE 24-6

The PrimalForms UI

c24.indd 594c24.indd 594 03/09/11 11:05 AM03/09/11 11:05 AM

595

Chapter 24: Creating User Interfaces

Once you have completed your design work, you can save your form and script and begin to

use it. And to make things simple for the end user, you can package your script in an .exe

�ile, which will keep your users from changing the code.

Using Windows Presentation Foundation
You have any number of alternative ways of developing user interfaces — with touch,

graphics, and sound. You could, for example, use a Braille tablet to display information

to users who are blind (and read braille), and you could use sound or some sort of touch-

sensitive surface as a way of capturing input. Most of these options are probably more

appropriate for use in developing full applications rather than just creating administrative

user interfaces. However, it is worth mentioning them so you are aware of the options

available to you.

The only other UI mechanism worth mentioning in the context of simple UI development is

Microsoft’s Windows Presentation Foundation, or WPF.

Windows Forms has been a part of the .NET Framework for a considerable time. With

.NET 3.0 (released as part of the roadmap to Windows Vista), Microsoft introduced a new

technology for creating user interfaces — WPF. WPF is a much richer display technology than

Windows Forms, although much of this richness may not be of much use or interest to the IT

professional. Developers, on the other hand, love WPF as a UI on which to build great graphic

applications!

In terms of key features, WPF utilizes DirectX for output support, making it more suitable

for later graphics cards. WPF also attempts to provide separation between the UI itself

and the business logic behind it. In does this, in part, by the use of Extensible Application

Markup Language, XAML (pronounced “zamel“) for describing the UI with separate

code to handle the business logic. The intention here is that you get great UI designers to

use advanced tools to create the layout and render that in XAML. Then, the application

developer must code the business logic, and you’re done.

Note
You can learn more about XAML and WPF on the Web, including a good introduction at Wikipedia at
http://en.wikipedia.org/wiki/Windows_Presentation_Foundation. �

Using WPF with Windows PowerShell requires you to �irst author the UI in XAML. With

Windows Forms, you did that in code; but with WPF, you need some good way to author

XAML. You can use Notepad, but it’s a lot of work. All in all, WPF is a lot more work because

there are no built-in tools to help you. Moreover, PrimalForms does not support WPF.

Though there is no equivalent to PrimalForms for WPF yet (that is, tools to create WPF with

Windows PowerShell), there have been some community efforts around WPF. As part of the

Windows 7 Resource Kit, Microsoft published WPK, a WPF toolkit for Windows PowerShell.

c24.indd 595c24.indd 595 03/09/11 11:05 AM03/09/11 11:05 AM

596

Part VI: Beyond the Console

You can get WPK as part of the larger Windows PowerShell Pack Windows 7 Resource Kit

release. You can download the whole Windows PowerShell Pack at http://archive.msdn
.microsoft.com/Windows PowerShellPack.

Work on this concept has continued, and three Windows PowerShell superstars, James

Brundage, Doug Finke, and Joel Bennett, have produced an updated version of WPK known

as ShowUI. You can get ShowUI from http://showui.codeplex.com/ as a free download.

Summary
In this chapter, you looked at some ways to create a user interface for a Windows

PowerShell script. You �irst looked at UIs from the text mode console. There’s not a great

deal you can do here, mainly due to the restrictions of the console itself. You also looked at

some ways to validate the input you might encounter.

You then looked at using Windows Forms to build a GUI, and you looked at how you

could use Windows Forms and Windows PowerShell to create a simple network-aware

share viewer. You then looked at a third-party product, PrimalForms, that makes writing

Windows Forms GUIs much simpler. The chapter �inished with an overview of Windows

Presentation Foundation.

In the next chapter, you look at the Windows PowerShell ISE.

c24.indd 596c24.indd 596 03/09/11 11:05 AM03/09/11 11:05 AM

597

C H A P T E R

IN THIS CHAPTER
Examining the ISE

Using the ISE

Debugging scripts using the ISE

Extending the ISE

Finding alternatives to the ISE

Using the Windows
PowerShell ISE

You first learned about the Windows PowerShell Integrated

Scripting Environment, or ISE, in Chapter 2. This chapter

provides more details about the ISE. First, you explore the

basics of the ISE, including the screen layout and menu structure.

Next, you look at the ISE profile and review the debugging features in

ISE. You then look at the ISE object model and how you can

add new menu items to the ISE. Finally, you look at some alternatives

to the ISE.

Key Features of the ISE
The ISE is a graphical Windows PowerShell console and a basic

development environment. The ISE is a Microsoft-developed host

application for Windows PowerShell V2. You can see the ISE in

Figure 25-1.

c25.indd 597c25.indd 597 03/09/11 11:06 AM03/09/11 11:06 AM

598

Part VI: Beyond the Console

FIGURE 25-1

The ISE

Menu Bar

Toolbar

Output Pane

Command

Pane

Tabs in Script

Pane

The ISE enables you to run commands and develop scripts and modules in a single Windows

GUI. Although similar to the Windows PowerShell console, the ISE offers additional features

including script and module editing, multiline editing, syntax coloring, support for Unicode

and right-to-left languages, and a rich extensibility/customization model.

Screen Layout
The ISE uses the traditional Windows application menu and toolbar and has no Ribbon.

As you can see in Figure 25-1, several key elements make up the ISE:

� Menu bar: The traditional Windows application menu bar offering File, Edit, View,

Debug, and Help windows by default. The menu bar can be extended to add an

additional Add-ons menu.

� Toolbar: A Windows applications toolbar offering a variety of functions.

� Script pane: A pane in which you can open multiple �iles for editing and/or

execution. The toolbar provides tools that enable you to run a script, run part of

c25.indd 598c25.indd 598 03/09/11 11:06 AM03/09/11 11:06 AM

599

Chapter 25: Using the Windows PowerShell ISE

a script, and so on. Each �ile is opened in a separate tab, allowing you to have any

number of scripts or other �iles open for editing. Windows PowerShell provides

color-coded syntax for scripts, modules, and manifests. You can also create

Remote PowerShell tabs with ISE.

� Output pane: Where ISE sends output resulting from either a command entered

into the Command pane or output from a running script.

� Command pane: Where you enter Windows PowerShell commands, much as you

would do in the Windows PowerShell console. Just type the command and see the

output in the Output pane.

ISE Menu Bar
The ISE menu bar provides �ive menu items. They are listed here, and are covered in more

depth in the sections that follow:

� File menu: Provides basic �ile-level operations, including opening/saving �iles

� Edit menu: Provides the basic script-editing features used to edit a script in the

Script pane

� View menu: Provides a number of controls over what you see in the ISE, including

the location of the various panes and the ability to zoom in/out or go to a

particular tab in the Script pane

� Debug menu: Provides script-debugging functions used when you are debugging

a script using ISE

� Help menu: Provides access to the ISE help �ile (keyboard shortcut: F1)

Menu items are context-sensitive. Some options, for example, the items in the Debug menu,

are available only under speci�ic circumstances (for example, when you are running and

debugging a script).

Executing some menu items brings up standard Windows dialog boxes (for example, Find,

Replace, and Save) and thus should be very familiar. Executing other menu options simply

runs a Windows PowerShell command as though you’d entered it in the command panel.

The ISE displays output in the Output pane.

ISE File Menu
The File menu is similar to the File menu in other Windows applications. You use the File

menu to manage scripts or �iles you are editing in the Edit pane. You can open/save/run/

stop a script from the File menu or open/close PowerShellTabs. Table 25-1 provides an

explanation of each menu item, its keyboard shortcut, and what it does.

c25.indd 599c25.indd 599 03/09/11 11:06 AM03/09/11 11:06 AM

600

Part VI: Beyond the Console

TABLE 25-1

File Menu Items

Menu Item
Keyboard
Shortcut What It Does

New Ctrl+N Opens a new script in a new tab in the Script pane given
the working name Untitled1.ps1.

Open Ctrl+O Brings up the Open File dialog box to enable you to select
a file to be opened. Each opened file appears in a new tab
in the Script pane.

Save As None Brings up the Save As dialog box to enable you to select the
file associated with the currently selected tab in the Script
pane and then save the file.

Run F5 Runs the script in the currently selected tab in the Script pane.

Run Selection F8 Runs just the selected text in the currently selected tab in
the Script pane.

Stop Execution Ctrl+Break Stops the currently running script.

Close Ctrl+F4 Offers to save the current script, if it’s unsaved. If you agree,
or if the script is already saved, the script tab is closed.

New PowerShell Tab Ctrl+T Creates a new instance of Windows PowerShell in a new
tab. This menu option creates a new PowerShellTab in
the script pane.

Close PowerShell Tab Ctrl+Shift+R Closes the currently selected PowerShell tab in the ISE. If
any scripts are unsaved, ISE prompts to save all of them.

New Remote
PowerShell Tab

Ctrl+Shift+P Brings up the New Remote PowerShell tab dialog where
you specify a machine and username. Then, ISE enters a
remote session to the machine.

Exit Alt+F4 Quits ISE. If any files in the Script pane have unsaved edits,
ISE prompts you to save them or to discard the changes.

ISE Edit Menu
Like the File menu, the ISE Edit menu should be very familiar to you. The ISE Edit menu

provides you with basic text-editing features you can use when editing a script in the

Script pane. You can also use the ISE Edit menu to organize the look and feel of the ISE’s

layout — putting the Script pane on the right, increasing/decreasing text font size, and so

on. The individual items in the Edit menu are shown in Table 25-2.

c25.indd 600c25.indd 600 03/09/11 11:06 AM03/09/11 11:06 AM

601

Chapter 25: Using the Windows PowerShell ISE

TABLE 25-2

Edit Menu Items

Menu Item
Keyboard
Shortcut What It Does

Undo Ctrl+Z Undoes the last edit action.

Redo Ctrl+Y Redoes the last undone action.

Cut Ctrl+X Cuts the currently selected text in the currently selected
script in the Script pane into the clipboard. This selected
text is also placed in the clipboard so you can later copy it
to another place.

Copy Ctrl+C Copies the selected text into the clipboard.

Paste Ctrl+V Pastes the text in the clipboard into the current script.

Find in Script Ctrl+F Brings up the Find dialog, enabling you to find a word or a
regular expression.

Find Next in Script F3 Finds the next occurrence of a string or regular expression
in the current script.

Find Previous in Script Shift+F3 Finds the previous occurrence of a string or regular
expression in the current script.

Replace in Script Ctrl+H Brings up the Replace dialog, enabling you to find a text
string, and replace it with another.

ISE View Menu
The ISE View menu provides a mechanism to adjust the overall ISE window and its

components. You can, for example, hide or reveal the toolbar, move panes around, and so

on. Table 25-3 explains the items on the View menu.

TABLE 25-3

ISE View Menu Items

Menu Item
Keyboard
Shortcut What It Does

Show Toolbar None Shows or hides the toolbar

Show Script Pane Ctrl+R Shows or hides the Script pane

Command Pane Up None Enables you to move the Command pane to be above
the Script pane or back to its default location

continues

c25.indd 601c25.indd 601 03/09/11 11:06 AM03/09/11 11:06 AM

602

Part VI: Beyond the Console

Menu Item
Keyboard
Shortcut What It Does

Show Script Pane Top Ctrl + 1 Shows the Script pane at the top of the ISE

Show Script Pane Right Ctrl + 2 Shows the Script pane to the right of the ISE

Show Script Pane
Maximized

Ctrl + 3 Maximizes the Script pane, hiding the Command and
Output panes

Go to Script Pane Ctrl + I Moves focus to the currently selected script in the Script
pane (for example, to resume script editing)

Go to Command Pane Ctrl + D Moves focus to the Command pane (for example, to
enter more commands)

Go to Output Pane Ctrl + Shift + O Moves focus to the Output pane (for example, to view
output of a previous command)

Zoom In Ctrl + + Increases font size of text in the Script, Command, and
Output panes

Zoom Out Ctrl + - Decreases font size of text in the Script, Command, and
Output panes

ISE Debug Menu
The ISE Debug menu (see Table 25-4) provides a number of features to help you run and

debug a script. When you need to debug a script, the Debug menu enables you to create/

toggle/turn off breakpoints in a set of scripts. The ISE Debug menu provides a subset of

the debugging commands provided in the console and, in a couple of cases, just calls a

debugging cmdlet.

TABLE 25-4

ISE Debug Menu Items

Menu Item
Keyboard
Shortcut What It Does

Step Over F10 Executes the current statement, then stops at the next
statement. If the current statement has a call to a function
or script, Windows PowerShell runs that script or function.

Step Into F11 Executes the current statement, then stops at the next
statement. If the current statement has a call to a function
or script, Windows PowerShell steps into that function or
script instead.

TABLE 25-3 (continued)

c25.indd 602c25.indd 602 03/09/11 11:06 AM03/09/11 11:06 AM

603

Chapter 25: Using the Windows PowerShell ISE

Menu Item
Keyboard
Shortcut What It Does

Step Out Shift+F11 Steps out of the current function/script and continues up
one level in the call stack. Any skipped statements are
executed, but are not stepped through. If the debugger
is running at the top level, then that script is completed
(unless there are further breakpoints set).

Run/Continue F5 Runs, or continues, the current script.

Stop Debugger Shift+F5 Stops the execution of the current script.

Toggle Breakpoint F9 Turns a breakpoint on/off at the current location in the
selected script in the Script pane.

Remove All
Breakpoints

Ctrl+Shift+F9 Removes all breakpoints.

Enable All Breakpoints None Enables all breakpoints, including those previously
disabled.

Disable All Breakpoints None Disables all breakpoints. ISE remembers these
breakpoints, which can be enabled later.

List Breakpoints Ctrl+Shift+L Executes Get-PsBreakpoint and displays output in the
Output pane.

Display Call Stack Ctrl+Shift+D Calls Get-PsCallStack and displays the results in the
Output pane.

ISE Add-ons Menu
This menu is optional. By default, you do not see this menu when you enter ISE. However, by

using the ISE’s customization features, you can add new menus simply and easily.

ISE Toolbar
The ISE toolbar, shown in Figure 25-2, provides single-click access to a variety of 17

commonly used functions within the ISE.

FIGURE 25-2

The ISE toolbar

c25.indd 603c25.indd 603 03/09/11 11:06 AM03/09/11 11:06 AM

604

Part VI: Beyond the Console

The tools in the ISE toolbar provide another way of invoking common ISE functions — most

of the toolbar items can be invoked by a keyboard shortcut, a menu item, or Windows

PowerShell cmdlets. The ISE toolbar functions (working left to right) and their keyboard and

menu/cmdlet counterparts are as follows:

� New: Clicking this toolbar button creates a new, empty script in the currently

selected PowerShell tab (equivalent to Ctrl+N or File ➪ New).

� Open: Invokes the Open dialog to enable you to choose a �ile to open (equivalent to

Ctrl+O or File ➪ Open).

� Save: Saves the active script in the currently selected PowerShell tab (equivalent

to Ctrl+S or File ➪ Save).

� Cut: Cuts the selected text to the Windows clipboard (equivalent to Ctrl+X or

Edit ➪ Cut).

� Copy: Cuts the selected text to the Windows clipboard (equivalent to Ctrl+C or

Edit ➪ Copy).

� Paste: Pastes the contents of the clipboard into the currently active script

(equivalent to Ctrl+V or Edit ➪ Cut).

� Clear Output Pane: Clears all the text from the Output pane (equivalent to

Clear-Host cmdlet).

� Undo: Undoes the previous edit operation (equivalent to Ctrl+Z or Edit ➪ Undo).

� Redo: Reapplies the last undone edit operation (equivalent to Ctrl+Y or Edit ➪

Redo).

� Run Script: Runs the currently selected script (equivalent to F5 or Debug ➪

Run/Continue).

� Run Selection: Runs the text currently selected in the active script (equivalent

to F8).

� Stop Execution: Stops the execution of any running scripts (equivalent to Shift+F5

or Debug ➪ Stop Debugger).

� New Remote PowerShell Tab: Brings up the New Remote PowerShell Tab

dialog to enable you to select a computer (and username) on which to open a new

PowerShell tab. After prompting, this toolbar item runs New-PsSession specifying

the computer name and credential parameters you entered.

� Start PowerShell.exe: Runs a new copy of PowerShell.exe in a separate console

window (equivalent to Ctrl+Shift+P or File ➪ Start PowerShell.exe).

� Show Script Pane Top: Shows the Script pane at the top of the ISE (the default

position). This is equivalent to Ctrl+1 or View ➪ Show Script Pane Top.

c25.indd 604c25.indd 604 03/09/11 11:06 AM03/09/11 11:06 AM

605

Chapter 25: Using the Windows PowerShell ISE

� Show Script Pane Right: Shows the Script pane to the right of the ISE (equivalent

to Ctrl+2 or View ➪ Show Script Pane Right).

� Show Script Pane Maximized: Shows the Script pane maximized in the ISE

window (equivalent to Ctrl+2 or View ➪ Show Script Pane Maximized).

ISE Script Pane
The ISE Script pane is where you can open different script tabs to edit and execute

scripts. The Script pane is tabbed, with one tab per open script. Each tab in the Script

pane provides an edit box in which you edit your script. You use the traditional Windows

features you are used to including — Cut/Paste/Insert, Undo/Redo — to edit the text. Once

you have completed your edits, you can run or debug your script and �inally use the Save/

Save As feature to save your script.

You can change Windows PowerShell’s default theme to enable different background/

foreground colors in the Script pane, and you can affect how the script parser colors different

syntax elements. The details of syntax and Script pane customization are discussed later in

this chapter. But it’s relatively simple to change your default ISE view into something that

looks entirely different.

ISE Command Pane
The ISE Command pane enables you to input commands for immediate execution

within the ISE. Like the console, you can enter any command/pipeline and so on, and see

the output — with the ISE, the output is in the Output pane.

When focused on the Command pane, you can use the up and down arrows to scroll

backward through the command history. You can also cut/copy/paste text to/from the

clipboard. You can also change the default colors of the default Command pane.

ISE Output Pane
The ISE Output pane is where ISE sends output. That output can be the result of running

a script or scripts, or from entering a command from the Command pane. In general, you

can’t do much with the Output pane aside from:

� Adjust where/whether you see the Output pane

� Select and copy text to the Windows clipboard

� Alter the appearance of the Output pane (foreground/text colors)

PowerShell Tabs
A PowerShell tab represents a separate Windows PowerShell runspace, with

separate scripts that you can use against that runspace. This enables you to run

scripts in separate and independent environments, although this is not a common task.

You can see a screenshot of the ISE with several PowerShellTabs open in Figure 25-3.

c25.indd 605c25.indd 605 03/09/11 11:06 AM03/09/11 11:06 AM

606

Part VI: Beyond the Console

FIGURE 25-3

Multiple PowerShell tabs

Multiple

PowerShell tabs

Multiple open

scripts for the

selected

PowerShell tab

As you can see from Figure 25-3, the ISE enables you to have more than one PowerShell tab

open focused on either the local or a remote machine. When you have multiple PowerShell

tabs open, the ISE displays a row of PowerShell tabs (for all the open PowerShell tabs), and

below the currently selected/active PowerShell tabs, a set of tabs for the scripts open in

the currently selected PowerShell tab. As you can see in Figure 25-3, three local and one

remote PowerShell tabs are open with the current PowerShell tab having two open scripts.

By default, ISE names new local tabs PowerShell n (where n depends on the count of the

tabs). Remote tabs are named using the machine name the remote session connects to

(Cookham1 in this case). If you do not like these names as you work, you can easily change

them (and a whole lot more) using the ISE scripting model described in this chapter.

A PowerShell tab can target the local machine or you can also open a remote PowerShell tab

whose scripts are focused on a remote system. When you open a new remote PowerShell

tab, the ISE prompts you for a machine and a username for the remote system, then runs

the Enter-PSSession cmdlet specifying the computer and domain you just entered. The

ISE connects to the remote machine, which requires you to enter your password when

prompted. Having multiple PowerShell tabs is a handy feature that avoids needing to have

multiple open PowerShell remote sessions in the console. Using multiple PowerShell tabs is

an advanced feature that in most cases you don’t use — but it’s very handy!

Modifying the ISE Layout
As noted, the ISE enables you to alter the layout of the panes within the ISE. There’s no

means in the ISE to undock any of the panes or other UI elements and have them �loat — all

the UI elements live inside the ISE window.

c25.indd 606c25.indd 606 03/09/11 11:06 AM03/09/11 11:06 AM

607

Chapter 25: Using the Windows PowerShell ISE

The independent options you have for customizing the layout are:

� Show the Script pane at the top of the ISE, or to the right of the ISE. When the

Script pane is at the right, the Command and Output panes are stacked to the left

of the Script pane.

� Have the Command pane above or below the Script pane.

� Hide the Script pane or maximize it. If you maximize the Script pane, the

Command and Output panes are hidden.

� Whether to show the toolbar.

� The relative sizes of each of the panes.

Using the ISE
You can use the ISE either as an alternative to using the Windows PowerShell console or as

an interactive development tool to develop and maintain Windows PowerShell scripts. And

for the more adventurous, you can extend the ISE by both adding new menu items and by

creating ISE-speci�ic functions that operate on the Output or Script panes.

The ISE as an Alternative to the Windows
PowerShell Console
When used as a console alternative, you type your commands into the Command pane and

Windows PowerShell sends output to the ISE Output pane. You can also use the ISE’s

script-editing features to edit scripts and related �iles. Should the need arise to do

debugging, you can use the full Windows PowerShell debugging toolset directly at the

command line as with the Windows PowerShell console. For more common debugging

scenarios, you can also use the GUI debugging features, as shown in Table 25-4.

Using the ISE to Edit Windows PowerShell
Scripts/Modules
The ISE can be useful as a basic development environment. You can edit a script or module

(or any other text-based �ile such as an XML �ile) using the Script pane and then run that

�ile by clicking the toolbar button, and so on. As you saw earlier, you can edit every script or

other �ile open in the Script pane using familiar Windows commands.

When editing, you also get the bene�it of syntax coloring. The parser recognizes 19

separate language tokens. You direct the ISE to display each token in potentially different

foreground colors (against a common background color) or use the ISE default colors.

With syntax coloring you can easily see the start of common typing errors, such as a

nonterminated string.

c25.indd 607c25.indd 607 03/09/11 11:06 AM03/09/11 11:06 AM

608

Part VI: Beyond the Console

ISE Profile Files
Like the Windows PowerShell console itself, the ISE has four pro�ile �iles, which are

executed when you start up the ISE. Pro�ile �iles are useful to help you customize your ISE

environment at startup. With the ISE, you have the following pro�iles:

� AllUsersAllHosts: C:\Windows\System32\WindowsPowerShell\v1.0\
profile.ps1.

� AllUsersCurrentHost: C:\Windows\System32\WindowsPowerShell\v1.0\
Microsoft.PowerShellISE_profile.ps1.

� CurrentUserAllHosts: C:\Users\tfl\Documents\WindowsPowerShell\
profile.ps1.

� CurrentUserCurrentHost: C:\Users\tfl\Documents\WindowsPowerShell\
Microsoft.PowerShellISE_profile.ps1.

The ISE pro�iles are the same as the pro�iles used in PowerShell.exe, with the exception

of the actual �ilenames of the “current host” pro�iles. The �ilenames for the current host

pro�iles use a script �ilename of Microsoft.PowerShellISE.ps1 as opposed to Microsoft
.PowerShell.ps1 for the Windows PowerShell console pro�iles.

Note
It is tempting to use all of the profile files, but for most uses, you can probably use just two: the all users/all
hosts profile and the per-user per-host profile. If you are making use of the ISE and are customizing it, you
might want an all users/current host to customize the ISE. �

Like the Windows PowerShell console, the ISE dot-sources these pro�ile �iles, if they exist.

Because they are run dot-sourced, the functions, providers, modules, snap-ins, variables,

and so on de�ined in the pro�ile �iles persist as you start up your ISE session.

Having separate ISE CurrentHost pro�iles enables you to include ISE-speci�ic scripting

logic so as to customize the ISE environment. This includes adding new menu items to the

ISE menu bar and creating ISE-speci�ic functions that can help with editing or debugging

inside the ISE.

Like other pro�ile �iles, the four ISE pro�ile �iles are just text �iles saved with a .ps1

extension — in other words, simply four more Windows PowerShell scripts.

Debugging with the ISE
Chapter 2 discussed debugging features added to Windows PowerShell Version 2 console.

The ISE includes most of these debugging features via menu items and keyboard shortcuts.

And of course, you can enter all the Windows PowerShell debugging commands directly

into the ISE Command pane as you did with the Windows PowerShell console.

c25.indd 608c25.indd 608 03/09/11 11:06 AM03/09/11 11:06 AM

609

Chapter 25: Using the Windows PowerShell ISE

Setting and Using Breakpoints in the ISE
A key debugging feature is the ability to set a breakpoint — some point in your script’s

execution when you want Windows PowerShell to stop and let you look at what your script

is doing and has done. Windows PowerShell ISE, like the Windows PowerShell console,

enables you to set three types of breakpoints:

� Line breakpoint: Sets a breakpoint at some line/column of a script

� Command breakpoint: Sets a breakpoint prior to calling some command or

function

� Variable break point: Sets a breakpoint when a variable is used

You use a line breakpoint to set a breakpoint at a particular line in a script. The breakpoint

is set at the line and column position (if speci�ied) in a script. When executing the script,

with debugging enabled, Windows PowerShell stops just before the execution of the

commands at the line (and column) you speci�ied. You can set a line breakpoint using

the command line, the keyboard, and the menu. You can also set multiple breakpoints in

several different scripts.

You use a command breakpoint to set a breakpoint before a particular command is

executed. A command can be a function or a cmdlet. When debugging, Windows PowerShell

breaks whether the command was executed via a script, or entered from the command line.

You use variable breakpoints to set a breakpoint on a variable that is used, updated, or

created. You can set the variable breakpoint for Write (execution stops immediately

before a value is written to the speci�ied variable), Read (where execution stops where the

variable is read), Write (where execution stops when the variable is written) or ReadWrite

(where the breakpoint is triggered on any access to the variable).

Debugging
Using the debugging features provided by the ISE is relatively straightforward. In addition

to the debugging functions provided by the Windows PowerShell console, the ISE just offers

you keyboard shortcuts and GUI access to some of the more useful Windows PowerShell

debug features.

Debugging in the ISE involves running a script, and having Windows PowerShell stop

execution at certain de�ined points known as breakpoints in the script or set of scripts

being debugged. Debugging can be as simple as just running a single script, evaluating its

output, re�ining it, and running it again. In more complex situations, you may have a suite of

interrelated scripts you are integrating. In those cases, you might want to set a breakpoint

in de�ined places in one or more scripts, or set a breakpoint whenever a variable changes.

All in all, debugging is easier using the ISE, when compared to using the Windows

PowerShell console.

c25.indd 609c25.indd 609 03/09/11 11:06 AM03/09/11 11:06 AM

610

Part VI: Beyond the Console

Extending the ISE
The ISE has a rich and easy-to-use extension model. It consists of a set of nine related .NET

object types, bound via a single root object ($PsISE). The object model enables you to:

� Customize the ISE appearance: You can access key aspects of each pane to

change the color scheme and layout. For example, you could change the font in

the edit window to Courier New, 16 point, and tell the ISE to display the text in the

Output pane in white on a dark blue background.

� Enhance the functionality of ISE: You can create additional menus and shortcuts

to enable you to add functionality to the ISE. For example, you could add a menu

item to save the current script using ASCII (rather than Unicode).

� Automate tasks: With the ISE, you can create menu items or shortcuts to run scripts

that automate actions that you commonly perform. For example, you could create a

shortcut and/or a menu item to digitally sign the current script and then move the

script from your local work folder to a production folder on your release server.

The ISE object model was designed both to provide access to the customization features

of the ISE and to make it simple for the end user to access the extensibility. The ISE object

model provides a single root object, $PsISE, that holds the whole object model at runtime.

Thus, you can use Get-Member (and tab completion) to discover the components of the

object model for yourself. This also eliminates the need for you to use constructors and

New-Object — when you start ISE, $PsISE (the ISE root object) is created, which gives you

access to the full object model. You can then customize the environment via pro�iles to add

menus, add shortcuts, affect the look/feel, and so on.

To customize ISE in these ways, you just need to assign the appropriate values to the

$PsISE object or call $PsISE methods. You have two broad ways to do this:

� Add the relevant code to the ISE’s profile file(s): You can use either the per host or

user ISE pro�iles. Running ISE and just entering notepad $profile is quick and easy.

� Develop scripts or functions that you can invoke as needed: These scripts

could reside in your home folders, or you could add functions and/or import

modules in your ISE pro�ile.

With Windows PowerShell, you can accomplish the customization in the way most sensible

to you. For example, you might add a couple of simple customizations into the $profile (for

example, to change the color of error and warning messages) and then import a module that

adds menu items (and additional functions) you can access while using the ISE. You have

considerable �lexibility. In the following sections, you learn how you can customize the ISE.

Overview of the ISE Object Model
The ISE object model is a wonderful example of how Windows PowerShell can simplify the

access to a complex set of objects (namely, the whole look/feel of the ISE). The ISE extension

model is very rich, but everything you need to access this rich set of objects is contained in

c25.indd 610c25.indd 610 03/09/11 11:06 AM03/09/11 11:06 AM

611

Chapter 25: Using the Windows PowerShell ISE

the variable $PsISE. Thus, you can manage every aspect of customizing ISE simply by using

$PsISE! Let’s take a more detailed look at what’s inside this object.

The ISE object model consists of nine objects in the Microsoft.PowerShell.Host.ISE

namespace, as shown in Figure 25-4. These objects are as follows:

� ISEEditor object: Represents the Output pane and Command pane, which enables

customization of these panes. An example is $PsISE.CurrentFile.Editor.

� ISEFile object: Enables access to �iles open in the ISE, including saving the �ile and

access to the editor functions. Example: $PsISE.CurrentFile.

� ISEFileCollection object: Represents all the currently open �iles opened in a

given instance of ISE. Example: $PsISE.PowerShellTabs.Files.

� ISEMenuItem object: Represents a menu item in the Add-ons menu.

Examples: $PsISE.CurrentPowerShellTab.AddOnsMenu and $PsISE
.CurrentPowerShellTab.AddOnsMenu.Submenus[0].

� ISEMenuItemCollection object: A collection of all the menu items. Example:

$PsISE.CurrentPowerShellTab.AddOnsMenu.Submenus.

� ObjectModelRoot object: This object gives you access to the components of the

object model. When ISE starts, it creates and populates the variable $PsISE.

� ISEOptions object: Represents ISE options settings. Examples: $PsISE.Options

and $PsISE.Options.DefaultOptions.

� PowerShellTab object: Represents a single PowerShellTab. Examples: $PsISE
.CurrentPowerShellTab and $PsISE.PowerShellTabs[0].

� PowerShellTabCollection object: A collection of the currently open PowerShell tabs.

FIGURE 25-4

The ISE object model

c25.indd 611c25.indd 611 03/09/11 11:06 AM03/09/11 11:06 AM

612

Part VI: Beyond the Console

ISEEditor Object
The ISEEditor object provides access to the ISE’s editing functions and properties. The

editing functions are exposed as methods you can call on an ISEEditor object. The Command

pane and Output pane are ISEEditor objects you can address via the $PsISE variable.

The methods in the ISEEditor object are:

� Clear(): Clears the text in an editor window.

� EnsureVisible (int LineNumber): Scrolls the relevant editor window to ensure

that the speci�ied line is visible.

� Focus(): Sets the focus to the speci�ic editor.

� GetLineLength(int LineNumber): Gets the length of the speci�ied line.

� InsertText (string Text): Replaces or inserts the speci�ied text at the caret

position in the speci�ied editor. If the editor has text currently selected, then this

method replaces text; otherwise, the text is inserted.

� Select(int StartLine, int StartColumn, int EndLine, int EndColumn):

This method selects the text between the start line/column and the end line/column.

� SetCaretPosition(int LineNumber, int ColumnNumber): Sets the caret

position after the speci�ied line number and column.

The properties of this object are:

� CaretColumn: Gets the column corresponding to the caret position

� CaretLine: Gets the line corresponding to the caret position

� LineCount: Gets a count of the number of lines in the editor window

� SelectedText: Gets the text that is currently selected in an editor window

� Text: Gets all the text in an editor window

Note
For more information on this object, see http://msdn.microsoft.com/en-us/library/dd819438
.aspx. �

 ISEFile Object
The ISEFile object represents a �ile in the ISE. This object enables you to access and

manage �iles that are open within the ISE.

The methods of the ISEFIle object are:

� Save(System.Text.Encoding SaveEncoding): This method saves the �ile in a

particular encoding (for example, [System.Test.Encoding]::Ascii).

� Save(): Saves the �ile (using whatever encoding is currently in place).

� SaveAs(string FileName): Saves the �ile to the speci�ied �ilename, with a default

encoding of UTF-16.

c25.indd 612c25.indd 612 03/09/11 11:06 AM03/09/11 11:06 AM

613

Chapter 25: Using the Windows PowerShell ISE

� SaveAs(String FileName, System.Text.Encoding SaveEncoding): Saves �ile

with the speci�ied �ilename and using the speci�ied text encoding.

The properties of the ISEFile object are:

� DisplayName: Contains the display name of this �ile

� Editor: Gets the editor object for this �ile

� Encoding: Gets the original encoding for this �ile (returned as a System.Type
.Encoding object)

� FullPath: Gets a string representing the full path for any opened �ile

� IsSaved: A Boolean that returns true if the �ile has been saved or false if there are

unsaved changes

� IsUntitled: A Boolean that returns true if the �ile has not been given a title

ISEFileCollection Object
The ISEFileCollection object represents a collection of ISEFile objects. A given

PowerShell tab, for example, contains a FileCollection object that represents the �iles

open in that PowerShell Tab.

The ISEFileCollection object contains no properties, and the following methods:

� Add(): Creates a new �ile in the collection. The �ile is untitled and contains no text.

� Add(string FullPath): Adds the speci�ied �ile to the collection. The �ile is

initially untitled and contains the text contained on the speci�ied �ile.

� Remove(Microsoft.PowerSHell.Host.ISE.ESEFile File): Removes (closes)

the speci�ied �ile. Files to be removed need to have been saved; otherwise, this

method throws an exception when called.

� Remove(Microsoft.PowerSHell.Host.ISE.ESEFile File, Boolean Force):

Removes the speci�ied �ile (closes it) from the collection. The Force parameter

tells the ISE to remove the �ile even if it’s been changed but has not been saved.

� SetSelectedFile(Microsoft.PowerShell.Host.ISE.ISEFile selectedFile):

Sets the �ilename as the one selected (so you can invoke further methods on the �ile).

ISEMenuItem Object
This class represents individual menu items that you have added to the ISE.

This class has no methods and the following three properties:

� DisplayName: This gets the display name of the Add-ons menu item.

� Action: This gets the script block that is executed by a menu item if that menu

item is clicked (or the shortcut invoked).

� Shortcut: This property gets the shortcut that invokes a given menu item, if any.

c25.indd 613c25.indd 613 03/09/11 11:06 AM03/09/11 11:06 AM

614

Part VI: Beyond the Console

ISEMenuItemCollection Object
This class represents a collection of ISEMenuItem objects. One such collection is the

$PsISE.CurrentPowerShellTab.AddOnsMenu.Submenus object that you can use to

customize the menus in the ISE.

This object has one method: Add (string DisplayName, System.Management
.Automation.ScriptBlock action, System.Windows.Input.KeyGesture shortcut).

This method adds a menu to the ISE Add-ons menu and returns an ISEMenuItem.

The Add method can be used like this:

$menuAdded =
$PsISE.CurrentPowerShellTab.AddOnsMenu.SubMenus.Add(`
 “_Service”,{Get-Service},”Alt+S”)

When adding a menu, you can add an accessor, or fast index into the menu item, by adding

an underscore (_) somewhere in the displayName parameter. After adding the menu item,

you can select Alt+A to select the Add-ons menu and then type S to select the Services

menu. Had you made the displayName Ser_vice, typing Alt+A then V would have run the

script block.

ObjectModelRoot Object
This object is the root object for all ISE customization. When the ISE starts, it creates a

variable, $PsISE, which contains an instance of this class that contains all the aspects of

the ISE object model. You use this class instance, $PsISE, for all customization of ISE.

The ObjectModelRoot object has the following properties (and no methods):

� CurrentFile: This property represents the �ile currently open and in focus.

� CurrentPowerShellTab: This property gets the PowerShell tab that has focus.

� Options: This property contains the options needed to change the look and feel of

the ISE.

� PowerShellTabs: This property is a collection of all the PowerShell tabs open

in the ISE. In most cases, there will only be one PowerShell tab open, but you can

open more.

The $PsISE variable greatly simpli�ies writing extensions or modifying the look and

feel of ISE. You modify the look and feel of ISE mainly by operating on the Options and

PowerShellTabs properties. Extensions that operate on an open �ile will involve using the

CurrentFile or some part of PowerShellTabs property. You add menu items by managing

the $PsISE.CurrentPowerShellTab.AddOnsMenu property.

ISEOptions Object
The ISEOptions object contains a variety of options you can manipulate to customize the

ISE. Examples include $PsISE.Options and $PsISE.Options.DefaultOptions.

c25.indd 614c25.indd 614 03/09/11 11:06 AM03/09/11 11:06 AM

615

Chapter 25: Using the Windows PowerShell ISE

The ISEOptions object contains two methods:

� RestoreDefaults(): This method restores the options to their default setting.

� RestoreDefaultTokenColors: This method resets the token colors, used to color

the text in an edit window(s), to their defaults.

The ISEOptions object also contains a number of properties that re�lect speci�ic colors and

options that de�ine the look and feel of the ISE. These options are described in more detail

in Table 25-5.

TABLE 25-5

ISE Options Accessed from $PsISE.Options

Option Use

ShowToolBar A Boolean that tells the ISE to display the toolbar (or not).

TokenColors This is an array of all color values to be applied to syntax
items when displayed in the ISE’s editor.

DefaultOptions This is a set of read-only properties representing the default
ISE options.

FontSize The font size used to display text in all three ISE panes.

FontName The font name of the font used to display text in all three ISE
panes.

ErrorForegroundColor The foreground color of error text.

ErrorBackgroundColor The background color of error text.

WarningForegroundColor The foreground color of warning text.

WarningBackgroundColor The background color of warning text.

VerboseForegroundColor The foreground color of verbose output text.

VerboseBackgroundColor The background color of verbose output text.

DebugForegroundColor The foreground color of debug text.

DebugBackgroundColor The background color of debug text.

OutputPaneBackgroundColor The Output pane’s background color.

OutputPaneTextBackgroundColor The Output pane’s background text color.

OutputPaneForegroundColor The Output pane’s foreground text color.

continues

c25.indd 615c25.indd 615 03/09/11 11:06 AM03/09/11 11:06 AM

616

Part VI: Beyond the Console

Option Use

CommandPaneBackgroundColor The Command pane’s background text color.

ScriptPaneBackgroundColor The Script pane’s background text color.

ScriptPaneForegroundColor The Script pane’s foreground text color.

ShowWarningForDuplicateFiles ISE will show a warning if a duplicate file is detected.

ShowWarningBeforeSavingOnRun Set to display a warning that the script will be saved before
it is run.

UseLocalHelp Whether to use online or local help.

CommandPaneUp Set to 1 (or $true) to have the Command pane displayed on
top of the Output pane.

PowerShellTab Object
The PowerShellTab object is actually a set of objects that relate to a single Windows

PowerShell runspace within the ISE. The $PsISE.CurrentPowerShellTab is one instance

of this class.

A PowerShellTab contains a single method: Invoke(System.Management.Automation
.ScriptBlock script). This method executes a script block in another PowerShell tab

(that is, not the one from which it’s run).

A PowerShellTab contains the following properties:

� AddOnsMenu: This property gets the Add-ons menu for a particular

PowerShellTab.

� CanInvoke: This is a Boolean that indicates whether a script can be invoked with

the Invoke method of this class.

� Command Pane: This property gets the CommandPane object for this PowerShellTab.

� DisplayName: This property allows you to get and set the name of this

PowerShellTab. You will only see the name in the ISE UI if there is more than one

PowerShellTab open.

� ExtendedScript: A Boolean you can get and set to tell the ISE whether to hide or

show the Script pane for this PowerShellTab.

� Files: A collection object representing all the �iles open in this PowerShellTab.

� Output: This object is the Output pane of the current PowerShellTab.

� Prompt: This gets the prompt on the Command pane of the current PowerShellTab.

� StatusText: Gets the status text for the current PowerShellTab.

TABLE 25-5 (continued)

c25.indd 616c25.indd 616 03/09/11 11:06 AM03/09/11 11:06 AM

617

Chapter 25: Using the Windows PowerShell ISE

PowerShellTabCollection Object
This object is the collection of PowerShellTab objects open in the current ISE. The $PsISE
.PowerShellTabs is a PowerShellTabCollection object you use for customizing the ISE.

The PowerShellTabCollection object contains three methods:

� Add(): Adds a new PowerShellTab to the collection and returns the tab that was

added by this method.

� SetSelectedPowerShellTab(Microsoft.PowerShell.Host.ISE.PowerShellTab
psTab): This selects the PowerShell tab indicated by pstab.

� Remove(Microsoft.PowerShell.Host.ISE.PowerShellTab psTab): This

method removes the tab speci�ied by pstab.

What’s in $PsISE
As noted, the $PsISE variable is created when Windows PowerShell ISE starts. $PsISE has

four useful properties, each of which is a rich object in its own right!

� CurrentFile: This is an object of type ISEFile that is the current �ile being edited

in the Script pane. From here, you can deal with saving a �ile (if unsaved), and get the

�ile’s name and encoding. The CurrentFile’s Editor property enables you to do a

limited set of edit functions (in this case, on the current �ile), including Select/Cut/

Paste of text.

� CurrentPowerShellTab: This is an object of type PowerShellTab and provides

access to the details of the current PowerShell tab, including the �iles, and the

Editor, Command, and Output panes. The Files property is the collection of �iles

open in the current PowerShell tab.

� Options: This object of type ISEOptions allows you access to the ISE’s color

scheme and general layout. You can also access the default options and color

scheme should you wish to revert to the default.

� PowerShellTabs: This is a collection of all the PowerShellTabs open in this

invocation of ISE, and includes the CurrentPowerShellTab.

To customize the ISE, you use the $PsISE object and drill down to the appropriate part for

the customization you wish to do.

Changing the Look and Feel of ISE
As noted earlier in the chapter, you can customize the ISE’s look and feel. For example, you

can make panes visible or you can move the panes around inside the ISE’s primary window.

You can also change the colors that ISE uses to display both individual panes and to display

the various language tokens within the Script pane (for example, coloring a cmdlet name

differently than a text string, and so on).

To change the look and feel of the ISE, you either use the menu items noted earlier, or use

script code to manipulate the $PsISE.Options object. This object exposes all the options for

changing screen colors, and the overall layout. The options provided are de�ined in Table 25-5.

c25.indd 617c25.indd 617 03/09/11 11:06 AM03/09/11 11:06 AM

618

Part VI: Beyond the Console

The $PsISE.Options object also contains two useful methods: RestoreDefaultTokenColors

and RestoreDefaults. The former resets just the token colors previously set by modifying

$PsISE.Options.TokenColors. The latter resets all the options back to ISE’s default settings.

Within the ISE editor panes, ISE can color each language token in a script differently. This

coloring is based on ISE having parsed the script into individual tokens and then using

the color scheme set in $PsISE.Options.TokenColors. The default color scheme used by

ISE provides a good starting point, but as with so many things, colorings are highly personal.

Listing 25-1 provides a simple script that uses the TokenColors and other ISE

customization properties to re-create the Unix VIM Editor’s blackboard theme.

Note
Because this book is printed in black and white, you can’t see the colors, but run the script on your system to
see this interesting colorizing scheme. �

LISTING 25-1

Create the Unix VIM Editor Blackboard Theme

Change ISE to resemble VIM Blackboard
From script at http://pshscripts.blogspot.com
Set font name and size
$PsISE.Options.FontName = ‘Courier New’
$PsISE.Options.FontSize = 16
Set colors for output pane
$PsISE.Options.OutputPaneBackgroundColor = ‘#FF000000’
$PsISE.Options.OutputPaneTextBackgroundColor = ‘#FF000000’
$PsISE.Options.OutputPaneForegroundColor = ‘#FFFFFFFF’
Set colors for command pane
$PsISE.Options.CommandPaneBackgroundColor = ‘#FF000000’
Set colors for script pane
$PsISE.options.ScriptPaneBackgroundColor =’#FF000000’
Set colors for tokens in Script Pane
$PsISE.Options.TokenColors[‘Command’] = ‘#FFFFFF60’
$PsISE.Options.TokenColors[‘Unknown’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘Member’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘Position’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘GroupEnd’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘GroupStart’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘LineContinuation’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘NewLine’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘StatementSeparator’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘Comment’] = ‘#FFAEAEAE’
$PsISE.Options.TokenColors[‘String’] = ‘#FF00D42D’
$PsISE.Options.TokenColors[‘Keyword’] = ‘#FFFFDE00’
$PsISE.Options.TokenColors[‘Attribute’] = ‘#FF84A7C1’
$PsISE.Options.TokenColors[‘Type’] = ‘#FF84A7C1’

c25.indd 618c25.indd 618 03/09/11 11:06 AM03/09/11 11:06 AM

619

Chapter 25: Using the Windows PowerShell ISE

$PsISE.Options.TokenColors[‘Variable’] = ‘#FF00D42D’
$PsISE.Options.TokenColors[‘CommandParameter’] = ‘#FFFFDE00’
$PsISE.Options.TokenColors[‘CommandArgument’] = ‘#FFFFFFFF’
$PsISE.Options.TokenColors[‘Number’] = ‘#FF98FE1E’

To restore the default token colors, you could call the RestoreTokenColors method noted

by using the following code:

$PsISE.options.RestoreTokenColors()

To restore all the ISE settings, run:

$PsISE.Options.RestoreDefaults()

Adding Functionality to the ISE
You can also use the ISE object model to add new functionality to the ISE. This involves using other

parts of the $PsISE object’s PowerShellTabs, CurrentPowerShellTab, or CurrentFile

properties. Things you can do include parsing the Output pane looking for particular bits of

output; loading or saving several scripts; adding text, for example, a code snippet, into an edit

window; and so on. To add functionality, you’ll most likely be using either the $PsISE
.CurrentPowerShellTab, the $PsISE.CurrentFile, or the $PsISE.PowerShellTabs.

The $PseIse.PowerShellTabs gives you access to all the open PowerShell tabs, and the

$PsISE.CurrentPowerShellTab gives you access to the currently selected PowerShell tab. Both

objects contain PowerShellTab objects, which contain the properties shown in Table 25-6.

TABLE 25-6

PowerShellTab Object Contents

Property Name Property Contents

AddOnsMenu Read-only property that contains the current Add-on menus for this PowerShellTab

CanInvoke Specifies whether a script can be invoked with the Invoke method

CommandPane Read-only property that contains the Command pane’s editor object

DisplayName Enables you to get/set the name of the PowerShell tab

ExpandedScript Specifies whether the Script pane is hidden or visible (expanded)

Files A collection of the script files open in the PowerShellTab

Output Gets the current Output pane

Prompt Gets the current prompt text

StatusText Gets the current status text

c25.indd 619c25.indd 619 03/09/11 11:06 AM03/09/11 11:06 AM

620

Part VI: Beyond the Console

Sample Windows PowerShell ISE Add-On
In the previous sections, you’ve seen some of the many things you can do to enhance the

ISE. A better and richer example is the Windows PowerShell ISE module that Microsoft

released as part of the Windows 7 Resource kit.

The IsePack is a set of 39 additions to the ISE, in the form of extra menu items and

additional script functions. The IsePack also provides shortcut key sequences to access

most of the additions. Here are four speci�ic additions provided by IsePack:

� Add-InlineHelp (Alt+H): This function (and shortcut) places a basic autohelp

snippet at the caret position into the edit window currently in focus. If you are

creating a new function or script, either executing the function name or hitting

Alt+H adds the basic documentation. You can, of course, modify the information

Add-InlineHelp adds by editing the Add-InlineHelp.ps1 �ile. The IsePack has

three related functions (and shortcuts): Add-ForEachStatement (Ctrl+Shift+F),

Add-IfStatement (Ctrl+Shift+I), and Add-SwitchStatement (Ctrl+Shift+S).

� Search-Bing (Ctrl+B): This function �irst looks for highlighted text in any of

the panes currently in use in the current PowerShell tab and then runs a Bing

search against that text. This is a fantastic lookup tool when you are using new (to

you) classes, or possibly unfamiliar properties. This is highly useful if you want to

search for an error message, or for more details on a class, property, method, and

so on. With a few minutes of work, you can also create a Search-Google shortcut if

you prefer Google as your search engine.

� Show-Member: This script cmdlet displays a searchable gridview table that

contains the members of an object. If you are dealing with a number of new

objects, this script may be preferable to using Get-Member (which sends the output

to the console).

� Export-FormatView: This script cmdlet takes an object, and produces display

XML for the properties you specify. If you are using applications such as Lync or

Exchange, where you would like the default display of an object (for example, a

CSUser object for Lync) to be different, you can create the necessary display XML

by using this script, then take the resulting output, and call UpdateFormatData in

your pro�ile to persist this new view of your data.

Third-Party Alternatives to the ISE
The Windows PowerShell ISE is a good basic development environment with good

customization features. It has the bene�it of being “in the box” (or nearly). Thus, you can

use it on any of the supported Windows Client versions, although for some versions of

Windows Server, it’s a separate install (and isn’t supported on any Server Core installation).

Several third-party alternatives to ISE are shown in Table 25-7.

c25.indd 620c25.indd 620 03/09/11 11:06 AM03/09/11 11:06 AM

621

Chapter 25: Using the Windows PowerShell ISE

TABLE 25-7

Third-Party ISE Alternatives
Company Name Product URL for More Information

Idera PowerShell Plus www.idera.com/products/powershell/
powershell-plus/

Itripoli Admin Script Editor www.itripoli.com/ise.asp

Sapien Primal Script www.primaltools.com/products/info
.asp?p=PrimalScript

Quest PowerGui (Pro) www.quest.com/powershell/powergui.aspx,
and www.quest.com/PowerGUIPro/

Idera’s PowerShell Plus is a commercial product with a free, fully functional 30-day

evaluation download available from the website. PowerShell Plus provides an advanced GUI

for Windows PowerShell, with a wealth of learning and productivity features. PowerShell

Plus supports snippets, and enables you to �ind and download script samples from a variety

of sources. You can also upload your scripts to community Windows PowerShell repositories.

Itripoli’s AdminScript Editor (ASE) is a commercial product that comes in three separate

editions. You can also download a 45-day trial version that contains most of the features.

ASE provides a number of wizards to help you create rich scripts faster and, like the ISE,

has a customizable look and feel. The Pro version of ASE adds in a number of features

including an integrated debugger and script signing.

Sapien’s Primal Script has been around for a while, and has been enhanced to cater to

Windows PowerShell. Primal Script is part of a set of Sapien tools aimed at a variety of IT

pros and developers. Primal Script is a commercial product and has a 45-day free edition you

can download from the company’s website. Primal Script enables you to edit VBScript, Jscript,

and Windows PowerShell scripts in a single environment and includes packaging tools to

help distribute your scripts.

PowerGui, from Quest, comes in two versions. The freeware version contains a rich set of

tools, including an integrated editor and debugger. The Pro version includes the ability to

use Windows PowerShell from mobile devices as well as integrated version control.

All these products provide great tools for those involved in heavy scripting work, but

the tools are not free. For the occasional scripter, the freeware version of PowerGui or, of

course, ISE might suit better.

Tip
Although many of these third-party products are commercial, they all have free trial versions you can
download and try out. You should take some time to look at the products and find out the ones that make you
the most productive in developing and managing Windows PowerShell scripts. �

c25.indd 621c25.indd 621 03/09/11 11:06 AM03/09/11 11:06 AM

622

Part VI: Beyond the Console

Summary
In this chapter, you looked at Windows PowerShell’s ISE. You �irst looked at the screen

components and how the default screen is laid out, and you saw how you can change the

layout using the menus (and via ISE’s customization features).

The chapter showed how you could use the ISE to access Windows PowerShell and run

commands just as you can with the Windows PowerShell console. You also saw the ISE’s

debug facilities and editing facilities that can assist you in developing and debugging

scripts.

You saw how you can extend the ISE. You learned about the ISE’s object model and

how you can change the look and feel of the ISE as well as develop add-ons to improve your

productivity.

The chapter ended with a look at some of the alternatives to the ISE, both free and commercial.

This is the last chapter in the book. Throughout the many hundreds of pages of text,

the four authors have labored hard to bring you great content, lots of tips and tricks,

and as much knowledge as we could put down on paper. Now, it’s up to you to take your

knowledge, leverage it, and move forward with Windows PowerShell. We wish you the very

best as you move forward. Should you get stuck at any point, please don’t hesitate to �ind us

online and let us know how we can help. We’re not hard to �ind!

So, go for it!

c25.indd 622c25.indd 622 03/09/11 11:06 AM03/09/11 11:06 AM

623

Symbols and Numbers
$ (dollar sign), indicating variables, 13–14

= (assignment operator), 13–14

1:1 remoting, 46

-? switch, cmdlet help, 11

64-bit Windows platforms

assigning values to variables, 14

creating software baselines, 155

installing Management Tools for Exchange

2007, 182

installing Management Tools for Exchange

2010, 182–183

listing software installed on your machine, 154

server migration, 182

A
abbreviations, cmdlet parameters, 9

about_Scopes help file, 39

Access Control filter, XenApp load-balancing policies,

474–475

access control lists. See ACLs (access control lists)

AccessMask definitions, share permissions, 128–131

accessors, ISEMenuItemCollection object, 614

$AccessRight variable

$, 85–86

AccessType parameter, Set-Share

Permission, 135

AccountExpiring parameter, Search-ADAccount, 246

AccountInactive parameter, Search-ADAccount, 246

accounts, in Active Directory

enabling and disabling, 244

managed service, 246–247

resetting passwords, 244–245

unlocking users, 244

accounts, modifying XenApp, 465–466

Accounts parameter, New-XAAapplication, 463–464

ACEs (Access Control Entries), current share

permissions, 128–131

AceType, current share permissions, 128–131

ACLs (access control lists)

cmdlets retrieving or modifying, 123

modifying registry permissions, 137–139

setting up remoting, 48

-Action parameter, Register-*Event, 62

Active Directory

ActiveRoles Management Shell, 253–255

agent failover in OpsMgr, 419

cmdlets, 230–232

enabling and disabling accounts, 244

group membership, 243–244

mailboxes and accounts, 280–281

managed service accounts, 246–247

managing rest of, 252–253

noun prefixes for cmdlets, 8

organizational units, 247–249

overview of, 229–230

password policies, 249–252

pooled machines, 491–492

properties, 242–243

provider, 232–234

querying group membership, 238–240

querying users, groups, and computers, 234–238

resetting passwords, 244–246

resource mailboxes, 302–303

unlocking users, 244

users and groups, 240–242

Active Directory Scripting Interface (ADSI), 229

Active Directory Web Service (ADWS), 230–232

ActiveDirectory module

Active Directory provider, 232–234

AD group membership, 238–240

cmdlets, 230–232

group membership, 243–244

modifying properties, 242–243

moving objects, 248

password policies, 249–252

querying users, groups, and computers, 234–238

users and groups, 240–242

ActiveRoles Management Shell

defined, 229

installing ActiveDirectory module, 231

managing Active Directory, 253–255

ActiveSheet property, Excel, 108

bindex.indd 623bindex.indd 623 02/09/11 6:21 PM02/09/11 6:21 PM

624

A

Add() method

collection of ports, 144

e-mail attachments, 117

Excel charts and graphs, 112–113

Excel workbooks, 107

Excel worksheets, 108

hyperlinks, 100

ISEMenuItemCollection object, 614

local users and groups, 219

Outlook folders, 115

SharePoint document library folders, 380

SharePoint document library

items, 381

SharePoint list items, 376

SharePoint list views, 377

SharePoint lists, 378

tables to Word documents, 101–102

Word documents, 98

AddAccessRule() method, registry, 139

Add-ADGroupMember cmdlet, Active Directory, 243

Add-ADPrincipalGroupMembership cmdlet, Active

Directory, 243–244

Add-BrokerAdministrator cmdlet, XenDesktop, 486

Add-BrokerMachinesToDesktopGroup cmdlet,

XenDesktop, 499–500

Add-BrokerUser cmdlet, XenDesktop, 493

Add-Certificate cmdlet, WASM, 549

AddDefaultScopeRule() method, Windows 7, 80

Add-DistributionGroupMember cmdlet, Exchange, 297

Add-ExchangeAdministrator cmdlet, Exchange, 275

Add-FineGrainedPassword

PolicySubject cmdlet, AD, 251–252

Add-InlineHelp (Alt-H) function, IsePack, 620

Add-LibraryServer cmdlet, VMM, 538

Add-LibraryShare cmdlet, VMM, 538–539

Add-MDTPersistentDrive cmdlet, MDT, 443–444

Add-ons menu, ISE, 603, 614

Add-PSSnapin cmdlet

defined, 35

MDT cmdlets, 441–442

server migration snap-in, 180

VMM cmdlets, 523

Add-RoleGroupMember cmdlet, 275, 333–334

Add-SPSolution cmdlet, SharePoint, 381

AddStore() method, Office, 115

Add-Type cmdlet, share permissions, 132–133

AddUserScopeRule() method, Windows 7, 80

Add-VMHost cmdlet, VMM, 526–527

Add-VMHostCluster cmdlet, VMM, 528–529

Add-VmHostNtpServer cmdlet, PowerCLI, 564

Add-VMNewHardDisk function, Hyper-V, 517–518

Add-WebConfiguration cmdlet, IIS, 402

Add-WebConfigurationProperty cmdlet, IIS, 402

Add-WindowsFeature cmdlet

installing RSAT, 231

Migration feature, 180

WebAdministration module, 391

Windows Backup, 174

Add-WindowsFeature cmdlet, Windows Server

2008, 167–169

Add-XAAdministratorPrivilege cmdlet, XenApp,

461–462

Add-XAApplicationAccount cmdlet, XenApp,

465–466

adhoc sessions, creating, 48

admin GUIs, Windows PowerShell in, 7–8

AdministratorName parameter, New-XAAdministrator,

457–458

administrators

Exchange Server 2007 roles, 274

managing privileges, 459–462

Windows PowerShell as task platform for, 5–6

XenApp, 456–458

XenDesktop, 486–488

AdministratorType parameter, New-XAAdministrator,

457–458

$AdminSessionADSettings variable, 331

ADSI (Active Directory Scripting Interface), 229

[adsi] type accelerator

creating and deleting local users, 220–221

managing local accounts, 219

modifying local users and groups, 219–220

advanced functions

cmdlet binding, 55–56

comment-based help, 54–55

overview of, 52–53

splatting, 56

Advanced Query Syntax, 89–91

AdvancedSearch() method, 118–119

ADWS (Active Directory Web Service), 230–232

agents, OpsMgr

automating discovery and deployment, 421–422

configuring failover without AD integration, 419

managing SNMP device

failover, 419–421

overview of, 418

verifying load across management servers, 422–423

agents, updating VMM host, 527

bindex.indd 624bindex.indd 624 02/09/11 6:21 PM02/09/11 6:21 PM

625

 B

alerts, OpsMgr

overview of, 410

preventing during maintenance mode, 418

processing in bulk, 410–413

updating custom fields in alert properties, 413–415

aliases

cmdlet, 9

email contact, 291

mail distribution group, 296–297

mail public folder, 304–305

mail user, 293

reconnecting mailboxes, 284

specifying mailbox, 281

All parameter, Get-GPO, 259

AllUsersAllHosts profile, 40–41, 608

AllUsersCurrentHost profile, 40–41, 608

alternation, in scripts, 24–25

AnswerFile parameter, Invoke-Troubleshooting

Pack, 73–74

Application Desktop Groups, 499, 502–505

Application object

adding text to Word documents, 99

in Office, 96–97

printing, 106

Word documents, 98

application pools

creating, 398

determining state, 405

starting and stopping, 404–405

using provider to change, 399–400

applications

binding to existing, 97

creating new, 97

importing in MDT, 446–449

published. See published applications, Xen App

applications folder privileges, XenApp 6, 460

ApplicationType parameter, New-XAAapplication,

463–465

AppLocker, Windows Server 2008 R2, 186–187

ApplyOnly parameter, Apply-VMHostProfile, 565

ApplyQuickStyleSet() method, Word, 104

Apply-VMHostProfile cmdlet, PowerCLI, 565–566

AppointmentItem, Outlook, 117–118

AppPool, IIS, 394

AppPools folder, IIS:\, 393

architecture, remoting, 46–48

arithmetic operators, 14

arrays

discovering currently indexed folders, 77–78

iteration and, 27–30

loading data with, 351

assemblies, SQL Server, 345–346

Assignment administrator, XenDesktop, 486–488

assignment operators, 14–15

AssociateOnly parameter, Apply-VMHostProfile, 565

attachments, adding email, 117

audit logging, Exchange Server 2010, 273

authentication, CMS vs. Registered Servers, 366

AutoDiscoverUrl, EWS, 336

Autofilter() method, Excel, 112

automating tasks, ISE, 610

AzureManagementToolsSnapIn, 542

B
backup and restore. See also Windows Backup

Group Policy Objects, 264–265

host profiles, 566

IIS configurations, 405–406

SharePoint data, 384–386

VMM database, 524

backup target, new backup jobs, 174

Backup-Features, Windows Backup, 174

Backup-GPO cmdlet, Group Policy, 264

Backup-SPConfigurationDatabase cmdlet,

SharePoint, 384

Backup-SPFarm cmdlet, SharePoint, 384

Backup-SPSite cmdlet, SharePoint, 385–386

Backup-Tools, Windows Backup, 174

Backup-VMMServer cmdlet, VMM, 524

Backup-WebConfiguration BackupName,

IIS, 405–406

BadItemLimit parameter, Exchange, 286–288

baselines, software, 155–157

Best Practice Analyzer scans

locally, 169–172

overview of, 169

remotely, 172–173

BestPractices module, 168–169

betas, V2, 43–44

BinarySDToWin32SD() method, DCOM, 222

binding, to existing applications, 97

Bindings parameter, New-Item within IIS, 394–395

blogs, PowerShell, 13

break statement, alternation in scripts, 26–27

breakpoints

debugging cmdlets, 32, 65–66

ISE, 609

bindex.indd 625bindex.indd 625 02/09/11 6:21 PM02/09/11 6:21 PM

626

C

BreakRoleInheritance() method, SharePoint list

permissions, 378

broker catalog, pooled catalogs, 489

BrowserName, XenApp, 465–467

browsing

directory with Active Directory provider, 232–234

IIS:\, 393

SharePoint lists, 375

$BufferNames, 549–550

bullets, Word, 99–100

bundles, adding, 449

Bus ID,VM storage, 535

business logic, as script component, 24

button control, Windows Forms, 588–589

BypassSecurityGroupManagerCheck parameter,

Remove-RoleGroupMember, 334

C
C# language, Windows PowerShell, 7

calculated properties, hashtables, 22–23

case-insensitivity/sensitivity, 17

catalogs, XenDesktop

dedicated, 492–493

existing, 493–494

machine types, 488

managing, 496–497

overview of, 488

physical, 494–495

pooled, 489–492

removing, 497–498

streamed, 495–496

CEC (Common Engineering Criteria), 6

cells, Excel worksheets, 108–111

Central Management Servers (CMS), 366–367, 369

certificates, WASM, 542–543, 548–549

ChangeStartMode() method, disabling services, 206

ChartObjects() method, Excel worksheet, 112–113

charts, Excel, 112–113

checkpoints, VMM, 536–537

CheckSpelling() method, Word, 105

Choose-VMSnapshot function, 520

Citrix XenApp 6

adding/removing administrators, 457–458

adding/removing assigned accounts, 466

enabling/disabling administrators, 458

getting server load, 471

importing/exporting published applications,

465–466

installing and using cmdlets, 455–456

load balancing policies, 473–475

load evaluator management, 471–473

managing privileges, 459–462

modifying published application properties, 465

publishing new applications, 463–465

removing/disabling applications, 466–467

retrieving administrators, 456–457

retrieving published applications, 462–463

server logon management, 470

server zone management, 473

sessions management, 467–470

types of administrators, 456

types of published applications, 462

what’s new in, 456

worker groups, 475–477

Citrix XenDesktop 5

administrators, 486–488

automating environment setup, 481–486

catalogs, 488

dedicated catalogs, 492–493

Desktop Groups, 499–505

existing catalogs, 493–494

hosts, 505–509

managing catalogs, 496–497

overview of, 479

physical catalogs, 494–495

pooled catalogs, 489–492

provisioning, 497–499

removing catalogs, 497–498

snap-ins, 481

streamed catalogs, 495–496

Windows PowerShell tab, 480

Citrix.Common.Commands snap-in, 455, 481

Citrix.Common.GroupPolicy snap-in, 455

Citrix.XenApp.Commands snap-in, 456

Class parameter

finding database white space, 312–313

retrieving share permissions, 127–130

classes

defined, 14

enumerating discovered instances, 423–425

Hyper-V WMI, 513–515

overview of, 9–10

Clean-MailboxDatabase cmdlet, Exchange, 285–286

Clear-ItemProperty cmdlet, IIS, 399

Client IP Address filter, XenApp load-balancing,

474–475

Client Name filter, XenApp load-balancing, 474–475

bindex.indd 626bindex.indd 626 02/09/11 6:21 PM02/09/11 6:21 PM

627

 C

client-side filtering, 328–329

client-side maintenance mode,

OpsMgr, 417–418

$ClusterAddition variable, 529

clusters, failover, 528–531

cmdlet binding, 55–56

cmdlets

Active Directory, 230–232, 252–253

ActiveRoles Management Shell, 253–255

AppLocker, 186

backup job, 174–175

BestPractices module, 169

breakpoint-related, 32, 65–66

building GUI administration tools as, 7

consuming and producing objects, 9–10

database space usage, 365

debugging, 32

discovery-related, 10–12

ESX host, 561–562

Exchange Server 2010, 272–273

Group Policy Objects, 263

IIS 7 modules, 403

loading WebAdministration, 391–392

MDT, 441–442

OpsMgr, 409–410

overview of, 8–9

PowerCLI, 557–559

process, 207

PsSnapin, 34–35

server migration, 180–182

SharePoint, 371–373

transaction, 64

V2 features for, 67

VM power states, 572

VM states, 535–536

VMM, 523

Windows Azure, 541–542, 551

Windows Backup, 174

Windows Backup limitations, 179–180

Windows services, 203–206

XenApp 6, 455–456

CMS (Central Management Servers), 366–367, 369

Collect() method, Office scripts, 97

collections, iteration and, 27–30

collisions, avoiding in cmdlets, 8

color coding, syntax, 30–31

COM (Component Object Model), 96, 456. See also

Office 2010

command breakpoints, ISE, 609

command notification channel, OpsMgr

events and log files, 427–429

forwarding SNMP traps, 429–431

Windows PowerShell and, 426

Command pane, ISE

customizing screen layout, 607

defined, 599–600

overview of, 605

command-line

debugging in V2 from, 65–66

management with Windows Server 2003, 4–5

managing services, 203–206

comment-based help, 54–55

Common Engineering Criteria (CEC), 6

community

OpsMgr, 437–439

Windows PowerShell, 12–13

Windows PowerShell Management Library for

Hyper-V, 515–516

Windows Presentation Foundation, 595

Community Technology Preview (CTP) releases, V2, 43–44

ComObject parameter, New-Object, 97

Compare-Object cmdlet, Windows Desktop, 156

comparison operators

case sensitivity instances, 17–18

overview of, 15

wildcards and regular expressions, 16

Component Object Model (COM), 96, 456. See also

Office 2010

computer object, maintenance mode, 418

ComputerName parameter

command-line services, 203–204

database white space, 312–313

event log data, 195–198

hotfixes, 195

listing software remotely, 153–155

performance counters, 218

processes, 207

processes on multiple servers, 207–208

server migration, 184

share permissions, 127–131, 135

stopping processes on remote servers, 208

computers

ActiveRoles Management Shell, 253–255

modifying properties within AD, 243

querying AD, 234–238

conditional execution, scripts, 24–25

ConditionalDepartment parameter,

New-EmailAddressPolicy, 323

bindex.indd 627bindex.indd 627 02/09/11 6:21 PM02/09/11 6:21 PM

628

D

configuration, discovering server, 189–191

configuration database, SharePoint, 384

Confirm parameter

Dismount-Database, 310–311

Move-Mailbox, 287

Remove-StorageGroup, 308

Resume-PublicFolderReplication, 307

Suspend-PublicFolderReplication, 307

Connect() method, scheduled tasks on servers, 191

connections

configuring XenDesktop, 484–485

to host or vCenter instance, 559–560

to VMM server, 525–526

Connections directory, XenDesktop, 505–506

Connect-Mailbox cmdlet, Exchange, 284–285

Connect-VIServer cmdlet, PowerCLI, 558, 566, 568

ContactItem, Outlook, 118–119

contacts, Exchange Server, 278–279, 291–292, 326–328

containers, 234

contains operator, 15

content, published applications, 464

Content property, Word, 98–99

ContentAddress parameter, New-XAAapplication, 464

context-sensitivity, ISE menu bar items, 599

controls, Windows Forms

button control, 588–589

defined, 585

label control, 586–587

textbox control, 589–590

using, 58

ConvertFrom-Csv cmdlet, IIS log files, 406–407

ConvertFromDateTime() method, 200

ConvertToDateTime() method, 199

ConvertTo-HTML, IIS log files, 407

Convert-UrnToPath cmdlet, SQL Server, 345

Copy() method, Word, 103

Copy-XAWorkerGroup cmdlet, XenApp, 475

Counter parameter, Get-Counter cmdlet, 217–218

$CountersList variable, 355

Create method, Win32_Process class, 158

CreateItem() method, Outlook, 117, 118

Create()method, local users and groups, 221

Create-MigrationFolder script, 181–182

Credential parameter, Connect-VIServer, 559–560

credentials

adding hosts to VMM, 526–527

checking hotfixes on multiple computers, 194–195

managing scheduled tasks, 191–192

modifying backup schedule, 179

PowerCLI cmdlets, 559–560

text mode UI, 582

VMM library, 538

CSearchManagerClass class, Windows Search, 77–79

.csfg file, 546, 548

.cspkg file, 546

.csv (comma-separated value), Enable-

Mailbox, 280

CTP (Community Technology Preview) releases, V2,

43–44

Ctrl+B (Search-Bin) function, IsePack, 620

CurrentRegion property, range object, 113

CurrentTimeZone property, Win32_OperatingSystem

class, 198

CurrentUserAllHosts profile, ISE, 608

CurrentUserCurrentHost profile, 40–41, 608

CurrentUsersAllHosts profile, 40–41

Custom administrators, 456–458

customization

of ISE, 610, 614–615

with profiles, 39–41

Cut() method, Word, 103

D
DACLs (discretionary access control lists), DCOM,

222–223

Data Files, database, 364

Data Management View (DMV), 352, 354

Database parameter

Connect-Mailbox, 284

Enable-Mailbox, 280

databases

automating XenDesktop setup, 482–485

creating MDT, 444

finding mailbox white space, 311–313

managing, 309–311

space usage data in SQL Server, 363–365

storage groups for, 308–309

datatable, SQL Server query, 348–349

date, retrieving and setting, 198–201

DaysOfWeek parameter, New-BrokerTimeScheme,

501, 504

DCOM (Distributed Component Object Model)

defined, 153

domain user remote access, 226–227

overview of, 221

viewing permissions remotely, 222–226

Debug menu, ISE, 599, 602–603

bindex.indd 628bindex.indd 628 02/09/11 6:21 PM02/09/11 6:21 PM

629

 D

debugging

from command line in V2, 65–66

error handling with, 31–32

with ISE, 602–603, 608–609

at ISE command line using Windows

PowerShell, 607

Decode-SqlName cmdlet, SQL Server, 345

dedicated catalogs, XenDesktop, 488, 492–493

default handler, opening file with, 91–92

DefaultScope property, $AdminSessionAD

Settings, 331

Delete() method

Excel worksheets, 108

Outlook items, 116

removing SharePoint sites, 375

Deleted Mailbox Retention policy, 314

DeletedItemRetention parameter, Set-

MailboxDatabase, 318

DeleteTask() method, 193–194

DenyTSConnections, Remote Desktop, 147–148

dependency checker, WASM cmdlets, 542

Dependency parameter, Import-MDTApplication, 449

dependent objects, finding in VMM library, 538

deployment, Windows Azure, 545–546

Deployment Share, MDT

adding device drivers to, 445–446

adding operating systems to, 444–445

configuring, 451–452

creating media, 452–453

generating media, 453–454

initializing, 443–444

updating, 452

Desktop Groups, XenDesktop

creating, 499–502

creating Application Groups, 502–505

overview of, 499

Desktop Studio, XenDesktop, 480

desktops, creating published applications, 464–465

Destination parameter, server migration, 184

DestinationFolder, Import-MDTApplication, 446–447

development

SharePoint code, 381–382

Windows PowerShell, 5

Windows PowerShell V2, 43–45

device drivers, importing in MDT, 445–446

diagnostics, Windows Azure, 549–554

Diagnostics folder, scripts, 71

directory, browsing AD, 234

DirectoryEntry class, local accounts, 219–221

DirectX, WPF utilizing, 595

Disable-* cmdlets, Exchange Server, 278–279

Disable-ADAccount cmdlet, AD, 244

Disable-DistributionGroupMember cmdlet,

Exchange, 298

Disable-Mailbox cmdlet, Exchange, 283–284

Disable-MailContact cmdlet, Exchange, 292

Disable-MailPublicFolder cmdlet, Exchange, 305

Disable-MailUser cmdlet, Exchange, 295

Disable-Notification cmdlet, OpsMgr, 435

Disable-PsBreakpoint cmdlet, 32

Disable-PSBreakpoint cmdlet, 65

Disable-PSRemoting cmdlet, servers, 174

Disable-XAAdministrator cmdlet, XenApp 6, 458

Disable-XAApplicationAccount cmdlet, XenApp 6,

466–467

Disable-XAServerLogon cmdlet, XenApp 6, 470

disaster recovery, implementing, 521

Disconnect-XASession cmdlet, XenApp 6, 469–470

discovered inventory data, OpsMgr, 423–426

discovery, in OpsMgr

automating agent, 421–422

inventory data, 423–426

discovery-related cmdlets, 10–12

discretionary access control lists (DACLs), DCOM,

222–223

Dismount-Database cmdlet, 310–311

DisplayName parameter

Get-Service, 343

New-BrokerTimeScheme, 501–502, 504

New-XAAapplication, 463–464

Set-MailPublicFolder, 304–305

distinguished name (DN), AD group membership,

238–239

Distributed Component Object Model. See DCOM

(Distributed Component Object Model)

distribution groups, Exchange Server

administering, 295–298

dynamic, 298–301

types of, 295

upgrading Exchange 2010, 326–328

verbs for, 278–279

DLL

adding folders to index, 79–81

automating Outlook tasks without security

prompt, 114

discovering currently indexed folders, 77

removing folders from index, 82–83

Windows Search, 77

bindex.indd 629bindex.indd 629 02/09/11 6:21 PM02/09/11 6:21 PM

630

E

DMV (Data Management View), 352, 354

DN (distinguished name), AD group membership,

238–239

DNS settings, remote network configuration, 214–216

do until/ do while loop, iteration, 28

document libraries, SharePoint, 379–381, 386

documentation

automating Word, 98

help files, 7

documents, Word

adding tables, 101–102

adding text, 98–99

creating header and footer, 102

creating hyperlinks, 100–101

creating or opening, 98

inserting images, 101

searching text, 102–103

working with bullets, 99–100

Domain parameter, GroupPolicy module, 259

domain profile, firewalls, 139–143

Domain Users, AD group membership, 238–239

DomainProfile key, checking firewall remotely,

143–144

downlevel systems

adding Windows PowerShell to, 37

V2 on, 45

dumpster data, moving in Exchange Server, 286

dynamic disks, adding to VMs, 535

dynamic distribution groups, Exchange Server, 295,

298–301

E
EdbFilepath parameter, New-MailboxDatabase,

310–311

Edit menu, ISE, 599, 600–601, 607

else clause, alternation in scripts, 25

e-mail. See also Outlook

email address

changing for mailbox in Exchange Server, 282–283

policies, 322–324

upgrading, 325–326

EmailAddressPolicyEnabled parameter, 292

EmailAddressPolicyEnabled parameter, 304

Enable-ADAccount cmdlet, AD, 244, 246

Enable-DistributionGroup cmdlet, Exchange, 295

Enable-Mailbox cmdlet, Exchange, 280–285

Enable-MailContact cmdlet, Exchange, 291–292

Enable-MailPublicFolder cmdlet, Exchange, 304

Enable-MailUser cmdlet, Exchange, 292–295

Enable-Notification cmdlet, OpsMgr, 435

Enable-NotificationSubscription cmdlet,

OpsMgr, 435

Enable-PsBreakpoint cmdlet, 32

Enable-PSBreakpoint cmdlet, 65

Enable-PsRemoting cmdlet, 48

Enable-PSRemoting cmdlet, 173

Enable-XAAdministrator cmdlet, XenApp 6, 458

Enable-XAApplicationAccount cmdlet, XenApp 6, 467

Enable-XAServerLogon cmdlet, XenApp 6, 470

Encode-SqlName cmdlet, SQL Server, 345

EndKey() method, Word, 99

Enter-PsSession cmdlet, 49

enumeration

discovering currently indexed folders, 78

using tab completion to see values in, 101

environment setup, XenDesktop, 481–486

$Env:WinDir\Diagnostics\System variable, 75

equipment mailboxes, 301–303

error handling

with advanced IDE, 30–31

debugging, 31–32

nonterminating errors, 33–34

overview of, 30

as script component, 24

with Set-StrictMode cmdlet, 31

trapping runtime errors, 32–33

with Try/Catch/Finally in V2, 66–67

error messages, script execution policy, 38

-ErrorAction parameter, nonterminating errors, 34

-ErrorVariable parameter, nonterminating errors, 34

ESX and ESXi hosts

adding to VMM, 526–527

adding to XenDesktop, 508

configuring NTP servers, 564–565

configuring virtual switches, 563–564

connecting to, 558–559

gathering performance data from, 567–568

getting logs, 566–567

host profiles, 565–566

in maintenance mode, 560

managing virtual port groups, 564

overview of, 560

properties, 560–562

retrieving in PowerCLI, 559

storage, 562–563

Esxtop, 568

event logs, 195–198

bindex.indd 630bindex.indd 630 02/09/11 6:21 PM02/09/11 6:21 PM

631

 F

events

defined, 9

OpsMgr, 427–429

in V2, 61–62

EWS (Exchange Web Services), 335–339

Excel spreadsheets

charts and graphs, 112–113

creating and opening, 107

filtering data, 112

searching, 113

sorting data, 111–112

working with cells, 108–111

worksheets, 107–108

exception handling. See error handling

Exchange Organization Administrators, 274

Exchange Public Folder Administrators, 274

Exchange Recipient Administrators, 274

Exchange Server. See Microsoft Exchange Server

Exchange Server Administrators, 274

Exchange View-Only Administrators, 274

Exchange Web Services (EWS), 335–339

Execute() method, Word, 102–103

execution policy, 37–39

existing catalogs, XenDesktop, 488, 493–494

Explorer object, Outlook folders, 114

export overrides into overrides report, 432–434

Export-CliXml cmdlet, 155–157, 465–466

Export-Csv cmdlet, 123, 407

Export-FormatView, IsePack, 620

Export-SmigServerSetting cmdlet, server migration,

183–184

Export-SPWeb cmdlet, 386

Export-VMHostProfile cmdlet, PowerCLI, 566

expressions

case sensitivity vs. insensitivity, 17–18

overview of, 16

wildcards and regular, 16–17

extension model, ISE, 610, 614

ExternalEmailAddress parameter, Outlook, 291–294

F
failover clusters, 528–531

fan-in remoting, 46

fan-out remoting, 46

farm privileges, XenApp 6, 459

-Farm switch, Get-XASession, 467–468

FarmPrivileges parameter, New-

XAAdministrator, 458

farms, SharePoint backup and restore, 385

FeatureId parameter, server migration, 183

features

discovering for server migration, 182–183

exporting in server migration, 183–184

importing in server migration, 184–186

Windows Server 2008, 167–169

File Groups, database, 364

File menu, ISE, 599–600

files and folders

database, 364

file extensions, 87–88

Get-Acl managing permissions for, 123

IIS:\, 393

migrating, 181–182

NTFS permissions for, 124–127

Outlook, 114–115

public, 303–307

share permissions for. See share permissions

SharePoint document libraries, 379–380

Windows Search. See Windows Search, managing

Xen App 6 folder privileges, 459–462

files and folders, Windows 7

counting specific type of files, 88

finding empty folders, 89

listing unique file extensions, 87–88

opening file with default handler, 91–92

searching with Windows Search, 89–91

setting security, 84–86

FileType parameter, Get-AppLockerFile

Information, 186

$Filter hash, 79

Filter parameter

Get-Mailbox cmdlet, 279

IIS Get-WebConfiguration, 400–403

querying AD, 235–236

upgrading Exchange 2010, 327

using filters, 328–330

FilterHashTable parameter, event logs, 196–198

filtering

Active Directory, 235–236

Excel, 112

GPO names, 259

IIS log files, 407

XenApp load-balancing policies, 474–475

Find() method

contacts in Outlook, 118

filters accepted by, 118–119

spreadsheets, 113

bindex.indd 631bindex.indd 631 02/09/11 6:21 PM02/09/11 6:21 PM

632

G

Find property, Word, 102

Find-Files function, Windows Search, 89–90

FindNext() method, contacts in Outlook, 118

fine-grained password policies, AD, 251

floppy disks, Microsoft IBM PCs, 3–4

folders. See files and folders; files and folders,

Windows 7

fonts

controlling cell, 110–111

in Word document, 104

footer, in Word, 102

for loop, iteration, 27–28

Force parameter

New-VMSnapshot, 519

Remove-VMSnapshot, 520

-Force switch, SQL Server services, 343

ForceUpgrade parameter, upgrading Exchange,

325–327

foreach loop, AD group membership, 238–239

foreach statement, iteration, 28–29

ForEach-Object cmdlet, iteration, 28–30

format operator, 15

Format-List cmdlet

for details on troubleshooting pack, 72–73

formatting output, 20–21

formatting with hashtables, 22–23

piping Get-Acl through to, 123–125

retrieving current registry permissions, 136–137

validating network configuration remotely, 214

FormatString hashtable key, 22

Format-Table

formatting output, 20–21

formatting with hashtables, 22–23

getting table space usage, 365–366

formatting output

cells, 110–111

default, 19–20

with hashtables, 21–22

overview of, 18–19

text, 103–105

using Format-Table and Format-List, 20–21

Format-Wide cmdlet, 21

forms, in Windows Forms, 585–586

forums, PowerShell user, 13

FTP sites, creating, 396

Full administrator

XenApp 6, 456–458

XenDesktop, 486–488

-Full parameter, Get-XASession, 468

functions

customizing ISE, 610

V2 new advanced, 52–56

Windows Search, 89–90

G
GC (garbage collector) class, 97

Get-* cmdlets, Exchange Server, 278–279

Get-Acl cmdlet

file and folder security, 84–85

managing permissions, 123

modifying NTFS permissions, 126–127

registry settings, 135–136

retrieving current NTFS permissions, 124–125

retrieving current registry permissions, 136–137

GetActiveObject method, binding to applications, 97

Get-AD cmdlets

controlling scope of search, 236–237

Get-ADObject cmdlet, 237–238

group membership, 238–240

querying AD, 234–235

searching with filters, 235–236

working with properties, 237

Get-ADComputer cmdlet, AD, 243

Get-ADDefaultDomainPasswordPolicy cmdlet, AD, 250

Get-ADFineGrainedPasswordPolicy cmdlet, AD,

250–251

Get-ADGroup cmdlet, AD, 238

Get-ADGroupMember cmdlet, AD, 239–240

Get-ADObject cmdlet, AD, 237–238

Get-ADPrincipalGroupMembership cmdlet, AD, 238

Get-AdServerSettings cmdlet, Exchange, 331–332

Get-ADUser cmdlet, AD, 248

Get-ADUserResultantPasswordPolicy cmdlet, AD,

250–251

Get-Agent cmdlet, OpsMgr, 419

Get-AppLockerFileInformation cmdlet,

AppLocker, 186

Get-BpaModel cmdlet, Windows Server, 169–171

Get-BpaResult cmdlet, Windows Server, 169

Get-BrokerCatalog cmdlet, XenDesktop, 496–497

Get-Certificate cmdlet, WASM, 549

Get-Certificates cmdlet, WASM, 549

Get-ChildItem cmdlet

counting types of files, 88

database space usage, 364

finding empty folders, 89

listing troubleshooting packs, 71–72

bindex.indd 632bindex.indd 632 02/09/11 6:21 PM02/09/11 6:21 PM

633

 G

listing unique file extensions, 87–88

modifying file/folder security, 86

modifying NTFS permissions, 126–127

retrieving NTFS permissions, 125

retrieving registry permissions, 136–137

Get-Command cmdlet, 11–12

Get-CommandLine function, 160–161

Get-ComputerRestorePoint cmdlet, 157–158

Get-Counter cmdlet, servers, 217–218

Get-Credential cmdlet

adding hosts to VMM, 526–527

scheduled tasks, 191

text mode UI, 582

Windows Backup, 179

GetDefaultFolder() method, Outlook, 115

Get-DependentLibraryObject cmdlet, VMM, 538

Get-Deployment cmdlet, 545

GetDerivedMonitoringClass() method, OpsMgr, 424

Get-DisksSpace function, SQL Server, 363

Get-DistributionGroupMember cmdlet, Exchange,

297–298

Get-DynamicDistributionGroup cmdlet, Exchange, 300

Get-EventLog cmdlet, 195–198

Get-ExchangeAdministrator cmdlet, 274–275

Get-ExCommand function, Exchange, 276–278

GetFile() method, SPWeb object, 380

Get-FirewallSetting function, 141–143

GetFolder() method, scheduled tasks, 192–193

GetFolder() method, SharePoint document library

folders, 380

Get-GPInheritance cmdlet, 261

Get-GPO cmdlet, 259, 261

Get-GPOReport cmdlet, 259

Get-GPPermissions cmdlet, 265–266

Get-GPRegistryValue cmdlet, 260–261

Get-GPResultantSetOfPolicy cmdlet, 262

Get-Help cmdlet

Exchange Server, 278

OpsMgr cmdlets, 409

overview of, 11

PipeBind parameters in SharePoint, 372

Get-HostedProperties cmdlet, 545

Get-HostedService cmdlet, 544–545

Get-HostedServices cmdlet, 544–545

Get-HotFix cmdlet, 84, 194

Get-HypVMMacAddress cmdlet, XenDesktop, 495

Get-Item cmdlet, SQL Server, 357

Get-ItemProperty cmdlet

DCOM permissions, 222

making changes with provider, 399

MDT Deployment Share, 454

using local registry provider, 210

Get-Job cmdlet, 51

Get-LibraryShare cmdlet, VMM, 538

Get-LogType cmdlet, PowerCLI, 566–567

Get-Mailbox cmdlet, Exchange,

279, 297, 328–330

Get-MailboxDatabase cmdlet, Exchange, 285, 313,

316–319, 321–322

Get-MailboxStatistics cmdlet, Exchange, 285, 289,

314–316

Get-MailContact cmdlet, Exchange, 327–328

Get-ManagementServer cmdlet, agent failover in

OpsMgr, 419

Get-Member cmdlet, 12, 610

Get-MonitoringClass cmdlet, OpsMgr, 423–424

Get-MonitoringObject cmdlet, OpsMgr, 423–424

GetMonitoringRelationshipClasses() method,

OpsMgr, 425–426

Get-MoveRequest cmdlet, Exchange, 288–289

GetNameSpace() method, Outlook folders, 114

GetNetworkCredential() method, scheduled tasks,

191–192

Get-Notification cmdlet, OpsMgr, 435

Get-NotificationSubscription cmdlet,

OpsMgr, 435

Get-OperatingSystem cmdlet, VMM, 533

Get-OperationsManagerCommand cmdlet, 409

Get-OperationStatus cmdlet, WASM hosted

services, 546

Get-OrganizationConfig cmdlet, 307

Get-Override cmdlet, OpsMgr, 431–434

Get-Process cmdlet, 101–102, 207–208

Get-PsBreakpoint cmdlet, 32

Get-PSBreakpoint cmdlet, 65

Get-PsCallStack cmdlet, 32

Get-PsProvider cmdlet, 64

Get-PsSnapin cmdlet, 35

Get-QAD cmdlets, 253–255

Get-RDPConnection function, Remote Desktop,

148–149

Get-Recipient cmdlet

client-side filtering, 329

dynamic distribution groups, 300

Exchange Web Services, 337

server-side filtering, 329

Get-RoleGroup cmdlet

Exchange permissions, 275

RBAC, 333

Get-RoleGroupMember cmdlet, RBAC, 334

bindex.indd 633bindex.indd 633 02/09/11 6:21 PM02/09/11 6:21 PM

634

G

GetRunningTasks() method, scheduled tasks,

191, 193

Get-Service cmdlet, 203–205, 343–344

Get-SharePermission script, 130–131

Get-SimplePvsADAccount cmdlet, XenDesktop, 495

Get-SimplePvsCollection cmdlet, XenDesktop, 495

Get-SmigServerFeature cmdlet, server migration,

182–183, 185

Get-Snapshot cmdlet, PowerCLI, 572

Get-SPBackupHistory cmdlet, SharePoint, 384

GetSpellingSuggestions() method, application

objects, 105

Get-SPEnterpriseSearchCrawlContentSource cmdlet,

SharePoint, 387

Get-SPEnterpriseSearchServiceApplication cmdlet,

SharePoint, 387

Get-SPRunningWorkflows() function, 382–383

Get-SPSite cmdlet, SharePoint, 374–375

Get-SPSolution cmdlet, SharePoint, 382

Get-SPWeb cmdlet, SharePoint, 375

Get-Stat cmdlet, PowerCLI, 567

Get-TroubleshootingPack cmdlet, 72–73

Get-User cmdlet, server-side filtering, 330

Get-VHDDefault function, Hyper-V, 516

Get-VirtualHardDisk cmdlet, VMM, 538

Get-VM cmdlet, PowerCLI, 559, 569–570

Get-VMBuildScript function, Hyper-V, 521

Get-VMCheckPoint cmdlet, VMM, 536

Get-VMHost cmdlet

PowerCLI, 559–562

VMM, 528, 533

Get-VMHostProfile cmdlet, PowerCLI, 565–566

Get-VMMServer cmdlet, VMM, 524, 525–526

Get-VMResourceConfiguration cmdlet, PowerCLI, 571

Get-VMSnapshot function, Hyper-V, 519–520

Get-WBBackupSet cmdlet, Windows Backup, 177

Get-WBBackupTarget cmdlet, Windows Backup, 179

Get-WBDisk cmdlet, Windows Backup, 175–176

Get-WBJob cmdlet, Windows Backup, 176–177

Get-WBPolicy cmdlet, 177–178, 180

Get-WBProfile cmdlet, Windows Backup, 178–179

Get-WBSchedule cmdlet, Windows Backup, 178

Get-WBVolume cmdlet, Windows Backup, 175–176

Get-WebAppPoolState cmdlet, IIS, 405

Get-WebConfiguration cmdlet, IIS, 400–403

Get-WebConfigurationProperty cmdlet, IIS, 402–403

Get-WebItemState cmdlet, IIS, 405

Get-WindowsFeature cmdlet, Windows Server

2008 R2, 167–168

Get-WinEvent cmdlet, event logs, 195–198

Get-WmiObject cmdlet

command-line services, 203

database white space, 311–313

date and time, 198–201

DCOM permissions, 222

network configuration, 215–216

server configuration, 189–191

share permissions, 127–128, 132–133

software using WMI, 152–153

SQL Server services, 344

stopped services set to start automatically,

205–206

stopping processes on remote servers, 208

Get-XAAapplication cmdlet, XenApp, 462–463

Get-XAAdministrator cmdlet, XenApp, 456–457

Get-XAApplication cmdlet, XenApp, 465–466

Get-XALoadEvaluator cmdlet, XenApp, 471–472

Get-XAServerLoad cmdlet, XenApp, 471

Get-XASession cmdlet, XenApp, 467–468

Get-XASessionProcess cmdlet, XenApp, 469

GPMC (Group Policy Management Console), 257

GPOs (Group Policy Objects)

backing up and restoring, 264–265

basic information, 259

creating and configuring, 262–264

detailed reports, 259

links, 261

Resultant Set of Policy, 262

values for changes made by, 260–261

graphical user interface. See GUI (graphical user

interface)

graphs, Excel, 112–113

Group parameter, server migration, 183

Group Policy

AppLocker, 187

GPOs. See GPOs (Group Policy Objects)

implicit remoting for, 258

overview of, 257

remoting on several machines, 174

script execution policy, 39

security, 265–266

snap-in for Citrix, 455

Windows 7, 258

Windows Server 2003, 5

Windows Server 2008 R2, 257

Group Policy Management Console. See GPMC (Group

Policy Management Console)

Group Policy Objects. See GPOs (Group Policy Objects)

bindex.indd 634bindex.indd 634 02/09/11 6:21 PM02/09/11 6:21 PM

635

 H

Group-Object cmdlet

counting specific types of files, 88

listing unique file extensions, 87–88

GroupPolicy module

enabling on Server 2008 R2, 257

Group Policy. See Group Policy

remote connections, 258

Server and Domain parameters, 259

Windows 7, 258

groups

adding and removing in OpsMgr, 415–417

automating maintenance mode, 415–417

Exchange distribution, 295–298

Exchange dynamic distribution, 298–301

upgrading Exchange 2007, 326

groups, Active Directory

ActiveRoles Management Shell, 255

automating tasks, 244–246

creating, 240–241

creating and deleting local users, 220–221

membership, 243–244

modifying local users, 219–220

modifying properties, 242

querying, 234–238

querying membership, 238–240

viewing password policies, 250–251

GUI (graphical user interface)

administration tools, 7–8

creating scripts in MDT, 442

death knoll of management by, 5

management with Windows NT, 4

management with Windows Server 2003, 4–5

user interface vs., 581

in Windows PowerShell. See Windows Forms

GUID parameter, Get-GPO cmdlet, 259

H
hardware, virtual, 569–570

Hardware Profile, creating virtual machines, 531–533

hashtables

formatting output with, 21–22

in manifest modules, 59

splatting using, 56

header, Word documents, 102

health service, maintenance mode, 418

health service watcher, during maintenance mode, 418

Help

Get-Help. See Get-Help cmdlet

topics, 7

XenDesktop administrator for, 486–488

Help menu, ISE, 599

highlighting text, 104

histories, mailbox move, 289–291

HKEY_CURRENT_USER registry hive

Get-Acl and Set-Acl cmdlets, 135–136

reading registry, 209–210

regional settings on multiple computers, 218–219

HKEY_LOCAL_MACHINE registry hive

enabling Remote Desktop, 147–148

Get-Acl and Set-Acl cmdlets, 135–136

reading registry, 209–210

viewing DCOM permissions, 222

HNetCfg.FwMgr, firewalls, 140–146

HNetCfg.FwOpenPort, firewalls, 144–146

Hopper, Grace, 31

host groups, VMM, 526–527, 528

host profiles, ESX, 565–566

$host variable, 563

hosted services, WASM

adding certificates, 548–549

deploying new code, 546–547

Get-OperationStatus, 546

getting information, 544–545

overview of, 544

scaling infrastructure for deployment, 548

starting and stopping deployments, 545–546

HostingUnits directory, XenDesktop, 506

$host.Runspace.ThreadOptions =

“ReuseThread”, 372

hosts

ESX and ESXi. See ESX and ESXi hosts

server maintenance with, 530–531

in VMM, 526–528

in Windows PowerShell, 563

hosts, Hyper-V

adding to VMM, 526–527

adding to XenDesktop, 507–508

managing, 516–517

performing maintenance on, 530–531

hosts, XenDesktop

adding, 506–508

defined, 505

PS provider, 505–506

removing, 508–509

hotfix status

checking in Windows 7, 84

checking server for, 194–195

bindex.indd 635bindex.indd 635 02/09/11 6:21 PM02/09/11 6:21 PM

636

I

HTTP/S, remoting architecture, 47

hyperlinks, in Word documents, 100–101

Hyper-V 2008 R2

creating and modifying virtual machines, 517–518

disaster recovery, 521

host management, 516–517

hosts. See hosts, Hyper-V

management interfaces, 513–515

power state management, 518–519

script module, 58

snapshots, 519–520

Windows PowerShell Management Library for,

515–516

I
IBM PC, 3–4

ICMP (Internet Control Message Protocol) settings,

firewalls, 140

IDE (Interactive Development Environment), error

handling, 30–31

Identity parameter

Add-DistributionGroupMember, 297

Clean-MailboxDatabase, 285–286

Connect-Mailbox, 284

Disable-DistributionGroupMember, 298

Disable-MailPublicFolder, 305

Dismount-Database, 310–311

Enable-Mailbox, 280

Enable-MailContact, 291

Enable-MailUser, 292–293

Get-DistributionGroupMember, 297–298

Get-SPSite, 375

Move-Mailbox, 286–287

New-MoveRequest, 287–288

Remove-DistributionGroupMember, 297, 298

Remove-MailPublicFolder, 305

Remove-StorageGroup, 308

Set-DynamicDistributionGroup, 300

Set-Group cmdlet, 296

Set-MailboxDatabase, 318–319

Set-MailContact, 292

Set-MailPublicFolder, 304

Update-EmailAddressPolicy, 323–324

Update-PublicFolder, 307

Identity Pool, for pooled catalogs,

489–490

Idera’s PowerShell Plus, 621

if statements, alternation in scripts, 24–25

IIS (Internet Information Services) 7

advanced WebConfiguration settings, 400–403

backing up and restoring configurations, 405–406

browsing IIS:\, 393

configuring SSL, 398–399

controlling services, 404–405

creating application pools, 398

creating sites, 395–396

creating virtual directories, 396–397

creating web applications, 397–398

digesting log files, 406–407

IIS:\, 393–394

installing necessary components, 390–392

overview of, 389

removing objects with cmdlets, 400

scripting new deployments and changes, 394

using New-Item cmdlet, 394–395

using Provider to make changes, 399–400

IISReset in Windows 7, 404

IMA (Integrated Multi-system Architecture), 479

images

adding to Word documents, 101

importing from WDS, 445

provisioning, 497–499

implicit modules, 59–61

implicit remoting, 50, 231

Import-CliXml cmdlet, 156, 465–466

Import-GPO cmdlet, 264–265

importing

applications in MDT, 446–449

device drivers in MDT, 445–446

features in server migration, 184–186

operating systems in MDT, 444–445

ServerManager module, 167

troubleshooting scripts, 71

XenApp published applications, 465–466

Import-MDTApplication cmdlet, 446–449

Import-MDTOperatingSystem cmdlet, 445

Import-Module cmdlet

importing ServerManager module, 167

importing troubleshooting scripts, 71

Import-Module HyperV command, 516

Import-PsSession cmdlet

creating implicit modules, 59–61

implicit remoting, 50

Import-SmigServerSetting cmdlet, server migration,

184–186

Import-SPWeb cmdlet, SharePoint, 386

Import-VMHostProfile cmdlet, PowerCLI, 566

bindex.indd 636bindex.indd 636 02/09/11 6:21 PM02/09/11 6:21 PM

637

 I

Include parameter, server migration, 184

IncludeAllSubFeature parameter, Add-

WindowsFeature, 168

IncludedRecipients parameter, Exchange, 299,

322–324

IncludeMoveHistory parameter, Exchange, 289

IncludeMoveReport parameter, Exchange, 289

IncludePreExchange2007 parameter, Exchange, 319

index

adding folders to, 79–81

discovering current folders, 77–79

re-indexing search catalog, 82–84

removing folders from, 82–83

information, in SQL Server, 351–353, 363–366

inheritance

file and folder security, 86

SharePoint list permissions, 378

inheritance flags, 124, 137

input

querying SQL Server using, 349

validating text mode UI, 583–584

INSERT statement, loading SQL Server data, 350–351

Install method, wmiclass, 158

Install-ADComputerServiceAccount cmdlet, service

accounts, 246

installation

ActiveDirectory module, 230–232

IIS 7 components, 390–392

managed service accounts, 246

Management Tools for Exchange 2007, 272

PowerCLI, 557–558

Server Core, 45

software, 157–159

SQL Server 2008 R2, 342

SSMS, 342

WASM cmdlet, 542

Windows PowerShell, 36–39

Install-SPSolution cmdlet, SharePoint, 381

instance uptime information, SQL Server, 352

integrated authentication, CMS and Registered Servers, 366

Integrated Scripting Environment. See ISE (Integrated

Scripting Environment)

IntelliSense, 31

Interactive Development Environment (IDE), error

handling, 30–31

Internet Control Message Protocol (ICMP) settings,

firewalls, 140

Internet Information Services. See IIS (Internet

Information Services) 7

Interop DDL, for Windows Search, 77

interoperability, versions of Exchange, 324–328

inventory data, exploring in OpsMgr, 423–426

Invoke-BpaModel cmdlet, 170

Invoke-BpaModel cmdlet, Windows Server, 169

Invoke-Command cmdlet

installing software remotely, 154–155, 158–159

remoting using, 48–49

stopping processes on remote servers, 208

Invoke-Item cmdlet, 91–92

InvokeMethod()method, remote servers, 208

Invoke-PolicyEvaluation cmdlet, SQL Server, 344

Invoke-SQL function, XenDesktop, 482–484

Invoke-SQLcmd cmdlet

instance uptime information, 352

loading non-SQL Server data, 351

loading SQL Server data, 350–351

querying SQL Server, 347–349

SQL Server snap-in, 344

Invoke-TroubleshootingPack cmdlet, 73–74

Invoke-VMScript cmdlet, VMM, 573

Invoke-WmiMethod cmdlet, WMI, 158–159, 215–216

invoking scripts, PowerCLI, 573

IP address, modifying server, 216–217

IPConfig parameter, server migration, 184

ISE (Integrated Scripting Environment)

alternative to Windows PowerShell console, 607

debugging with, 608–609

editing Windows PowerShell scripts/

modules, 607

error handling, 31

extending, 610

modifying look and feel, 614

overview of, 597–598

Paging parameter generating error in, 125

profile files, 608

$PsISE, 617–619

sample Windows PowerShell add-on, 620

third-party alternatives to, 620–621

using, 63

ISE (Integrated Scripting Environment), object model

ISEEditor object, 611

ISEFile object, 612–613

ISEFileCollection object, 613

ISEMenuItem object, 613

ISEMenuItemCollection object, 614

ISEOptions object, 614–616

ObjectModelRoot object, 614

overview of, 610–611

PowerShellTab object, 616

PowerShellTabCollection object, 617

bindex.indd 637bindex.indd 637 02/09/11 6:21 PM02/09/11 6:21 PM

638

L

ISE (Integrated Scripting Environment),

screen layout

Add-ons menu, 603

Command pane, 605

Debug menu, 602–603

Edit menu, 600–601

File menu, 599–600

ISEEditor object, 612

menu bar, 599

modifying, 606–607

Output pane, 605

overview of, 598–599

PowerShell tabs, 605–606

Script pane, 605

toolbar, 603–605

View menu, 601–602

ISEEditor object, ISE, 611, 612

ISEFile object, ISE, 611, 612–613

ISEFileCollection object, ISE, 611, 613

ISEMenuItem object, ISE, 611, 613

ISEMenuItemCollection object, ISE, 611, 614

ISEOptions object, ISE, 611, 614–616

IsePack, 620

IssueWarningQuota, 316–319

Item() method

Excel worksheet, 107–108

SharePoint list data, 376

items, Outlook

AppointmentItem, 117–118

ContactItem, 118–119

TaskItem, 119

working with cells, 116

working with MailItem, 116–117

Items property, SharePoint list data, 376

iteration, 24, 27–30

Itripoli’s ASE (AdminScript Editor), 621

J
job steps, SQL Server, 356–357, 362–363

jobs

configuring new backup, 174–175

new in V2, 50–52

potential glitches of, 52

working with, 50–52

join operator, 15

K
key-value pairs, FilterHashTable parameter, 196

L
label control, 586–587

language constructs

expressions, 16–18

operators, 14–15

as script component, 24

variables, 13–14

Launch PowerShell button, XenDesktop, 480

$LBPolicy variable, 473

LDAP, 236

LDAP, Active Directory, 238

libraries

SharePoint document, 379–381

VMM, 537–539

licensing, XenDesktop, 485–486

-like operator, expressions, 16

line breakpoints, ISE, 609

links, Group Policy, 261–262

List parameter, server configuration, 189–190

lists, SharePoint

adding items, 376

backup and restore, 386

browsing, 375

creating, 378

managing document libraries, 379–381

managing permissions, 378–379

modifying settings, 378

overview of, 375

updating data, 376

viewing data, 376

working with views, 377

List-Scope function, Windows 7, 81

load-balancing

OpsMgr agents, 422–423

XenApp policies, 470, 473–475

loading

SQL Server data, 350–351

in XenApp, 471

Load-Search function, 79–84

local accounts, 219–221

LocalDateTime property, Win32_OperatingSystem, 198

Location parameter

Get-VM and Get-VMHost, 559

Get-WebConfiguration in IIS, 400–403

Lock-ProvVM cmdlet, 492

log files

creating from OpsMgr command channel, 427–429

database, 364

reading IIS, 406–407

bindex.indd 638bindex.indd 638 02/09/11 6:21 PM02/09/11 6:21 PM

639

 M

reviewing from ESX host, 566–567

as script component, 24

Windows Azure diagnostics, 549–554

LogFolderPath parameter, Mount-Database, 311

logic errors, 30–32

logical operators, 15

logon

Exchange Server, 271

XenApp server, 470

LogOnConsole privilege, XenApp 6, 459

LUN ID, VM storage, 535

M
Machine administrator, XenDesktop, 486–488

Machine Creation Services

pooled catalogs, 489

provisioning technology, 497

machine types. See catalogs, XenDesktop

MachineLaunchRestriction, DCOM permissions, 222

mail contacts, Exchange Server, 278–279, 291–292,

326–328

mail users, verbs for, 278–279

mailboxes. See Microsoft Exchange Server 2007

MailItems, Outlook, 116–117

maintenance mode

automating using OpsMgr, 415–418

putting ESX hosts in, 560

makecert utility, WASM certificates, 542

managed service accounts, 246–247

management, early days of Windows, 3–5

management interfaces, Hyper-V, 513–515

Management Tools for Exchange 2010, installing,

272–273

manifest modules, 59

MAPIFolderItem, Outlook, 114–115

master images, provisioning machines, 497–498

-match operator, expressions, 16

MaxSamples parameter, Get-Counter cmdlet, 218

MDT (Microsoft Deployment Toolkit) 2010

configuring deployment share, 451–452

creating database, 444

creating scripts using GUI, 442

creating Task Sequences, 449–451

importing applications, 446–449

importing device drivers, 445–446

importing operating systems, 444–445

initializing Deployment Share, 443–444

installing and using cmdlets, 441–442

managing media, 452–454

updating deployment share, 452

Windows PowerShell provider, 442

MDTProvider (Windows PowerShell provider), 442–444

media, deployment, 452–454

Member parameter, Exchange

Add-DistributionGroupMember, 297

Remove-DistributionGroupMember, 297

Member property, AD groups, 239

$Member variable, 220

MemberOf property, Get-AD, 238

membership, querying Active Directory group, 238–240

memory

limits in WS-MAN, 373–374

SharePoint cmdlets managing, 372–373

menu bar, ISE, 599

MetaFrame COM (MFCOM), 456

methods

class, 9–10

ISEEditor object, 612

ISEFile object, 612–613

ISEFileCollection object, 613

ISEMenuItemCollection object, 614

ISEOptions object, 614–615

PowerShellTabCollection object in ISE, 617

MFCOM (MetaFrame COM), 456

Microsoft

Deployment Toolkit. See MDT (Microsoft

Deployment Toolkit) 2010

Excel spreadsheets. See Excel spreadsheets

Exchange Web Services, 335–339

noun prefixes for cmdlets in AD, 8

Office. See Office 2010

Outlook. See Outlook

SharePoint Server. See Microsoft SharePoint 2010

Server

Windows management in past, 3–5

Windows Server 2008. See Windows Server 2008 R2

Word. See Word, automating

Microsoft Exchange Server

client-side filtering, 328–329

contacts, 291–292

databases, 309–313

discovering space from disabled mailboxes, 313–316

distribution groups, 295–298

dynamic distribution groups, 298–301

email address policies, 322–324

Exchange Web Services, 335–339

installing cmdlets on workstation, 271–273

bindex.indd 639bindex.indd 639 02/09/11 6:21 PM02/09/11 6:21 PM

640

N

interoperation with earlier versions, 324–328

mailbox administration, 280–286

mailbox resources, 301–303

moving mailboxes, 286–291

objects, 276–279

permissions, 274–276

public folders, 303–307

quotas, 316–319

recipient scope, 330–332

recipients, 279–280

remote management of, 320–322

role base access control, 332–334

server-side filtering, 329–330

storage groups, 308–309

users, 292–295

what’s new in 2010, 273–274

Microsoft Exchange Server 2007

changing email address for mailbox, 282–283

databases, 310–311

finding database white space, 312

installing cmdlets, 272

moving mailboxes, 286–287

permissions, 274

scope, 330–331

storage groups, 308–309

upgrading, 325–326

Microsoft Exchange Server 2010

changing email address for mailbox, 283

databases, 310–311

finding database white space, 312–313

GUI administration tools, 7–8

moving mailboxes, 287–291

scope, 331–332

upgrading, 326–328

Microsoft SharePoint 2010 Server

automating site administration, 374–375

back up and restore, 384–386

cmdlets, 371–373

developer code, 381–382

overview of, 371

remoting with, 373–374

search and timer crawls, 386–388

using SharePoint lists. See lists, SharePoint

web applications, 381

workflows, 382–383

Microsoft.Win32.RegistryHive

accessing registry remotely, 209

modifying registry permissions remotely, 138

reading registry remotely, 210–211

retrieving registry permissions remotely, 136–137

setting registry values remotely, 212–213

Microsoft.Win32.RegistryKey

accessing registry remotely, 209

modifying registry permissions remotely, 138

reading registry remotely, 210–211

retrieving installed software remotely, 155

retrieving registry permissions remotely, 136–137

setting registry values remotely, 212–213

migration. See server migration, Windows Server

2008 R2

Migration feature, 180

modules

adding new cmdlets with, 11

editing with ISE, 607

extending Windows PowerShell, 36

IIS 7 cmdlets for, 403

implicit, 59–61

manifest, 59

OpsMgr workflow, 436–437

overview of, 57

script, 57–58

Windows Server 2008 R2, 165–166

Monad, 5

Monad Manifesto, 5

Most Valuable Professional (MVP) award, 13

Mount-Database cmdlet, Exchange, 310–311

Move() method, Outlook items, 116

Move-ADObject cmdlet, Active Directory, 248

Move-Mailbox cmdlet, Exchange, 286–287

MoveStatus parameter, Get-MoveRequest, 288

ms_ticks column, instance uptime information, 352

MSExchangeMailboxReplication.exe.config file, 290

.msi (Windows Installer), 152–163

MS-PSRP (Windows PowerShell Remoting

protocol), 47–48

MS-WSMV (Web Service Management For Vista), 47–48

MVP (Most Valuable Professional) award, 13

N
Name parameter

Get-GPO, 259

Get-Service, 343

New-BrokerTimeScheme, 501–502, 504

New-DistributionGroup, 296–297

New-EmailAddressPolicy, 322–324

New-Mailbox, 281

New-MailboxDatabase, 310

bindex.indd 640bindex.indd 640 02/09/11 6:21 PM02/09/11 6:21 PM

641

 N

Name property, Excel worksheet, 108

Namespace object, Outlook, 114–115

Namespace parameter, server configuration, 190

naming conventions

cmdlets, 529–530

specifying mailbox, 281

stopping processes, 209

.NET

accessing registry remotely, 209

retrieving installed software remotely, 155

validating input in text mode UI, 584

Windows Forms. See Windows Forms

NetworkPath parameter, New-PSDrive, 443–444

networks

adding to virtual machine, 534

device deployment in OpsMgr, 418–423

host, PowerCLI, 563–564

validating on remote servers, 213–217

New-* cmdlets, Exchange Server, 278–279

New-ADComputer cmdlet, AD, 243

New-ADFineGrainedPasswordPolicy cmdlet, AD, 251

New-ADGroup cmdlet, AD, 241–242

New-ADOrganizationalUnit cmdlet, AD, 248–249

New-ADServiceAccount cmdlet, AD, 246

New-ADUser cmdlet, AD, 240–241

New-AppLockerPolicy cmdlet, AppLocker,

186–187

New-BrokerAdministrator cmdlet, XenDesktop, 486

New-BrokerApp cmdlet, XenDesktop, 504–505

New-BrokerApplication cmdlet, XenDesktop,

504–505

New-BrokerCatalog cmdlet, XenDesktop, 495

New-BrokerDesktopGroup cmdlet, XenDesktop,

 499–500, 502–505

New-BrokerEntitlementPolicyRule cmdlet,

XenDesktop, 499–500

New-BrokerHypervisorConnection cmdlet,

XenDesktop, 506–507

New-BrokerMachine cmdlet, Xen Desktop, 493–496

New-BrokerTimeScheme cmdlet, XenDesktop,

501–502, 504

New-BrokerUser cmdlet, Xen Desktop, 499–500

New-DataStore cmdlet, PowerCLI, 563

New-Deployment cmdlet, WASM, 546–547

New-DistributionGroup cmdlet, Exchange, 296–297

New-DynamicDistributionGroup cmdlet, Exchange,

298–300

New-EmailAddressPolicy cmdlet, Exchange, 322–324

New-GPLink cmdlet, Group Policy, 263–264

New-GPO cmdlet, Group Policy, 263

New-HypAdministrator cmdlet, XenDesktop, 486

New-HypVMSnapshot cmdlet, Xen Desktop, 490,

498–499

New-Item cmdlet

IIS website, 395

items within IIS:\, 394–395

New-Website cmdlet vs., 395–396

virtual directories, 396

XenServer hosts, 506

New-LdapQueryDiscoveryCriteria cmdlet, OpsMgr,

421–422

New-Mailbox cmdlet, Exchange, 281, 302

New-MailboxDatabase cmdlet, Exchange, 310–311

New-MailUser cmdlet, Exchange, 293

New-ManagementRoleAssignment cmdlet, RBAC, 333

New-MDTDatabase cmdlet, MDT, 444

New-ModuleManifest cmdlet, manifest modules, 59

New-MoveRequest cmdlet, Exchange, 287–291

New-Object cmdlet, share permissions, 132–133

New-Object cmdlet, Windows Forms, 587

New-ProvScheme cmdlet, Xen Desktop, 490

New-ProvVM cmdlet, Xen Desktop, 491–492

New-PSDrive cmdlet

Active Directory provider, 232

initializing deployment share in MDT, 443–444

registry settings, 136

New-PublicFolder cmdlet, Exchange, 303–304

New-RoleGroup cmdlet, RBAC, 333

New-Snapshot cmdlet, PowerCLI, 572

New-SPSite cmdlet, SharePoint, 374

New-SPWebApplication cmdlet, SharePoint, 381

New-StorageGroup cmdlet, Exchange, 308–309

NewTask() method, servers, 192

New-VirtualDiskDrive cmdlet, VMM, 535

New-VirtualDVDDrive cmdlet, VMM, 535

New-VirtualNetworkManager cmdlet, VMM, 534

New-VirtualPortGroup cmdlet, PowerCLI, 564

New-VirtualSwitch cmdlet, PowerCLI, 563

New-VM cmdlet

creating VMs in Hyper-V, 517

creating VMs in PowerCLI, 568–569

VMM, 533–534

New-VMCheckPoint cmdlet, VMM, 536

New-VMHostProfile cmdlet, PowerCLI, 565–566

New-VMSnapshot cmdlet, Hyper-V, 519

New-WBBackupTarget cmdlet, Windows Backup,

175–176, 179

New-WBFileSpec cmdlet, Windows Backup, 175–176

bindex.indd 641bindex.indd 641 02/09/11 6:21 PM02/09/11 6:21 PM

642

O

New-WBPolicy cmdlet, Windows Backup, 174–176

New-WebApplication cmdlet, IIS, 397–398

New-WebAppPool cmdlet, IIS, 398

New-WebBinding cmdlet, IIS, 398–399

New-WebFtpSite cmdlet, IIS, 396

New-Website cmdlet, IIS, 395–396

New-WebVirtualDirectory cmdlet, IIS, 396–397

New-XAAapplication cmdlet, XenApp, 463–465

New-XAAdministrator cmdlet, XenApp, 457–458

New-XALoadBalancingPolicy cmdlet, XenAPP, 473

New-XALoadEvaluator cmdlet, XenAPP, 472

New-XAWorkerGroup cmdlet, XenAPP, 475

nonterminating errors, 33–34

NoSiteLock parameter, Backup-SPSite, 385–386

NoSource parameter, Import-MDTApplication,

448–449

notifications

command notification channel. See command

notification channel, OpsMgr

in OspMgr, 435–436

-notlike operator, expressions, 16

-notmatch operator, expressions, 16

nouns, in cmdlets, 8

NTFS permissions, 124–127

NTP server configuration, 564–565

O
ObjectModelRoot object, ISE, 611, 614

objects

automating maintenance mode

for, 415–417

enumerating relationships and monitored, 425–426

in Exchange Server, 276–278

finding what is inside with Get-Member, 12

moving Active Directory, 247–248

in OpsMgr, 415–417

overview of, 9–10

pipeline using, 10

removing AD, 249

scripting in SQL Server, 357–362

using variables to hold, 14

Office 2010

Application objects, 96–97

cleaning up scripts, 97

COM objects, 96

Excel spreadsheets. See Excel spreadsheets

OneNote page, 120–121

Outlook. See Outlook

overview of, 95

PowerPoint presentation, 119–120

Word. See Word, automating

OneNote page, 120–121

one-off command, remote machines, 49

Open() method

Excel workbook, 107

Word documents, 98

OpenBinary() method, downloading documents, 380

operands, in expressions, 16

operating systems

importing applications in MDT to, 446–449

importing device drivers in MDT, 445–446

importing in MDT, 444–445

Operations Manager. See OpsMgr (System Center

Operations Manager) 2007 R2

OperationsManagerMonitoring, OpsMgr, 410

operators

within AD filters, 235–236

iteration, 27–30

as language constructs, 14–15

OpsMgr (System Center Operations Manager) 2007 R2

adding/removing objects and groups, 415–417

agents and network devices, 418–423

alerts, 410–415

automating maintenance mode, 417–418

cmdlets, 409–410

discovered inventory data, 423–426

monitoring scripts in Windows PowerShell, 436–437

notifications, 435–436

overrides, 431–435

overview of, 409

sample scripts and community resources, 437–439

TechnNet Forums, 438

Windows PowerShell and command notification

channel, 426–431

OrganizationalUnit parameter, Exchange, 281–282,

293, 296–297

OtherAttributes parameter, New-ADUser, 241

OUs (organizational units)

creating, 248–249

moving Active Directory objects, 247–248

moving between containers and, 234

specifying for mailbox user, 281–282

Out-DataTable function, SQL Server, 349, 355

Out-Host cmdlet, NTFS permissions, 125

Outlook

deleting items, 116

folders, 115

bindex.indd 642bindex.indd 642 02/09/11 6:21 PM02/09/11 6:21 PM

643

 P

important objects, 113

key objects, 113

moving items, 116

PST files, 115

security, 114

working with AppointmentItem, 117–118

working with ContactItem, 118–119

working with MailItem, 116–117

working with major folders, 114–115

working with subfolders, 115

working with TaskItem, 119

Out-Null cmdlet, hyperlinks, 100

output

debug, 32

enabling verbose, 66

formatting, 18–21

Get-Acl vs. Format-List, 125

Get-ExCommand in Exchange Server, 277–278

Get-WmiObject, 152–153

Microsoft Office scripts for, 95

produced by functions, 53

Output pane, ISE, 599–600, 605, 607

overrides

converting into reporting format in OspMgr,

431–434

creating programmatically in OpsMgr, 434–435

modifying workflows, 431

P
$PackPath variable, 73, 75

packs, troubleshooting, 71–74

Paging parameter, 125

parameter value globbing, 9

parameters

Add-VMHost, 526–527

Add-VMHostCluster, 528–529

cmdlet, 9

database for XenDesktop, 482–483

DynamicDistributionGroup, 298–300

Export-SPWeb, 386

functions taking, 53

Get-Mailbox, 279

Hardware Profile, 532

Import-MDTApplication, 446–447

Import-MDTOperatingSystem, 445

Invoke-TroubleshootingPack, 73

New-ADUser, 241

New-MDTDatabase, 444

New-XAAdministrator, 457–458

VM, 533–534

XenApp worker groups, 476–477

XenDesktop, 482

partial matches, Outlook, 118

PassThru parameter, New-ADGroup cmdlet, 241–242

Password parameter

Connect-VIServer, 559–560

Export-SmigServerSetting, 183

New-Mailbox, 281

Send-SmigServerData, 184

passwords

Active Directory policies, 249–252

resetting Active Directory user, 244–245

Paste() method, Word documents, 103

Path parameter

Backup-SPSite, 385–386

Backup-VMMServer, 524

Get-Acl, 85, 124–125

Get-ChildItem, 71–72

Get-GPOReport, 259

Get-SmigServerFeature, 183

New-ADOrganizationalUnit, 248–249

New-ADUser, 241

New-PublicFolder, 303

Set-Acl, 85

Test-AppLockerPolicy, 187

patterns, currently indexed, 78–79

PeakHours parameter, New-BrokerTimeScheme,

501–502, 504

performance counters, 217–218, 354–357

performance data, from ESX host, 567–568

PermissionLevel parameter, Set-GPPermissions,

265–266

permissions

DCOM, 222–226

Exchange Server, 273–276

file, folder and registry, 123

Group Policy, 265–266

NTFS, 124–127

registry, 135–139

share, 127–131, 132–135

SharePoint list, 378–379

persistent sessions, 48

physical catalogs, XenDesktop, 488, 494–495

PhysicalPath parameter, New-Item within IIS

provider, 394

PipeBind parameters, SharePoint, 372

pipelines, 10

bindex.indd 643bindex.indd 643 02/09/11 6:21 PM02/09/11 6:21 PM

644

P

policies

Active Directory password, 249–252

Application Desktop Groups access, 503

AppLocker, 186–187

backup jobs as, 174–175

Desktop Groups access, 500–501

email address, 322–324

GPOs. See GPOs (Group Policy Objects)

Group Policy. See Group Policy

new backup job, 175–176

Windows Backup, 175

polling, 61–62

pooled catalogs, XenDesktop, 488, 489–492

PoolSize parameter, New-BrokerTimeScheme,

501–502

ports, firewall, 144–146

Power CLI. See vSphere PowerCLI

power state, controlling VMs, 518–519

PowerPoint presentations, 119–120

PowerShell Community Extension (PSCX), 12

PowerShell Pack, 12–13

PowerShell tabs, ISE, 605–606

PowerShell TechnNet Forums, 438

PowerShell_ISE.exe, 38–39, 41

PowerShell.exe, 38–39, 40

PowerShellTab object, ISE, 611, 616, 619

PowerShellTabCollection object, ISE, 611, 617

preference policies, Group Policy, 260–261

prerequisites, ActiveDirectory module, 230–232

PrimalForms, 593–595

Primary File Group, database, 364

PrimarySmtpAddress parameter, Set-

MailPublicFolder, 304

printing, Word document, 106

PrintOut() method, Word, 106

private profile, firewalls, 139–143

privileges, XenApp 6, 458–461

processes, managing, 207–209

production scripts, Windows PowerShell in, 7–8

ProductLevel property, service pack

information, 352

profile files, ISE, 608, 610

$profile variable, 40

profiles

ESX host, 565–567

firewall, 139–140

location of, 40–41

managing in enterprise, 41

overview of, 39–40

ProhibitSendQuota, 316–319

ProhibitSendReceiveQuota, 316–319

prompts, suppressing in PowerCLI, 565

propagation flags, 124, 138

properties

ActiveRoles Management Shell, user, 254

cell, 110–111

class, 9–10

ESX host, 560–562

Filter parameter, 330

formatting with hashtables using calculated, 22

Get-AD cmdlets, 237–238

ISEEditor object, 612

ISEFile object, 613

ISEMenuItem object, 613

listing software using WMI, 153

MDT Deployment Share, 451–452

modifying Active Directory, 242–243

ObjectModelRoot object, 614

PowerShellTab object in ISE, 616

$PsISE, 617

published application, 465

XenApp 6 privileges, 459–462

Properties parameter, Active Directory, 237

provider

getting database space usage, 364–365

getting table space usage, 365

implementing transactions, 63–64

installing WMI, 392

loading for IIS 7, 391–392

making changes with, 399–400

overview of, 18

scripting objects in SQL Server with, 357

WebAdministration. See WebAdministration

provider

provisioning, XenDesktop, 497–499

proxy agent, OpsMgr, 419–421

PSCX (PowerShell Community Extension), 12

$PsISE (ISE root object) variable

adding functionality to ISE, 619

changing look and feel of ISE, 617–619

customizing ISE, 610

ISEOptions accessed from, 615–616

ObjectModelRoot object and, 614

properties, 617

.psl extension, ISE profile files, 608

PSModulePath variable, module directories, 516

PSPath parameter, IIS, 400–403

PSProvider parameter, MDT, 443–444

bindex.indd 644bindex.indd 644 02/09/11 6:21 PM02/09/11 6:21 PM

645

 R

PsSnapin

modules vs., 35

overview of, 35

Windows PowerShell community and, 12

PST files, creating, 115

public folders, 303–307

public profile, firewalls, 140

PublicFolderDatabase parameter, Set-

MailboxDatabase, 319

PublicProfile key, 143–144

published applications, Xen App

adding/removing assigned accounts, 466

importing/exporting, 465–466

properties, 465

publishing, 463–465

removing/disabling, 466–467

retrieving, 462–463

types of, 462

Publish-ProvMasterVmImage cmdlet, 498–499

PvsForVM parameter, Set-BrokerCatalog, 490

PvsPsSnapIn module, XenDesktop, 495

Q
Query parameter, discovering server

configuration, 190

querying SQL Server, 347–349

Quest

AD tools, 12–13, 229, 253–255

noun prefixes for cmdlets in AD, 8

PowerGui, 621

Quit() method, Office, 97

QuotaNotificationSchedule, Exchange, 317

quotas, managing mailbox, 316–319

quoted strings, SQL Server queries, 347–348

R
Range() method, cells, 108–110

Range objects

applying styles in Word, 104

formatting text in Word, 103

searching spreadsheets, 113

sorting data, 111–112

using fonts in Word, 104

working with cells, 108–111

RBAC (Role Based Access Control)

Exchange Server 2010, 273

Exchange Server 2010 permissions, 275–276

managing, 332–334

Read-Host cmdlet

Exchange Server, 281, 293

text mode UI, 583

reading registry, 209–211

Read-only administrator, XenDesktop, 486–488

Reason parameter, Shutdown-VM, 519

Receive-SmigServerData cmdlet, server migration,

184, 185–186

recipient scope, 330–332

RecipientContainer parameter, New-

EmailAddressPolicy, 324

RecipientFilter parameter,

DynamicDistributionGroup, 298–301

recipients, Exchange Server

administering, 279–280

contacts, 291–292

databases, 309–313

distribution groups, 295–298

dynamic distribution groups, 298–301

mailbox resources, 301–303

mailboxes, 280–286

moving mailboxes, 286–291

overview of, 278–279

public folders, 303–307

storage groups, 308–309

users, 292–295

RecoverableItemsQuota, 316–319

RecoverableItemsWarningQuota, 316–319

Recursive switch, Get-ADGroupMember, 239–240

redemption.dll, 114

redirection operators, 15

Reflection, 10

Refresh-LibraryShare cmdlet, VMM, 538

regional settings, modifying on multiple computers,

218–219

Registered Servers (Reg.S), 366–369

Register-EngineEvent, 61–62

Register-ObjectEvent, 9, 61–62

RegisterTaskDefinition() method, scheduled

tasks, 192

Register-WmiEvent, 61–62

registrations, SQL Server, 366–369

registry

checking firewall status remotely, 143–144

checking Remote Desktop status, 148–149

enabling Remote Desktop, 147–148

information about GPO policies, 260

managing permissions, 123

bindex.indd 645bindex.indd 645 02/09/11 6:21 PM02/09/11 6:21 PM

646

R

modifying settings, 137–139

overview of, 135–136

reading and modifying, 209–211

retrieving current settings, 136–137

setting values, 211–213

transactions in V2, 63–64

viewing DCOM permissions, 222

registry hives, 209–213

Reg.S (Registered Servers), 366–369

regular expressions, 16–17, 26–27

Reindex() methods, Catalog interface, 82–84

ReleaseComObject() method, Office, 97

remote DCOM, 221–227

Remote Desktop, 147–149

remote maintenance mode, OpsMgr, 417–418

Remote Procedure Call (RPC), DCOM, 153

Remote Registry service, 155

Remote Server Administration Tools (RSAT), 231

remote servers, 207–208

remote systems

accessing registry from, 209

checking firewall is enabled on, 143–144

installing GroupPolicy module on, 258

installing software on, 158–159

listing software on, 153–155

managing Microsoft Exchange Server

on, 320–322

modifying registry permissions on, 138

retrieving registry permissions on, 136–137

running Best Practice Analyzer on, 172–173

status of backup jobs on, 177

remoting

ActiveDirectory module for, 231

architecture, 46–48

enabling on Windows Server 2008 R2, 173–174

new in V2, 45–50

serialization, 50

setting up, 48

with SharePoint, 373–374

understanding, 46

using, 48–50

V2 features for, 45–46

working with jobs in, 50–52

Remove cmdlet, AD objects, 249

Remove() method, firewall ports, 144–146

Remove-* cmdlets, Exchange Server, 278–279

RemoveAccessRuleSpecific() method, NTFS

permissions, 127

Remove-ADGroupMember cmdlet, AD, 243

Remove-ADPrincipalGroupMembership cmdlet,

AD, 243–244

Remove-BrokerCatalog cmdlet, XenDesktop, 496–497

Remove-BrokerHypervisorConnection cmdlet,

XenDesktop, 508–509

Remove-Certificate cmdlet, WASM, 549

Remove-DataStore cmdlet, PowerCLI, 563

RemoveDefaultScopeRule() method, Windows

Desktop, 82

Remove-DistributionGroupMember cmdlet,

Exchange, 297, 298

Remove-DynamicDistributionGroup cmdlet,

Exchange, 301

Remove-FineGrainedPassword PolicySubject

cmdlet, AD, 252

Remove-GPO cmdlet, Group Policy, 263–264

Remove-Item cmdlet

IIS objects, 400

XenDesktop hosts, 508–509

Remove-Mailbox cmdlet, Exchange, 283–284, 314–315

Remove-MailPublicFolder cmdlet, Exchange, 305

Remove-MailUser cmdlet, Exchange, 293, 295

Remove-MDTPersistentDrive cmdlet, MDT, 444

Remove()method, local users and groups, 219, 221

Remove-MoveRequest cmdlet, Exchange, 288–289

Remove-PsBreakpoint cmdlet, 32

Remove-PSBreakpoint cmdlet, 65

Remove-PsSnapin cmdlet, 35

Remove-RoleGroupMember cmdlet, RBAC, 333–334

RemoveScopeRule() method, Windows Desktop, 82

Remove-SPSite cmdlet, SharePoint, 375

Remove-SPSolution cmdlet, SharePoint, 382

Remove-StorageGroup cmdlet, Exchange, 308–309

Remove-VirtualPortGroup cmdlet, PowerCLI, 564

Remove-VirtualSwitch cmdlet, PowerCLI, 563

Remove-VM cmdlet

PowerCLI, 568–569

VMM, 535

Remove-VMCheckPoint cmdlet, VMM, 536

Remove-VmHostNtpServer cmdlet, PowerCLI, 564–565

Remove-VMSnapshot function, VMM, 520

Remove-WBPolicy cmdlet, Windows Backup, 177

Remove-WindowsFeature cmdlet, ServerManager, 169

RemoveWorkflowFromListItem()method,

SharePoint, 383

Remove-XAAdministrator cmdlet, XenApp, 458

Remove-XAApplicationAccount cmdlet, XenApp,

465–466

Remove-XAWorkerGroup cmdlet, XenApp, 476

bindex.indd 646bindex.indd 646 02/09/11 6:21 PM02/09/11 6:21 PM

647

 S

removing VMs, 569

Rename-GPO cmdlet, Group Policy, 263–264

Rename-XAWorkerGroup cmdlet, XenApp, 477

replication, public folder, 306–307

reports

creating with Search-ADAccount, 245–246

detailed GPO, 259

Microsoft Office scripts for, 95

override, 432–434

Resultant Set of Policy, 262

RequestStateChange value, Hyper-V classes, 515

Reset() methods, Catalog interface, 82–84

Reset-XALoadEvaluator cmdlet, XenApp, 473

Reset-XASession cmdlet, XenApp, 470

resource configuration, PowerCLI, 571

resource mailboxes, Exchange, 301–303

ResourceContextServer parameter, AD group

membership, 239

Responding property, Get-Process, 208

Restart parameter, Add-WindowsFeature,

168–169

Restore Points, installing software, 157–158

Restore-GPO cmdlet, Group Policy, 264–265

Restore-MDTPersistentDrive cmdlet, MDT, 444

Restore-SPFarm cmdlet, SharePoint, 384, 385

Restore-VMCheckPoint cmdlet, VMM, 536

Restore-WebConfigurationBackupName, IIS, 406

Result parameter, Invoke-TroubleshootingPack, 73

Resultant Sets of Policy (RSOP), 262

ResultSize parameter, Get-Mailbox, 279

Resume-PublicFolderReplication cmdlet,

Exchange, 307

RevertToDefaultScope() method, Windows

Desktop, 82

Role Based Access Control. See RBAC (Role Based Access

Control)

Role parameter, RBAC, 333

role services, Windows Server 2008, 167–169

roles

Exchange Server 2007, 274–275

Exchange Server 2010, 275–276

running Best Practice Analyzer locally, 169–170

Windows Server 2008, 167–169

XenDesktop administrative access, 486–487

room mailboxes, 301–303

$rootMS variable, 419

RPC (Remote Procedure Call), DCOM, 153

RSAT (Remote Server Administration Tools), 231

RSOP (Resultant Sets of Policy), 262

RuleNamePrefix parameter, New-AppLockerPolicy,

186–187

RuleType parameter, New-AppLockerPolicy, 186–187

RunAsync parameter, PowerCLI cmdlets, 560

RunAsynchronously parameter, New-ProvVM, 491–492

runtime errors, 30, 32–33

S
SamAccountName parameter, New-DistributionGroup, 296

SampleInterval parameter, Get-Counter, 218

Sapien’s Primal Script, 621

Save() method, 106–107, 117–118

SaveAs() method, 107

scheduled tasks

agent discovery and deployment, 421–422

PowerShell, 362–363

server management, 191–194

Schedule.Service object, 191–194

$ScopeRules variable, 78

scopes, Windows Search, 77–78

script modules, 57–58

Script pane, ISE, 599–600, 605, 607

ScriptConfiguration parameter, Set-

DeploymentConfiguration, 548

scripts

alternation of, 24–27

customizing with profiles, 39–41

definition of, 23–24

error and exception handling, 30–34

execution policy and security, 37–39

IIS changes in, 399–403

IIS new deployments, 394–399

ISE customization of, 610

ISE Debug menu items, 602–603

ISE debugging of, 608–609

ISE Edit menu items, 600–601

ISE editing of, 607

iteration and, 27–30

jobs, 51–52

language of, 6–7

Microsoft Office and, 95, 97–98

Office Application objects, 97–98

in OpsMgr, 436–439

in PowerCLI, 573

running remotely, 49–50

script modules vs., 58

bindex.indd 647bindex.indd 647 02/09/11 6:21 PM02/09/11 6:21 PM

648

S

SQL Server objects, 357–362

troubleshooting, 71

VMM Administrator Console and, 524–525

Windows PowerShell, 7–8

ScriptText parameter, Invoke-VMScript, 573

SCVMMRecover.exe, VMM, 524

SDK, Windows Search, 77

search catalog, 77–81

search crawls, Sharepoint, 387–388

$Search variable, 77–79

Search-Bin (Ctrl+B) function, IsePack, 620

searching

Excel spreadsheets, 113

for item in Outlook, 118

text in Word, 102–103

SearchScope parameter, Active Directory, 237

Secondary File Group, database, 364

security

enabling Remote Desktop, 147–149

Exchange Server login and, 271

file and folder. See files and folders, Windows 7

Group Policy, 265–266

inheritance and propagation flags for Set-Acl

cmdlet, 124

NTFS permissions, 124–127

Outlook, 114

overview of, 123

registry settings, 135–139

script execution policy and, 37–39

share permissions. See share permissions

Windows Firewall. See Windows Firewall

security descriptor

overview of, 123

retrieving current NTFS permissions, 125

viewing DCOM permissions, 222–225

SecurityGroup parameter, New-

ManagementRoleAssignment in RBAC, 333

Selection property, adding text to Word, 99

Select-Object cmdlet

finding empty folders, 89

listing all processes on multiple servers, 207

listing running services on multiple servers, 204

listing unique file extensions, 87

managing Windows Search, 78, 81

retrieving performance counters, 217–218

searching with Windows Search, 90

troubleshooting Windows 7, 72–73

SelfID property, Get-SPBackupHistory, 384

Send-MailMessage cmdlet, Outlook, 117

Send-SmigServerData cmdlet, server migration,

184–185

serialization, remoting and, 50

Server 2008 R2 Core, 45, 166

server folder privileges, XenApp 6, 460

server installed published applications, Xen App, 463

server management

discovering server configuration, 189–191

event logs, 195–198

hotfix status, 194–195

scheduled tasks, 191–194

Server 2008 R2. See Windows Server 2008 R2

system time, 198–201

server management, advanced

command-line services, 203–206

local accounts, 219–221

overview of, 203

performance counters, 217–218

processes, 207–209

reading registry, 209–211

regional settings on multiple computers, 218–219

registry values, 211–213

remote DCOM, 221–227

validating networks on remote servers, 213–217

server migration, Windows Server 2008 R2

discovering what can be migrated, 182–183

exporting features, 183–184

importing features, 184–186

installing cmdlets, 180–182

overview of, 180

Server parameter

Get-MailboxDatabase, 285

GroupPolicy module, 259

Move-ADObject, 248

New-StorageGroup, 308

Update-PublicFolder, 307

ServerConnection object, VMM Server, 525–526

ServerDesktop parameter, New-XAAapplication, 465

ServerManager module, 167–169

ServerName parameter, Set-XALoadEvaluator, 472–473

ServerNames parameter, New-XAAapplication,

463–464

servers, XenApp

load evaluators, 471–473

load-balancing policies, 473–475

logons, 470

obtaining numerical load, 471

worker groups, 475–477

zones, 473

bindex.indd 648bindex.indd 648 02/09/11 6:21 PM02/09/11 6:21 PM

649

 S

server-side filtering, 329–330

service accounts, SQL Server, 346

service pack information, SQL Server, 352

services

configuring XenDesktop, 485

controlling IIS, 404–405

managing SQL Server, 343–344

managing Windows, 203–206

using managed service account, 247

sessions, remoting using, 48–50

sessions, XenApp, 467–470

Set-* cmdlets, Exchange Server, 278–279

SetAccessRuleProtection() method, registry

permissions, 139

Set-Acl cmdlet

defined, 123

file and folder security, 84–85

inheritance and propagation flags, 124

NTFS permissions, 126–127

registry settings, 135–136

Set-ADAccountPassword cmdlet, AD, 244–245

Set-ADComputer cmdlet, AD, 243

Set-ADDefaultDomainPasswordPolicySubject cmdlet,

AD, 251

Set-ADFineGrainedPasswordPolicy cmdlet, AD, 251

Set-ADGroup cmdlet, AD, 242–243

Set-ADObject cmdlet, AD, 249

Set-AdServerSettings cmdlet, AD, 331–332

Set-ADUser cmdlet, AD, 242–245

Set-AppLockerPolicy cmdlet, AppLocker, 187

Set-BpaResult cmdlet, Windows Server, 169, 171–172

Set-BrokerCatalog cmdlet, XenDesktop, 490, 496–497

Set-BrokerSite cmdlet, XenDesktop, 485–486

Set-DataStore cmdlet, PowerCLI, 563

Set-Deployment cmdlet, WASM, 546–547

Set-DeploymentConfiguration cmdlet, WASM, 548

Set-DeploymentStatus cmdlet, WASM, 545–546

Set-DistributionGroup cmdlet, Exchange, 326–328

SetDNSSuffixSearchOrder() method, Invoke-

WmiMethod, 215

Set-DynamicDistributionGroup cmdlet, Exchange,

300–301

Set-EmailAddressPolicy cmdlet, Exchange, 324–326

Set-GPInheritance cmdlet, Group Policy, 263–264

Set-GPLink cmdlet, Group Policy, 263–264

Set-GPPermissions cmdlet, Group Policy, 265–266

Set-GPRegistryValue cmdlet, Group Policy, 263

Set-Group cmdlet, Exchange, 296

Set-Item cmdlet, IIS, 399

Set-ItemProperty cmdlet, IIS, 398

Set-ItemProperty cmdlet, MDT, 448, 452

Set-Location cmdlet

browsing IIS:\, 393

OpsMgr, 410

using registry provider locally, 210

Set-Mailbox cmdlet, Exchange, 282–283, 303, 330

Set-MailboxDatabase cmdlet, Exchange, 316–319

Set-MailContact cmdlet, Exchange, 292

Set-MailPublicFolder cmdlet, Exchange, 303–306

Set-MailUser cmdlet, Exchange, 294

Set-ManagementServer cmdlet, OpsMgr, 419

Set-PsBreakpoint cmdlet, 32

Set-PSBreakpoint cmdlet, 65

Set-PsDebug cmdlet, 32

Set-PvsConnection cmdlet, XenDesktop, 495

SetRange() method, Word documents, 99

Set-RDPConnection function, Remote Desktop, 147–148

Set-Service cmdlet, Windows services, 203

SetShareInfo() method, Win32_Share class, 132–135

Set-SharePermission script, 132–135

Set-StrictMode cmdlet, error handling, 31

Set-User cmdlet, Exchange, 294–295

Set-VirtualPortGroup cmdlet, PowerCLI, 564

Set-VirtualSwitch cmdlet, PowerCLI, 563–564

Set-VM cmdlet, PowerCLI, 573

Set-VMCPUCount function, Hyper-V, 517

Set-VMHost cmdlet, PowerCLI, 560

Set-VMMemory function, Hyper-V, 517

Set-VMResourceConfiguration cmdlet, PowerCLI, 571

Set-WBPolicy cmdlet, Windows Backup, 178, 179

Set-WBSchedule cmdlet, Windows Backup, 178

Set-WebConfiguration cmdlet, IIS, 402

Set-WebConfigurationProperty cmdlet, IIS, 402–403

SetWsManQuickConfig cmdlet, 48

Set-XAAapplication cmdlet, XenApp, 465

Set-XALoadBalancingPolicyConfiguration cmdlet,

XenApp, 474

Set-XALoadBalancingPolicyFilter cmdlet,

XenApp, 474

Set-XALoadEvaluator cmdlet, XenApp, 472–473

Set-XAServerZone cmdlet, XenApp, 473

Set-XAWorkerGroup cmdlet, XenApp, 476

share permissions

access mask definitions, 128

ACE type definitions, 129

modifying, 132–135

retrieving current, 127–131

understanding, 127

bindex.indd 649bindex.indd 649 02/09/11 6:21 PM02/09/11 6:21 PM

650

S

share viewer UI, 590–593

shared mailboxes, 301–303

ShareName parameter

Get-SharePermission, 130–131

Set-SharePermission, 135

SharePoint 2010 Management Shell, 372

SharePoint Server. See Microsoft SharePoint 2010

Server

ShowDialog() method, Windows Forms, 585–586

Show-HypervMenu function, 516–517

Show-Member function, IsePack, 620

ShowTree parameter, Backup-SPFarm, 385

ShowUI, 596

Shutdown-VM function, 519

Simple Network Management Protocol (SNMP),

419–421, 429–431

Simple Object Access Protocol (SOAP), 47–48

site collections

backing up and restoring SharePoint, 385–386

creating SharePoint, 374

sites

automating administration in SharePoint, 374–375

creating new item in IIS, 394

determining state of, 405

starting and stopping, 404–405

Sites folder, IIS:\, 393

SMO (SQL Management Object), 342, 344, 365–366

SMS (Systems Management Server), 4–5

SMTP, WebAdministration and, 392

snap-ins

SQL Server, 344–345

Windows PowerShell, 34–36

Windows Server 2008 R2, 166

XenApp 6, 455–456

XenDesktop, 481–482

snapshots

creating pooled catalogs, 490

managing VMs, 519–520

for VMs in PowerCLI, 572–573

SNMP (Simple Network Management Protocol),

419–421, 429–431

Snover, Jeffrey, 357

SOAP (Simple Object Access Protocol), 47–48

software

baselines, 155–157

installing, 157–159

listing already installed, 152–155

removing, 159–162

Sort() method, Excel, 111–112

source files

adding software with, 446–448

adding software without, 448–449

SourcePath parameter, server migration, 184

space usage, SQL Server, 363–367

spell checking, Word document or String, 105–106

SPFile object, SharePoint document library, 380

splatting

creating AD users and groups, 240

defined, 273–274

overview of, 56

using Active Directory provider, 232

SPList object

accessing views, 377

adding items to SharePoint list, 376

creating SharePoint libraries, 379–380

managing permissions, 378–379

modifying settings, 378

SPListTemplateType, SharePoint libraries, 379–381

split operator, 15

SPRoleAssignment object, SharePoint list

permissions, 378

SPWeb object, SharePoint lists, 375–381

SPWorkflowObjects, SharePoint, 382–383

SQL Agent

job steps, 357

scheduling tasks, 362–363

SQL Authentication, Registered Servers, 366

SQL Management Object (SMO), 342, 344, 365–366

SQL PowerShell (SQLPS), 341, 356–357

SQL Server 2008 R2

assemblies, 345–346

changing service account, 346

getting information, 351–353

loading data, 350–351

loading non-SQL Server data, 351

management basics, 341–343

performance counters, 354–357

querying, 347–349

registrations in SSMS, 366–369

scheduling tasks to run in SQL Agent, 362–363

scripting objects, 357–362

services, 343–344

snap-ins, 344–345

space usage information, 363–366

SQL Server Configuration Manager, 346

SQL Server Management Studio (SSMS), 342, 366–369

SQL statements, XenDesktop, 483–484

SQLBulkCopy class, 348, 351

bindex.indd 650bindex.indd 650 02/09/11 6:21 PM02/09/11 6:21 PM

651

 T

$SQLParameters variable, 482–485

SQLPS (SQL PowerShell), 341, 356–357

SQLPSX, 342

SQLSERVER:\ Provider, 345

sqlserver_start_time column, instance uptime

information, 352

SqlServerCmdletSnapin100 snap-in, 344–345, 347

SSL, configuring for IIS, 398–399

SslBindings, IIS, 393–394

SSMS (SQL Server Management Studio),

342, 366–369

StandardProfile key, firewalls, 143–144

start iisreset, Windows 7, 404

Start() method, application pools and sites, 404

Start-AppPool cmdlet, IIS, 404

Start-Discovery cmdlet, OpsMgr, 421

Start-Job cmdlet, 51

Start-OnDemandTransfer cmdlet, WASM, 553

StartService() method, service management, 206

Start-SPAssignment cmdlet, SharePoint, 373

Start-VM function, 518–519

Start-WBBackup cmdlet, Windows Backup, 178

Start-WebItem cmdlet, IIS, 404

Start-Website cmdlet, IIS, 404

StartWorkflow() method, SharePoint, 382

static methods, 9

static properties, 9

Stop() method

application pools and sites, 404

running tasks, 193

Stop-ActivateTransfer cmdlet, WASM, 553

Stop-AppPool cmdlet, IIS, 404

StopMaintenanceMode() method, 416–417

Stop-Process cmdlet, on remote servers, 208

Stop-SPAssignment cmdlet, SharePoint, 373

Stop-VM function, Hyper-V, 518–519

Stop-WebItem cmdlet, IIS, 404

Stop-Website cmdlet, IIS, 404

storage

adding to VM, 534–535

configuring host in PowerCLI, 562–563

transferring logs in Windows Azure to,

553–554

VMM libraries, 537–539

Windows Azure cmdlets, 551

StorageGroup parameter, New-MailboxDatabase, 310

streamed catalogs, XenDesktop, 488, 495–496

StrictMode, debugging in, 65–66

strings, text mode UI, 583

style sets, Word, 104

styles

applying to range of cells, 110–111

applying to Word document, 104

SubFeatures property, Get-WindowsFeature, 168

subfolders, Outlook, 115

subscribing to event, 47–48

Suspend-PublicFolderReplication cmdlet,

 Exchange, 307

Suspend-VM function, Hyper-V, 518–519

switch statement, alternation in scripts, 25–26

syntax errors, 30–31

System Center Central website, OpsMgr, 438

System Center Configuration Manager, 4–5

System Center Operations Manager. See OpsMgr

(System Center Operations Manager)

2007 R2

System Central Virtual Machine Manager. See VMM

(Virtual Machine Manager) 2008 R2

System Restore, 157–158

system time, 198–201

Systems Management Server (SMS), 4–5

System.Security.AccessControl.

FileSystemAccessRule class, 85–86

T
tab completion, AD, 234

tab-expansion, SQL Server, 367

table space usage, SQL Server, 365–367

tables, adding to Word documents, 101–102

TargetDatabase parameter

Move-Mailbox, 286–287

New-MoveRequest, 287–288

Task Sequences, MDT, 449–451

TaskItem, Outlook, 119

tasks

in Active Directory, 244–246

on servers, 191–194

Windows PowerShell automating, 5–6

$TaskService variable, 192–193

TCP protocol, firewall ports, 144–145

TCP/IP, remoting architecture, 47

TechNet Script Center Repository, 343

TechnNet Forums, OpsMgr, 438

templates

creating Active Directory users, 240–241

Task Sequence, 450–451

using group policy for execution, 39

using OUs from, 249

temporary sessions, 48

bindex.indd 651bindex.indd 651 02/09/11 6:21 PM02/09/11 6:21 PM

652

U

terminating errors, 33–34

Test-AppLockerPolicy cmdlet, AppLocker, 187

Test-VMHostProfileCompliance cmdlet,

PowerCLI, 565

text

adding to Word, 98–99

converting numbers and dates into, 22

formatting in Word document, 103–105

searching in Word document, 102

text mode UI, 581–584

Text property, Word, 98–99

textbox control, 589–590

third-party alternatives

ISE, 620–621

PowerShell user forums, 13

time, using system, 198–201

toolbar, ISE, 599, 603–605, 607

transaction support, V2, 63–64

trap statement, runtime errors, 32–33

trap-forwarding, SNMP, 429–431

Tree parameter, Remove-VMSnapshot, 520

troubleshooting, Windows 7, 71–76

Try/Catch block, text mode UI, 583

Try/Catch/Finally, 32–33, 66

TryParse() method, text mode UI, 584

T-SQL (Transact SQL), 347–349, 352

Twitter, PowerShell blogs on, 13

two-state unit monitor, OpsMgr, 437

type accelerators, 209, 302

type operators, 15

Type parameter, Exchange, 296, 303

TypeBackspace() method, Word documents, 99

U
UDP protocol, firewall ports for, 144–146

UI (user interface)

overview of, 581

PrimalForms, 593–595

text mode, 581–584

Windows Forms, 584–585

Windows Forms button control, 588–589

Windows Forms label control, 586–587

Windows Forms textbox control, 589–593

Windows Presentation Foundation, 595–596

UNC (Universal Naming Convention), VMM library, 538

Uninstall key, Windows Registry, 154

Uninstall method, wmiclass, 159–161

Uninstall-SPSolution cmdlet, SharePoint, 382

unique file extensions, 87–88

Universal Naming Convention (UNC), VMM library, 538

Universal parameter, Set-Group cmdlet, 296

Universal Time Coordinate format, 200

Unix/Linux pipelines, 10

Unlock-ADAccount cmdlet, AD, 244

Update() method, SharePoint lists, 376–379

Update-EmailAddressPolicy cmdlet,

Exchange, 323

Update-MDTDeploymentShare cmdlet, MDT, 452

Update-MDTMedia cmdlet, MDT, 453–454

Update-PublicFolder cmdlet, Exchange Server, 307

updates

custom fields in alert properties, 413–415

Deployment Share, 452

email address policy, 323–324

primary and failover settings for OpsMgr

agents, 421

public folders, 307

SharePoint list data, 376

VMM host agents, 527

VMWare tools on VM, 571

Update-Tools cmdlet, VMware, 571

uploading, to SharePoint document library, 381

URLs, indexed folders and, 78

user flags, 220

user input validation, scripts, 24

user interface. See UI (user interface)

User parameter

Connect-Mailbox, 284

Connect-VIServer, 559–560

Set-SharePermission script, 135

UserAuthentication, Remote Desktop, 147–148

UserPrincipalName parameter,

New-Mailbox, 281

users, Active Directory

ActiveRoles Management Shell, 253–255

adding and removing groups, 243–244

automating tasks, 244–246

creating, 240–241

managed service accounts, 246–247

modifying properties, 242–243

password policies, 250–251

querying, 234–238

users, mail

administering, 292–295

moving mailboxes interrupting, 286

upgrading Exchange 2007, 326

upgrading Exchange 2010, 328

bindex.indd 652bindex.indd 652 02/09/11 6:21 PM02/09/11 6:21 PM

653

 V

users, managing local accounts, 219–221

Users filter, XenApp, 474–475

UseSqlSnapshot parameter, Backup-SPSite,

385–386

Use-TroubleshootingPack function, 75–76

V
ValidateOnly parameter, Connect-Mailbox, 284

validating input, text mode UI, 583–584

Value parameter, Get-FirewallSetting, 143

Value2 property, cells, 108–110

variable breakpoints, ISE, 609

variable expansion, SQL Server, 347–348

variables

email address policy, 323

language constructs, 13–14

vCenter

clusters, 573–574

connecting to instance of, 558–559

log data, 575–576

managing folders, resource pools and

datacenters, 575

migrating VMs, 574

performance data, 576

verb-noun syntax, of cmdlets, 8–9

$VerbosePreference variable, 66

verbs, for Exchange Server recipient types, 278

version support

SQL Server, 352

Windows PowerShell for downlevel OSs, 37

Windows PowerShell installation, 37

View menu, ISE, 599, 601–602

ViewEntireForest parameter, AD, 331, 332

ViewOnly administrators, 456–457

views

SharePoint list, 377

SharePoint list data, 376

Views property, SPList object, 377

virtual directories, 396

virtual hardware, PowerCLI, 569–571

Virtual Machine Manager. See VMM (Virtual Machine

Manager) 2008 R2

virtual machines. See VMs (virtual machines)

virtual port groups, 564

Virtual Server hosts, adding to VMM, 526–527

virtual switch configuration, 563–564

VM Hosted Groups, 499

VM resource configuration, 571

VMHost, 563

$vmhost variable, 563

VMM (Virtual Machine Manager) 2008 R2

backing up database, 524

checkpoints, 536–537

clusters, 528–530

connecting to, 525–526

controlling virtual machines, 535–536

creating and modifying virtual machines, 531–535

host servers, 526–528

installing and loading cmdlets, 523

libraries, 537–539

maintenance on host servers, 530–531

removing virtual machines, 535

using VMM Administrator Console to write scripts,

524–525

VMM Administrator Console, 524–525

VMs (virtual machines)

checkpoints, 536–538

controlling, 535–536

creating and modifying, 517–518, 531–535

gathering performance data with Get-Stat, 567

power state management, 518–519

removing, 535

snapshots, 519–520

VMs (virtual machines), in PowerCLI

deploying new, 568–569

invoking scripts, 573

removing, 569

resource configuration, 571

retrieving, 559

snapshots, 572–573

starting and stopping, 572

updating tools, 571

working with virtual hardware, 569–571

VMware

ESX and ESXi hosts. See ESX and ESXi hosts

updating tools on VM, 571

vSphere PowerCLI. See vSphere PowerCLI

volume space usage, SQL Server, 363

vSphere PowerCLI

deploying new VMs, 568–569

ESX and ESXi hosts. See ESX and ESXi hosts

installing and using cmdlets, 557–558

invoking scripts, 573

other features, 576–577

overview of, 557

removing VMs, 569

retrieving hosts and VMs, 559

bindex.indd 653bindex.indd 653 02/09/11 6:21 PM02/09/11 6:21 PM

654

W

snapshots, 572–573

starting and stopping VMs, 572

suppressing prompts, 566

updating VMware tools, 571

vCenter management, 573–576

virtual hardware, 569–571

VM resource configuration, 571

W
W32Time Time Service tool, 198

Wait parameter

New-VMSnapshot, 519

Remove-VMSnapshot, 520

Start-VM, 518

Wait-Event cmdlet, 62

WaitForPendingFinalizers() method,

Office, 97

WaitToComplete parameter, Get-Operation

Status, 546

WASM (Windows Azure Service Manager)

certificates, 542–544, 548–549

cmdlets, 541–542

diagnostic logging, 549–551

forcing logs to transfer to storage, 553–554

hosted services, 544–548

logging, 551–553

WdBuiltInStyle enumeration, Word

documents, 104

WDS (Windows Deployment Services), 445

web applications

IIS, 397–398

SharePoint, 381

Web Server Role, IIS 7, 390–391

Web Service Management For Vista

(MS-WSMV), 47–48

Web Services Management layer (WS-MAN), 47–48,

373–374

WebAdministration module. See IIS (Internet

Information Services) 7

WebAdministration provider

application pools, 398

IIS 7, 391–392

New-Item cmdlet, 394–395

not working with SMTP, 392

virtual directories, 396

web applications, 397

WebConfiguration cmdlets, IIS 7, 400–403

WebDAV, 335

Where-Object cmdlet

filters, 328–330

finding empty folders, 89

listing Exchange Organization Administrators,

274–275

NTFS permissions, 126–127

overrides in OspMgr, 432

running services on multiple servers, 204

server features and roles, 167

unique file extensions, 87–88

Windows Search, 78–79

while loop, iteration, 28

white space, mailbox, 311–313

wildcards

ActiveRoles Management Shell, 254

alternation in scripts, 26–27

in parameter value globbing, 9

regular expressions and, 16–17

Win32_ComputerSystem class, 199–200

Win32_LogicalShareSecuritySetting, 127–131,

132–133

Win32_NetworkAdapterConfiguration, 213–217

Win32_OperatingSystem class, 198

Win32_Process class, 158–159, 208

Win32_Product class, 152–153

Win32_SecurityDescriptorHelper class, 222–223

Win32_Service class, 205–206

Windows

management in early days, 3–5

PowerShell version support, 37

Windows PowerShell not available for 2000, 37

Windows 7

ActiveDirectory module, 230–232

hotfix status, 84

IISReset issue, 404

security of files and folders. See files and folders,

Windows 7

troubleshooting, 71–76

V2 features, 44–45

WebAdministration module, 391

Windows PowerShell for, 37

Windows Search. See Windows Search

Windows Azure. See WASM (Windows Azure Service

Manager)

Windows Backup

configuring backup jobs, 174–176

deleting backup jobs, 177

installing cmdlets, 174

limitations of cmdlets, 179–180

bindex.indd 654bindex.indd 654 02/09/11 6:21 PM02/09/11 6:21 PM

655

 W

overview of, 174

scheduling backup jobs, 178–179

starting and stopping backup jobs, 178

status of backup jobs, 176–177

Windows Deployment Services (WDS), 445

Windows Embedded, 37

Windows Firewall

checking status locally, 140–143

checking status overview, 139–140

checking status remotely, 143–144

opening and closing ports, 144–146

Windows Forms

building GUIs with, 585–586

button control, 588–589

label control, 586–587

overview of, 584–585

textbox control, 589–593

working with, 585

Windows Installer Provider, 152

Windows Management Framework Core (WMFC), 37

Windows Management Instrumentation. See WMI

(Windows Management Instrumentation)

Windows NT, 4

Windows PowerShell

cmdlets, 8–9

command notification channel in OpsMgr and, 426–431

community, 12–13

development of, 5

discovery-related cmdlets, 10–12

formatting output, 18–23

installing, 36–39

ISE. See ISE (Integrated Scripting Environment)

language constructs, 13–18

modules, 36

monitoring scripts in OpsMgr, 436–437

objects, 9–10

overview of, 3

pipeline, 10

in production scripts and admin GUIs, 7–8

profiles, 39–41

scripting. See scripts

scripting language, 6–7

snap-ins, 34–36

as task automation platform, 5–6

Windows PowerShell Management Library, Hyper-V,

515–516

Windows PowerShell provider

MDT, 442–444

XenDesktop, 505–506

Windows PowerShell Remoting protocol

(MS-PSRP), 47–48

Windows PowerShell tab, XenDesktop, 480

Windows PowerShell V2, new features

advanced functions, 52–56

debugging from command line, 65–66

development of, 43–45

eventing, 61–62

handling errors with Try/Catch/Finally, 66–67

Integrated Scripting Environment, 63

jobs, 50–52

modules, 57–61

new cmdlets, 67

remoting, 45–50

serialization, 50

transaction support, 63–64

Windows Presentation Foundation (WPF),

595–596

Windows Registry

listing software, 153–154

listing software not installed with .msi, 152–153

removing software, 159–161

Windows Remote Management. See remoting

Windows Search

adding folders to index, 79–81

discovering which folders are indexes, 77–79

managing, 77

re-indexing search catalog, 82–84

removing folders from index, 81–82

searching with, 89–91

Windows Search SQL syntax, 89–91

Windows Server 2003

ActiveDirectory module, 230

management with, 4–5

Windows PowerShell for, 37

Windows Server 2008 R2

ActiveDirectory module, 230–232

AppLocker, 186–187

Best Practice Analyzer scans, 169–173

enabling remoting, 173–174

features and roles, 167–169

GroupPolicy module, 257

server migration, 180–186

V2 features for, 44–45

web server role for IIS 7, 390–391

Windows Backup. See Windows Backup

Windows PowerShell in, 37, 165–166

XenApp 6 only available for, 456

Windows Vista, 37

Windows XP, 37

bindex.indd 655bindex.indd 655 02/09/11 6:21 PM02/09/11 6:21 PM

656

X

WinRM service, 47–48

WMFC (Windows Management Framework Core), 37

WMI (Windows Management Instrumentation)

defined, 151

discovering server configuration, 189–191

Hyper-V classes, 513–515

listing software, 152–153

managing IIS, 392

provider for IIS 7, 392

remote DCOM access for domain users, 226–227

removing software, 159

software installation, 158–159

Windows Server 2003 and, 5

WMI Query Language (WQL), 151, 190

Word, automating

bullets, 99–100

content, 98–99

creating or opening document, 98

formatting text, 103–105

headers and footers, 102

hyperlinks, 100

inserting images, 101

overview of, 98

printing, 106

saving document, 106–107

searching for text, 102–103

spell checking, 105–106

tables, 101–102

workbooks, Excel, 107–111

worker groups, XenApp 6, 461, 475–477

WorkerGroupPreferences parameter, Set-XALoadBalan

cingPolicyConfiguration, 474

WorkflowManager object, SharePoint, 382

workflows

administering SharePoint, 382–383

defining in OpsMgr with modules, 436

modifying in OpsMgr with overrides. See overrides

worksheets, Excel, 107–111

workstation, Exchange Server, 271–273

WPF (Windows Presentation Foundation), 595–596

WPK toolkit, 595–596

WQL (WMI Query Language), 151, 190

Write-DataTable function, SQL Server, 356

Write-Debug cmdlet, 32, 66

Write-Verbose cmdlet, 66

WS-MAN (Web Services Management layer), 47–48,

373–374

X
XAML (Extensible Application Markup Language),

WPF, 595

XenApp 6. See Citrix XenApp 6

XenDesktop 5. See Citrix XenDesktop 5

XenServer hosts, 506–507

XmlPolicy parameter, 187

bindex.indd 656bindex.indd 656 02/09/11 6:21 PM02/09/11 6:21 PM

	Windows PowerShell® 2.0 Bible
	Contents
	Introduction
	Part I: Introduction
	Chapter 1: Introduction to Windows PowerShell
	Managing Windows — The Challenges of the Past
	Management in the Early Days
	Management with Windows NT
	Management with Windows Server 2003
	Introducing Windows PowerShell

	What Is Windows PowerShell?
	Windows PowerShell as a Task Automation Platform
	Windows PowerShell's Scripting Language
	Windows PowerShell in Production Scripts and Admin GUIs

	Key Windows PowerShell Concepts
	Cmdlets
	Objects
	The Pipeline

	Discovery and the Community
	Get-Help
	Get-Command
	Get-Member
	The Windows PowerShell Community

	Windows PowerShell Language Constructs
	Variables
	Operators
	Expressions
	Providers

	Formatting Output
	Default Formatting
	Formatting Using Format-Table and Format-List
	Formatting with Windows PowerShell Hashtables

	Scripting
	What Is a Script?
	Alternation or Conditional Execution
	Iteration — Operating on a Collection or Array
	Error and Exception Handling

	Extending Windows PowerShell with Snap-ins and Modules
	Windows PowerShell Snap-ins
	Windows PowerShell Modules

	Installing Windows PowerShell
	Windows PowerShell Version Support
	Getting Windows PowerShell for Downlevel OSs
	Script Security and Execution Policy

	Customizing Windows PowerShell with Profiles
	What Is a Profile?
	Where Are Your Profiles?
	Managing Profiles in the Enterprise

	Summary

	Chapter 2: What's New in Windows PowerShell V2
	The Road to V2
	The Version 2 Betas
	V2 in Windows 7/R2
	V2 on Downlevel OSs

	Using Remoting
	What Is Remoting?
	Windows PowerShell Remoting Architecture
	Setting Up Remoting
	Using Remoting
	Serialization

	Working with Jobs
	What Is a Job?
	Using Jobs
	Potential Glitches Associated with Jobs

	Using Advanced Functions
	What's New with Advanced Functions?
	Comment-Based Help
	Cmdlet Binding
	Splatting

	Working with Modules
	What Is a Module?
	Script Modules
	Manifest Modules
	Implicit Modules

	Making Use of Eventing
	What Is Eventing?
	Using Eventing

	Using the Integrated Scripting Environment
	Supporting Transactions
	The Need for Transactions
	Transaction Support for V2

	Debugging and Error Handling
	Debugging from the Command Line
	Using Try/Catch/ Finally

	New Cmdlets
	Summary

	Part II: Windows Desktop
	Chapter 3: Managing Windows 7
	Troubleshooting Windows 7 with Windows PowerShell
	Managing Windows Search
	Discovering Which Folders Are Currently Indexed
	Adding Folders to the Index
	Removing Folders from the Index
	Re-Indexing the Search Catalog

	Checking HotFix Status
	Managing Files and Folders
	Setting Security on Files and Folders
	Listing Unique File Extensions
	Counting a Specific Type of Files
	Finding Empty Folders
	Searching with Windows Search
	Opening a File Using Its Default Handler

	Summary

	Chapter 4: Managing Microsoft Office 2010
	Introducing the Office COM Objects
	The Office Application Objects
	Cleaning Up after Your Office Scripts

	Automating Microsoft Word
	Creating or Opening a Document
	Adding Content
	Searching for Text
	Formatting Text
	Spell Checking
	Printing
	Saving a Document

	Working with Microsoft Excel Spreadsheets
	Creating and Opening a Workbook
	Worksheets
	Working with Cells
	Managing Data
	Generating Charts and Graphs
	Searching Spreadsheets

	Navigating Microsoft Outlook
	A Word about Security
	Traversing Folders
	Working with Outlook Items
	Working with an Outlook MailItem
	Working with an Outlook AppointmentItem
	Working with an Outlook ContactItem
	Working with an Outlook TaskItem

	Additional Office COM Examples
	Summary

	Chapter 5: Managing Security
	NTFS Permissions
	Retrieving Current NTFS Permissions
	Modifying NTFS Permissions

	Share Permissions
	Retrieving Current Share Permissions
	Modifying Share Permissions

	Registry Settings
	Retrieving Current Registry Permissions
	Modifying Registry Permissions

	Managing the Windows Firewall
	Checking Firewall Status
	Opening and Closing Ports

	Enabling Remote Desktop
	Checking the Status of Remote Desktop

	Summary

	Chapter 6: Managing and Installing Software
	Listing Software
	Using WMI
	Using the Windows Registry
	Creating Software Baselines

	Installing Software
	Using Restore Points
	Using WMI

	Removing Software
	Removing Software Using WMI
	Removing Software Using Windows Registry
	Dealing with Spaces

	Summary

	Part III: Server Management
	Chapter 7: Managing Windows Server 2008 R2
	What's New in Server 2008 R2
	Default Installation of Windows PowerShell
	Windows PowerShell Included in Server Core

	Managing Server Features and Roles
	Running Best Practice Analyzer Scans
	Running Scans Locally
	Running Scans Remotely

	Enabling Remoting
	Managing Windows Backup
	Installing the Cmdlets
	Configuring New Backup Jobs
	Checking the Status of Backup Jobs
	Deleting Backup Jobs
	Starting and Stopping Backup Jobs
	Scheduling Backup Jobs
	Limitations in the Cmdlets

	Managing Server Migration
	Installing the Cmdlets
	Discover What Can Be Migrated
	Exporting Features
	Importing Features

	Managing AppLocker
	Summary

	Chapter 8: Performing Basic Server Management
	Discovering Server Configuration
	Managing Scheduled Tasks
	Checking Hotfix Status
	Checking Hotfixes on Multiple Computers
	Checking for a Specific Hotfix

	Gathering Data from Event Logs
	Using System Time
	Retrieving the Date and Time
	Setting the Date and Time

	Summary

	Chapter 9: Performing Advanced Server Management
	Managing Command-Line Services
	Listing Running Services on Multiple Servers
	Finding Servers Running a Specific Service
	Listing Stopped Services That Are Set to Start Automatically

	Managing Processes
	Listing All Processes on Multiple Servers
	Stopping Processes on Remote Servers

	Reading the Registry
	Using the Registry Provider Locally
	Using Microsoft.Win32. RegistryHive Remotely

	Setting Registry Values
	Locally Using the Registry Provider
	Remotely Using Microsoft.Win32.RegistryHive

	Validating Network Configuration on Remote Servers
	Retrieving the DNS Settings
	Validating That Servers Use the Same DNS Settings
	Changing the Network Configuration

	Gathering Data from Performance Counters
	Modifying Regional Settings on Multiple Computers
	Managing Local Accounts
	Modifying Local Users and Groups
	Creating and Deleting Local Users and Groups

	Configuring Remote DCOM
	Viewing DCOM Permissions
	Granting a Domain User Remote DCOM Access

	Summary

	Chapter 10: Managing Active Directory
	Installing and Using the Cmdlets
	Prerequisites
	A Word About Remoting
	Installation

	Using the Active Directory Provider
	Querying Active Directory
	Users, Groups, and Computers
	Querying Group Membership

	User and Group Administration
	Creating Users and Groups
	Modifying Properties
	Working with Group Membership
	Common Tasks
	Managed Service Accounts

	Managing Organizational Units
	Moving Active Directory Objects
	Creating Organizational Units
	Removing Active Directory Objects

	Password Policies
	Viewing Password Policies
	Creating a Fine-Grained Policy
	Modifying Password Policies

	Managing the Rest of Active Directory
	Managing Active Directory with the ActiveRoles Management Shell
	Installing the Cmdlets
	Using the Cmdlets

	Summary

	Chapter 11: Managing Group Policy
	Installing and Using the Cmdlets
	Enabling the Module on Windows Server 2008 R2
	Installing the Module on Windows 7
	A Word about Remoting

	Getting Policy Information
	Group Policy Objects (GPOs)
	Group Policy Links
	Resultant Set of Policy (RSOP)

	Creating and Configuring GPOs
	Backing Up and Restoring GPOs
	Group Policy Security
	Getting Security Information
	Setting Permissions

	Summary

	Part IV: Server Applications
	Chapter 12: Managing Microsoft Exchange Server
	Installing the Cmdlets on a Workstation
	Microsoft Exchange Server 2007
	Microsoft Exchange Server 2010

	What's New in Microsoft Exchange Server 2010
	Managing Microsoft Exchange Server Permissions
	Microsoft Exchange Server 2007
	Microsoft Exchange Server 2010

	Administering Objects
	Administering Recipients

	Managing Databases
	Microsoft Exchange Server 2007
	Microsoft Exchange Server 2010
	Finding Mailbox Database White Space

	Discovering Space Used by Disabled Mailboxes
	Managing Quotas
	Managing Microsoft Exchange Server Remotely
	Email Address Policies
	Interoperating with Earlier Versions of Microsoft Exchange
	Microsoft Exchange Server 2007
	Microsoft Exchange Server 2010

	Using Filters
	Using Client-Side Filters
	Using Server-Side Filters

	Managing Recipient Scope
	Managing Scope in Microsoft Exchange Server 2007
	Managing Scope in Microsoft Exchange Server 2010

	Managing Role Based Access Control
	Introducing Microsoft Exchange Web Services
	Summary

	Chapter 13: Managing SQL Server 2008 R2
	PowerShell Basics for SQL Server
	Managing SQL Server Services
	Working with Snap-ins
	Working with Assemblies
	Changing the Service Account

	Querying SQL Server
	Using a Quoted String to Query SQL Server
	Returning Data into a Datatable
	Using an Input File to Query SQL Server

	Loading Data
	Loading SQL Server Data
	Loading Non-SQL Server Data

	Getting SQL Server Information
	Getting Version Information
	Getting Service Pack Information
	Getting Instance Uptime Information

	Gathering Performance Counters
	Scripting Objects
	Scheduling Windows PowerShell SQL Server Agent Job Steps
	Getting Space Usage Information
	Getting Volume Space Usage
	Getting Database Space Usage
	Getting Table Space Usage

	Managing Registrations in SQL Server Management Studio
	Leveraging Registrations to Query Multiple Registered Servers
	Leveraging Registrations to Query Multiple Central Management Servers

	Summary

	Chapter 14: Managing Microsoft SharePoint 2010 Server
	Installing and Using the Cmdlets
	SharePoint 2010 Management Shell
	PipeBind Parameters
	SPAssignment

	Remoting with SharePoint
	Limitations of the SharePoint Cmdlets
	Memory Limits in WS-Man

	Automating Site Administration
	Creating Site Collections
	Connecting to Sites
	Removing Sites

	Using SharePoint Lists
	Browsing Lists
	Viewing List Data
	Updating List Data
	Adding Items to a List
	Working with Views
	Creating Lists
	List Settings
	Managing Permissions
	Managing Document Libraries

	Creating a Web Application
	Deploying Developer Code
	Administering Workflows
	Manually Kicking Off Workflows
	Monitoring Workflows
	Cancelling Workflows

	Backing Up and Restoring
	The Configuration Database
	Farms
	Site Collections
	Lists and Libraries

	Search and Timer Jobs
	Modifying Crawls
	Kicking Off Crawls

	Summary

	Chapter 15: Managing Internet Information Services 7
	Installing the Necessary Components
	Installing the Snap-in
	Installing the Web Server Role
	Loading the WebAdministration Cmdlets and Provider
	Installing the WMI Provider

	Browsing IIS:\
	Scripting Deployments and Changes
	Using New-Item
	Creating Sites
	Creating Virtual Directories
	Creating Web Applications
	Creating Application Pools
	Configuring SSL
	Using the Provider to Make Changes
	Removing IIS Objects with the Cmdlets
	Advanced WebConfiguration Settings

	Managing IIS
	Controlling IIS Services
	Backing Up and Restoring Configurations

	Digesting Log Files
	ConvertFrom-Csv
	Filtering Tips

	Summary

	Chapter 16: Managing System Center Operations Manager 2007 R2
	Exploring the Available Cmdlets
	Working with Alerts
	Processing Alerts in Bulk
	Updating Custom Fields in Alert Properties in Bulk

	Automating Maintenance Mode
	Adding and Removing Objects and Groups
	Automating Client-Side (Remote) Maintenance Mode

	Deploying and Configuring OpsMgr Agents and Network Devices
	Configuring Agent Failover Without AD Integration
	Managing SNMP Device Failover
	Automating Agent Discovery and Deployment
	Verifying Agent Load Balance Across Management Servers

	Exploring Discovered Inventory Data
	Enumerating Classes and Discovered Instances
	Enumerating Monitored Objects and Relationships

	Windows PowerShell and the Command Notification Channel
	Performing Simple Event and Log File Creation from the Command Channel
	Forwarding SNMP Traps with Windows PowerShell

	Overrides
	Retrieving and Converting Overrides into Readable Reporting Format
	Creating Overrides Programmatically

	Notifications
	Enabling and Disabling Notifications
	Working with Notification Recipients

	Monitoring Scripts in Windows PowerShell
	Sample OpsMgr Scripts and Other Community Resources
	Where to Find and Share Samples on the Web
	Where to Find Free Support on Authoring Windows PowerShell Scripts for OpsMgr

	Summary

	Chapter 17: Managing Microsoft Deployment Toolkit 2010
	Installing and Using the Cmdlets
	Exploring the MDT Windows PowerShell Provider
	Using the GUI to Create Your Scripts

	Creating and Populating the Deployment Share
	Initializing the Deployment Share
	Creating the MDT Database
	Importing Operating Systems
	Importing Device Drivers
	Importing Applications
	Creating Task Sequences

	Managing the Deployment Share
	Configuring the Deployment Share
	Updating the Deployment Share
	Managing Media

	Summary

	Chapter 18: Managing Citrix XenApp 6
	Installing and Using the Cmdlets
	What's New in XenApp 6
	Working with Administrators
	Retrieving Administrators
	Adding and Removing Administrators
	Enabling and Disabling Administrators
	Modifying Privileges

	Providing Applications
	Retrieving Applications
	Publishing New Applications
	Modifying Application Properties
	Importing/Exporting Applications
	Adding and Removing Assigned Accounts
	Removing and Disabling Applications

	Managing Sessions
	Enumerating Sessions
	Managing Session Processes
	Managing Sessions

	Maintaining Servers
	Managing Server Logons
	Getting Server Load
	Managing Load Evaluators
	Changing Server Zones

	Applying Load-Balancing Policies
	Creating Load-Balancing Policies
	Configuring Load-Balancing Policies
	Applying Filters to Load-Balancing Policies

	Worker Groups
	Adding and Removing Worker Groups
	Modifying Worker Groups

	Summary

	Chapter 19: Managing Citrix XenDesktop 5
	Introducing Citrix XenDesktop 5
	Examining the Windows PowerShell Tab
	Exploring the Snap-Ins
	Performing an Automated Environment Setup

	Administrators
	Explaining Access Control
	Creating Administrators

	Catalogs
	Creating Catalogs
	Managing Catalogs
	Removing Catalogs

	Provisioning
	Introducing Machine Creation Services
	Updating Master Images

	Desktop Groups
	Creating Desktop Groups
	Creating Application Desktop Groups

	Hosts
	Hosts PSProvider
	Adding Hosts
	Removing Hosts

	Summary

	Part V: Virtualization and Cloud Computing
	Chapter 20: Managing Hyper-V 2008 R2
	Hyper-V Management Interfaces
	WMI Management Classes
	Windows PowerShell Management Library for Hyper-V

	Managing Hosts
	Retrieving Information
	Using Show-HypervMenu

	Managing Virtual Machines
	Creating and Modifying Virtual Machines
	Controlling Virtual Machines

	Summary

	Chapter 21: Managing System Center Virtual Machine Manager 2008 R2
	Working with System Center Virtual Machine Manager 2008 R2
	Installing and Loading the Cmdlets
	Backing Up the VMM Database
	Using the VMM Administrator Console to Write Scripts
	Connecting to VMM

	Working with Host Servers
	Adding Hosts to VMM
	Organizing Hosts

	Managing Clusters
	Adding Clusters
	Performing Maintenance on Host Servers

	Working with Virtual Machines
	Creating and Modifying Virtual Machines
	Removing Virtual Machines
	Controlling Virtual Machines
	Managing Checkpoints

	Libraries
	Creating a Library
	Finding Dependent Objects

	Summary

	Chapter 22: Managing Windows Azure
	Installing and Using the Windows Azure Service Manager Cmdlets
	Installing the WASM Cmdlets
	Creating and Registering Your Certificate

	Managing Hosted Services
	Getting Hosted Service Information
	Starting and Stopping Deployments
	Get-OperationStatus
	Deploying New Code
	Scaling Services

	Managing Certificates
	Windows Azure Diagnostics
	Getting Logging Configuration
	Configuring Logging
	Forcing Logs to Transfer to Storage

	Summary

	Chapter 23: Managing VMware vSphere PowerCLI
	Installing and Using the Cmdlets
	Installing PowerCLI
	Loading PowerCLI
	Connecting to a Host or vCenter Instance
	Retrieving Hosts and VMs

	Managing ESX and ESXi
	Putting Hosts in Maintenance Mode
	Inspecting Host Properties
	Managing Storage
	Managing Host Networks
	Configuring NTP Servers
	Working with Host Profiles
	Getting Logs
	Gathering Performance Data from a Host

	Managing Virtual Machines
	Deploying New VMs
	Removing VMs
	Working with Virtual Hardware
	Managing VM Resource Configuration
	Updating VM Tools
	Starting and Stopping VMs
	Using Snapshots
	Invoking Scripts

	Managing vCenter
	Clusters
	Migrating VMs
	Managing Folders, Resource Pools, and Datacenters
	Getting Log Data
	Getting Performance Data

	Everything Else
	Summary

	Part VI: Beyond the Console
	Chapter 24: Creating User Interfaces
	Working with Text Mode UI
	Getting Credentials
	Getting Strings
	Validating Input

	Building a Simple UI in Windows PowerShell Using Windows Forms
	Using Windows Forms
	Building a GUI with Windows Forms — the Basics

	Using Windows Forms Controls
	Label Control
	Button Control
	Textbox Control

	Using Windows PowerShell and PrimalForms
	Using Windows Presentation Foundation
	Summary

	Chapter 25: Using the Windows PowerShell ISE
	Key Features of the ISE
	Screen Layout
	Modifying the ISE Layout

	Using the ISE
	The ISE as an Alternative to the Windows PowerShell Console
	Using the ISE to Edit Windows PowerShell Scripts/Modules
	ISE Profile Files

	Debugging with the ISE
	Setting and Using Breakpoints in the ISE
	Debugging

	Extending the ISE
	Overview of the ISE Object Model
	What's in $PsISE
	Sample Windows PowerShell ISE Add-On

	Third-Party Alternatives to the ISE
	Summary

	Index

